1
|
Liu Z, Wang W, Zong Y, Li M, Gao Y, Xin X, Zhu T, Wang L, Song L. Norepinephrine regulates TNF expression via the A1AR-p38 MAPK-Relish pathway in granulocytes of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105217. [PMID: 38901503 DOI: 10.1016/j.dci.2024.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Norepinephrine (NE) is involved in regulating cytokine expression and phagocytosis of immune cells in the innate immunity of vertebrates. In the present study, the modulation mechanism of NE on the biosynthesis of TNFs in oyster granulocytes was explored. The transcripts of CgTNF-1, CgTNF-2 and CgTNF-3 were highly expressed in granulocytes, and they were significantly up-regulated after LPS stimulation, while down-regulated after NE treatment. The phagocytic rate and apoptosis index of oyster granulocytes were also triggered by LPS stimulation and suppressed by NE treatment. The mRNA expressions of CgMAPK14 and CgRelish were significantly induced after NE treatment, and the translocation of CgRelish from cytoplasm to nucleus was observed. The concentration of intracellular Ca2+ in granulocytes was significantly up-regulated upon NE incubation, and this trend reverted after the treatment with DOX (specific antagonist for NE receptor, CgA1AR-1). No obvious significance was observed in intracellular cAMP concentrations in the PBS, NE and NE + DOX groups. Once CgA1AR-1 was blocked by DOX, the mRNA expressions of CgMAPK14 and CgRelish were significantly inhibited, and the translocation of CgRelish from cytoplasm to nucleus was also dramatically suppressed, while the mRNA expression of CgTNF-1 and the apoptosis index increased significantly to the same level with those in LPS group, respectively. These results collectively suggested that NE modulated TNF expression in oyster granulocyte through A1AR-p38 MAPK-Relish signaling pathway.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuqian Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Xin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ting Zhu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Liao Q, Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. The immunotoxicity mechanism of hemocytes in Chlamys farreri incubated with noradrenaline and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide alone or in combination. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109278. [PMID: 38072136 DOI: 10.1016/j.fsi.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/31/2023]
Abstract
Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.
Collapse
Affiliation(s)
- Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
3
|
Kuo HW, Hsu LY, Cheng W. Molecular characterization and functional roles for Vibrio alginolyticus resistance of an octopamine/tyramine receptor of the white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 130:22-30. [PMID: 36084884 DOI: 10.1016/j.fsi.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Octopamine and Tyramine are biogenic amines that have been demonstrated to play an important immunological role in white shrimp, Litopenaeus vannamei. G protein-coupled receptors, known as seven-transmembrane domain receptors, are a variety of neurotransmitter receptors which are sensitive to biogenic amines for initiating the cell signaling pathway. In present study, we cloned and characterized an octopamine/tyramine receptor (LvOA/TA-R) from the hemocytes of L. vannamei, with a 1194 b.p. open reading frame that encodes 398 amino acids. Several bioinformatics analyses indicated that LvOA/TA-R had seven conserved hydrophobic transmembrane domains. The phylogenetic analysis and multiple sequence alignment indicated that LvOA/TA-R was orthologous to the OA/TA receptor of tiger shrimp, P. monodon. LvOA/TA-R was expressed in hemocytes and nervous tissue including circumoesphageal connective tissue and the thoracic and abdominal ganglia. Significant increases in LvOA/TA-R occurred in hemocytes of L. vannamei under Vibrio alginolyticus infection within 30-60 min of infection. Here, we demonstrated that LvOA/TA-R expression is upregulated in response to Vibrio alginolyticus infection and appears to be functionally responsible for the observed immune response. These results suggest that LvOA/TA-R mediates regulation of immunity, which promotes the resistance of L. vannamei to V. alginolyticus.
Collapse
Affiliation(s)
- Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Li-Yang Hsu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
4
|
Abo-Al-Ela HG, Faggio C. MicroRNA-mediated stress response in bivalve species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111442. [PMID: 33038725 DOI: 10.1016/j.ecoenv.2020.111442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks are important aquatic organisms, which are used for biological monitoring because of their abundance, ubiquitous nature, and abilities to adapt to different environments. MicroRNAs (miRNAs) are small noncoding RNAs, which typically silence the expression of target genes; however, certain miRNAs directly or indirectly upregulate their target genes. They are rapidly modulated and play an essential role in shaping the response of organisms to stresses. Based on the regulatory function and rapid alteration of miRNAs, they could act as biomarkers for biotic and abiotic stress, including environmental stresses and contaminations. Moreover, mollusk, particularly hemocytes, rapidly respond to environmental changes, such as pollution, salinity changes, and desiccation, which makes them an attractive model for this purpose. Thus, bivalve mollusks could be considered a good animal model to examine a system's response to different environmental conditions and stressors. miRNAs have been reported to adjust the adaptation and physiological functions of bivalves during endogenous and environmental stressors. In this review, we aimed to discuss the potential mechanisms underlying the response of bivalves to stressors and how miRNAs orchestrate this process; however, if necessary, other organisms' response is included to explain specific processes.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
5
|
Liu J, Zhou T, Wang C, Wang W, Chan S. Comparative transcriptomics reveals eyestalk ablation induced responses of the neuroendocrine-immune system in the Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 106:823-832. [PMID: 32835851 DOI: 10.1016/j.fsi.2020.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In decapod crustaceans, eyestalk ablation is widely used to expedite ovarian maturation and spawning because of the removal of a gonad inhibiting hormone produced by the X-organ sinus gland. However, eyestalk ablation also results in negative impacts on the immunocompetence of the eyestalk-ablated females. In the current study, we investigated the impact of eyestalk ablation on the transcriptomic responses of three major nervous organs of shrimp, including the eyestalk ganglion, brain and thoracic ganglion, using the Illumina Hiseq™ 4000 platform. A total of 48,249 unigenes with an average length of 1253 bp and a N50 value of 2482 bp were obtained. Following eyestalk ablation treatment, a total of 2,983, 6325 and 6575 unigenes were detected as differentially expressed (log2Ratio >1 and FDR <0.05) from the eyestalk, brain and thoracic ganglia, respectively. Functional GO and KEGG analysis of these differential expression genes (DEGs) showed that these DEGs were associated with a wide variety of biological processes and pathways. The distribution of DEGs among three comparison groups was similar, and many DEGs were mapped to the phagosome pathway, indicating that eyestalk ablation triggers activation of the neuroendocrine-immune (NEI) system. Interestingly, several important pathways were uniquely enriched in the brain tissue, suggesting that the brain may play a crucial role in the NEI system in response to eyestalk ablation. This is the first report on the transcriptomic regulation of the nervous system in response to eyestalk ablation in L. vannamei. The genes and pathways identified in this study will help to elucidate the molecular mechanisms of neuroendocrine-immune responses to eyestalk ablation in penaeid shrimp.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Tingting Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Chenggui Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, Guangdong, PR China.
| | - Siuming Chan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, PR China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
6
|
Xu Z, Wei Y, Guo S, Lin D, Ye H. B-type allatostatin modulates immune response in hepatopancreas of the mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103725. [PMID: 32376281 DOI: 10.1016/j.dci.2020.103725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
B-type allatostatin (AST-B) is a pleiotropic neuropeptide, widely found in arthropods. However, the information about its immune effect in crustaceans is unknown. In this study, we identified the nervous tissue as the main site for Sp-AST-B expression, while its receptor gene (Sp-AST-BR) is widely expressed in various tissues, including the hepatopancreas. This suggests the peptide's potential role in diverse physiological processes in the mud crab Scylla paramamosain. In situ hybridization revealed that Sp-AST-BR is mainly localized in the F-cell of hepatopancreas. Furthermore, we found a significant up-regulation of Sp-AST-BR transcripts in the hepatopancreas following exposure to lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid (Poly (I:C)). Results from in vitro and in vivo experiments revealed that treatment with a synthetic AST-B peptide mediated significant upregulation in expression of AST-BR, nuclear factor-κB (NF-κB) pathway components (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and antimicrobial peptides (AMPs) in the hepatopancreas. In addition, AST-B treatment mediated significant elevation of nitric oxide (NO) production and enhanced the bacteriostasis capacity of the hepatopancreas tissue in vitro. Taken together, these findings reveal the existence of a basic neuroendocrine-immune (NEI) network in crabs, and indicate that AST-B could couple with its receptor to trigger downstream signaling pathways and induce immune responses in the hepatopancreas.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Xu Z, Wei Y, Guo S, Lin D, Ye H. Short neuropeptide F enhances the immune response in the hepatopancreas of mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2020; 101:244-251. [PMID: 32272259 DOI: 10.1016/j.fsi.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Short neuropeptide F (sNPF), a highly conserved neuropeptide, displays pleiotropic functions on multiple aspects of physiological processes, such as feeding, metabolic stress, locomotion, circadian clock and reproduction. However, to date there has no any report on the possible immunoregulation of sNPF in crustaceans. In the present study, we found that the Sp-sNPF was mainly expressed in the nervous tissue in the mud crab Scylla paramamosain, while the sNPF receptor gene (Sp-sNPF-R) was expressed in a wide variety of tissues, including the hepatopancreas. In situ hybridization further showed that the Sp-sNPF-R positive signal mainly localized in the F-cells of the hepatopancreas. Moreover, the Sp-sNPF-R transcription could be significantly up-regulated after the challenge of bacteria-analog LPS or virus-analog Poly (I:C). Both in vitro and in vivo experiments showed that the synthetic sNPF peptide significantly increased the gene expressions of sNPF-R, nuclear factor-κB (NF-κB) signaling genes and antimicrobial peptides (AMPs) in the hepatopancreas. Simultaneously, the administration of sNPF peptide in vitro also increased the concentration of nitric oxide (NO) and the bacteriostasis of the culture medium of hepatopancreas. These results indicated that sNPF up-regulated hepatopancreas immune responses, which may bring new insight into the neuroendocrine-immune regulatory system in crustacean species, and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Liang X, Chen K, Li YF, Bao WY, Yoshida A, Osatomi K, Yang JL. An ɑ 2-adrenergic receptor is involved in larval metamorphosis in the mussel, Mytilus coruscus. BIOFOULING 2019; 35:986-996. [PMID: 31724449 DOI: 10.1080/08927014.2019.1685661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Metamorphosis is crucial in the life-cycle transition between the larval and juvenile stages of marine invertebrates. Although a number of agonists and antagonists of the adrenergic receptor (AR) are known to regulate larval metamorphosis in Mytilus coruscus (Mc), the molecular basis of the modulation of larval metamorphosis by the AR gene in this species remains elusive. Herein, the role of the AR gene in M. coruscus larval metamorphosis using the RNA interference technique was examined. The Mcα2AR transcript was observed to be present during the entire process of larval development and its level in the post-larvae was significantly increased compared to that in the pediveligers. Mcα2AR-knockdown resulted in a substantial reduction in the abundance of the Mcα2AR transcript and significantly inhibited the metamorphosis of M. coruscus larvae. These findings provide new insights into the molecular basis of modulation of larval metamorphosis in M. coruscus by the AR gene.
Collapse
Affiliation(s)
- Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ke Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wei-Yang Bao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
Xu L, Pan L, Zhang X, Wei C. Crustacean hyperglycemic hormone (CHH) affects hemocyte intracellular signaling pathways to regulate exocytosis and immune response in white shrimp Litopenaeus vannamei. Peptides 2019; 116:30-41. [PMID: 31034862 DOI: 10.1016/j.peptides.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Recombinant Litopenaeus vannamei CHH (rLvCHH) was obtained from a bacterial expression system and the intracellular signaling pathways involved in exocytosis and immune response after rLvCHH injection (0.2 and 2 μg/shrimp) was investigated in this study. The results showed that CHH contents increased 51.4%-110.2% (0.2 μg/shrimp) and 65.0%-211.3% (2 μg/shrimp) of the control level. And the contents of three biogenic amines in hemolymph presented a similar variation pattern after rLvCHH injection, but reached the highest level at different time points. Furthermore, the mRNA expression levels of membrane-bound guanylyl cyclase (mGC) (1.20-1.93 fold) and biogenic amine receptors, including type 2 dopamine receptor (DA2R) (0.72-0.89 fold), α2 adrenergic receptor (α2-AR) (0.72-0.91 fold) and 5-HT7 receptor (5-HT7R) (1.37-3.49 fold) in hemocytes were changed consistently with their ligands. In addition, the second messenger and protein kinases shared a similar trend and reached the maximum at the same time respectively. The expression levels of nuclear transcription factor (cAMP response element-binding protein, CREB) and exocytosis-related proteins transcripts were basically overexpressed after rLvCHH stimulation, which reached the peaks at 1 h or 3 h. Eventually, the phenoloxidase (PO) activity (37.4%-158.5%) and antibacterial activity (31.8%-122.3%) in hemolymph were dramatically enhanced within 6 h, while the proPO activity in hemocytes significantly decreased (11.2%-62.6%). Collectively, these results indicate that shrimps L. vannamei could carry out a simple but 'smart' NEI regulation by releasing different neuroendocrine factors at different stages after rLvCHH stimulation, which could couple with their receptors and trigger the downstream signaling pathways during the immune responses in hemocytes.
Collapse
Affiliation(s)
- Lijun Xu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Cun Wei
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| |
Collapse
|
10
|
Franzellitti S, Capolupo M, Wathsala RHGR, Valbonesi P, Fabbri E. The Multixenobiotic resistance system as a possible protective response triggered by microplastic ingestion in Mediterranean mussels (Mytilus galloprovincialis): Larvae and adult stages. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:50-58. [PMID: 30772527 DOI: 10.1016/j.cbpc.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 11/26/2022]
Abstract
The emerging paradigm on plastic pollution in marine environments is that microsize particles (MPs) have far more subtle effects than bigger fragments, given their size range overlapping with that of particles ingested by filter-feeders. The impacts include gut blockage, altered feeding and energy allocation, with knock-on effects on widespread physiological processes. This study investigated whether ingestion of polystyrene MPs (PS-MPs) triggers protective processes in marine mussels. The Multixenobiotic resistance (MXR) system is a cytoprotective mechanism acting as an active barrier against harmful xenobiotics and a route of metabolite detoxification. Both larvae and adults were employed in laboratory experiments with different concentrations of 3-μm PS-MPs (larvae), and 3-μm and 45-μm PS-MPs (adults) matching size range of planktonic food through the mussel lifecycle. Embryos grown in the presence of 3-μm PS-MPs showed significant reduction of MXR activity and down-regulation of ABCB and ABCC transcripts encoding the two main MXR-related transporters P-glycoprotein and the Multidrug resistance-related protein, respectively. In adults, effects of PS-MPs were assessed in haemocytes and gills, which showed different modulation of MXR activity and ABCB/ABCC expression according to MP size (haemocyte and gills) or particle concentration (haemocyte). These data showed that modulation of MXR activity is part of a generalized response triggered by particle ingestion.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Marco Capolupo
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Rajapaksha H G R Wathsala
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
11
|
Liu Z, Li M, Yi Q, Wang L, Song L. The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Front Physiol 2018; 9:1456. [PMID: 30555334 PMCID: PMC6282093 DOI: 10.3389/fphys.2018.01456] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Marine bivalves, which include many species worldwide, from intertidal zones to hydrothermal vents and cold seeps, are important components of the ecosystem and biodiversity. In their living habitats, marine bivalves need to cope with a series of harsh environmental stressors, including biotic threats (bacterium, virus, and protozoan) and abiotic threats (temperature, salinity, and pollutants). In order to adapt to these surroundings, marine bivalves have evolved sophisticated stress response mechanisms, in which neuroendocrine regulation plays an important role. The nervous system and hemocyte are pillars of the neuroendocrine system. Various neurotransmitters, hormones, neuropeptides, and cytokines have been also characterized as signal messengers or effectors to regulate humoral and cellular immunity, energy metabolism, shell formation, and larval development in response to a vast array of environmental stressors. In this review substantial consideration will be devoted to outline the vital components of the neuroendocrine system identified in bivalves, as well as its modulation repertoire in response to environmental stressors, thereby illustrating the dramatic adaptation mechanisms of molluscs.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
12
|
Jia Y, Yang B, Dong W, Liu Z, Lv Z, Jia Z, Qiu L, Wang L, Song L. A serotonin receptor (Cg5-HTR-1) mediating immune response in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:83-93. [PMID: 29305167 DOI: 10.1016/j.dci.2017.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Serotonin receptors, including ligand-gated ion channel (LGICs) and G protein-coupled receptors (GPCR), play vital roles in modulating physiological processes and immunoreaction. In the present study, a homologue of serotonin (5-HT) receptor was identified from oyster Crassostrea gigas (designated Cg5-HTR-1). Its open reading frame (ORF) was of 1239 bp, encoding a polypeptide of 412 amino acids with a seven transmembrane region. Cg5-HTR-1 shared high similarity with the 5-HTRs from other animals. The cAMP contents in HEK293T cells decreased significantly after Cg5-HTR-1 transfection and 5-HT incubation (p < .05), while blocking Cg5-HTR-1 with specific receptor antagonist reversed this downtrend. The intracellular Ca2+ concentrations increased significantly (p < .05) after cell transfection and 5-HT incubation, and the antagonist treatment also arrested this process. Cg5-HTR-1 transcripts were widely distributed in various tissues, with the highest level in hepatopancreas and lowest level in mantle and gill. The mRNA expression of Cg5-HTR-1 in hemocyte increased significantly after lipopolysaccharide (LPS) stimulation and reached the peak level (6.47-fold, p < .05) at 6 h post treatment. The inhibition of Cg5-HTR-1 significantly reduced the expression of tumor necrosis factor (TNF) mRNA in hemocyte, down-regulated the superoxide dismutase (SOD) activity in serum, and induced the apoptosis of hemocyte (p < .05). These results suggested that Cg5-HTR-1 was a novel member of 5-HT1 receptor family and it mediated serotonergic immunomodulation on both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Dong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
13
|
Long-term affected flat oyster (Ostrea edulis) haemocytes show differential gene expression profiles from naïve oysters in response to Bonamia ostreae. Genomics 2018; 110:390-398. [PMID: 29678683 DOI: 10.1016/j.ygeno.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
European flat oyster (Ostrea edulis) production has suffered a severe decline due to bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute inflammatory response frequently leading to death. We used an immune-enriched oligo-microarray to understand the haemocyte response to Bonamia ostreae by comparing expression profiles between naïve (NS) and long-term affected (AS) populations along a time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, which might be indicative of selection for resistance. No regulated genes were detected at 30 d in both populations while a notable reactivation was observed at 90 d, suggesting parasite latency during infection. Genes related to extracellular matrix and protease inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, might play an important role along the infection. Twenty-four candidate genes related to resistance should be further validated for selection programs aimed to control bonamiosis.
Collapse
|
14
|
Zhang L, Pan L, Xu L, Si L. Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 75:48-57. [PMID: 29407613 DOI: 10.1016/j.fsi.2018.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/20/2018] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Abstract
The effects of ammonia-N exposure (transferred from 0.07 to 2, 10 and 20 mg L-1) on the mechanism of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in treatment groups increased significantly within 12 h. The gene expression of guanylyl cyclase increased significantly from 3 h to 24 h. And dopamine receptor D4 and α2 adrenergic receptor gene expression in treatment groups decreased significantly within 12 h, whereas the mRNA expression of 5-HT7 receptor increased significantly within 3 h and reached the peak levels at 6 h. The second messengers (cAMP, cGMP) and Calmodulin (CaM) increased significantly in treatment groups after 3 h. The concentrations of protein kinases (PKA, PKG) shared a similar trend in cAMP and cGMP which were up-regulated and reached the peak value at 6 h, while the PKC decreased within 3 h and arrived at its bottom at 6 h. The nuclear factor kappa-b and cAMP-response element binding protein mRNA expression levels of treatment shrimps increased sharply and reached maximum values at 6 h. The total hemocyte count, phagocytic activity, antibacterial activity in treatment groups decreased dramatically within 48 h. Whereas the phenoloxidase activities slightly up-regulated. Then it was decreased significantly up to 48 h. α2-macroglobulin activity decreased at the first 3 h-stress. Then they up-regulated significantly in 6 h. The results suggest that there are two crucial neuroendocrine substances (biogenic amine and CHH), which play a principal role in adapting to ammonia-N exposure and cause immune response through cAMP-, CaM- and cGMP-dependent pathways.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China.
| | - Lijun Xu
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Lingjun Si
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| |
Collapse
|
15
|
Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, Yi Q, Qiu L, Song L. The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Front Immunol 2018. [PMID: 29535711 PMCID: PMC5834419 DOI: 10.3389/fimmu.2018.00284] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system. After hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA expression levels and protein activities of choline O-acetyltransferase and dopamine β-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinesterase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh and NE, were inhibited. These results demonstrated the existence of the sophisticated intracellular machinery for the generation, release and inactivation of ACh and NE in oyster hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dismutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities of hemocytes, the mRNA expressions of TNF and the activities of key immune-related enzymes were significantly changed after the block of ACh and NE receptors with different kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by transmembrane receptors on hemocyte. The present study proved that oyster hemocyte could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling pathway identified in vertebrate macrophages. Findings in the present study demonstrated that the immune and neuroendocrine system evolved from a common origin and enriched our knowledge on the evolution of NEI system.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Liu Z, Zhou Z, Jiang Q, Wang L, Yi Q, Qiu L, Song L. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas. Open Biol 2017; 7:rsob.160289. [PMID: 28077596 PMCID: PMC5303279 DOI: 10.1098/rsob.160289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas. Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca2+. This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the ‘nervous-haemocyte’ NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Qilin Yi
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| |
Collapse
|
17
|
Liu Z, Wang L, Zhou Z, Liu Y, Dong M, Wang W, Song X, Wang M, Gao Q, Song L. Transcriptomic analysis of oyster Crassostrea gigas larvae illustrates the response patterns regulated by catecholaminergic system upon acute heat and bacterial stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:52-60. [PMID: 28283443 DOI: 10.1016/j.dci.2017.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Bacterial infection and heat stress, as two major environmental threats of marine molluscs, could affect larval development and dramatically promote mortality of oysters. In the present study, next-generation sequencing, together with determinations of mRNA expression and measurements of enzyme activities, were employed to understand the response patterns of oyster larvae under acute heat and bacterial stress. After RNA-seq, a total of 9472 differentially expressed genes including 4895 significantly up-regulated ones and 4577 significantly down-regulated ones were obtained from 12 transcriptome libraries. GO overrepresentation analysis of the up-regulated genes revealed that the neuroendocrine immunomodulation pathway was activated after acute heat and bacterial stimulation, in which the catecholaminergic regulation played an important role. GO overrepresentation analysis of the down-regulated genes suggested that the immune capacity of Crassostrea gigas larvae was suppressed under stress, which was further validated since superoxide dismutase (SOD) and phenoloxidase (PO) activities in the total protein extract of larvae decreased dramatically after stress. Moreover, the shell formation of trochophore was inhibited and severe mortality was caused after acute heat and bacterial stress. These results collectively indicated that acute heat and bacterial stress could significantly inhibit larval development and suppress immune response of oyster C. gigas larvae. And the neuroendocrine immunomodulation, especially the catecholaminergic regulation, played an indispensable role in the stress response of molluscan larvae.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiang Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
18
|
Chen H, Xin L, Song X, Wang L, Wang W, Liu Z, Zhang H, Wang L, Zhou Z, Qiu L, Song L. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:297-307. [PMID: 28286314 DOI: 10.1016/j.fsi.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Oyster Crassostrea gigas is one model mollusc inhabiting in the intertidal zone and is frequently stressed by desiccation. The adaptation mechanism of oyster to environmental stress involves multiple levels, and miRNA is one of the most important regulators in post-transcriptional level. In the present study, an oyster norepinephrine-responsive miRNA cgi-miR-365 was proved to contribute to the host adaptation against desiccation by directly promoting the expression of CgHSP90AA1. Briefly, a significant increase of cgi-miR-365 was observed from the first day after aerial exposure and the up-regulation was vigorously repressed when oysters were injected with adrenoceptors antagonists. A total of 15 genes involved in biological regulation, metabolic process and response to stimulus were predicted to be modulated by cgi-miR-365. Among these genes, CgHSP90AA1 was up-regulated significantly during desiccation and could be down-regulated after simultaneous injection of adrenoceptors antagonists. The interaction between cgi-miR-365 and CgHSP90AA1 was subsequently verified in vitro, and a significant promotion of CgHSP90AA1 transcripts was observed after overexpressing cgi-miR-365 in either in vitro luciferase reporter assay or primarily cultured haemocytes. Meanwhile, CgHSP90AA1 transcripts decreased in vivo when cgi-miR-365 was repressed by its inhibitor during desiccation. Collectively, it was suggested that cgi-miR-365 could be induced by norepinephrine during desiccation and promote CgHSP90AA1 expression directly after binding to its 3'-UTR, which would provide new evidence in miRNA-mediated adaptation mechanism in oysters against intertidal stress.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
19
|
Catecholamines are produced by ascidian immune cells: The involvement of PKA and PKC in the adrenergic signaling pathway. Brain Behav Immun 2017; 61:289-296. [PMID: 28089640 DOI: 10.1016/j.bbi.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
The stress response is a complex mechanism, which includes changes in the immune system to enable organisms to maintain homeostasis. The neurohormones dopamine, noradrenaline (NA) and adrenalin are responsible for the physiological modulations that occur during acute stress. In the present study, we analyzed the effects of NA on the immune system specific to nitric-oxide (NO) production by subpopulations of immune cells (hemocytes) of the ascidian Phallusia nigra. We also investigated the capability of immune cells to produce catecholamine (CA). Finally, we tested the involvement of protein kinase A (PKA) and C (PKC) in the NA downstream signaling pathway. The results revealed that NA can reduce NO production by P. nigra hemocytes threefold, and that signet-ring cells, univacuolar refractile granulocytes and morula cells are the cell types most involved in this event. A challenge effected with Zymosan A induced CA production, and co-incubation with both inhibitors of the second messengers PKA and PKC revealed the involvement of these molecules in the adrenergic pathway of P. nigra hemocytes. Taken together, these results suggest that NO production can be down-regulated by NA through α- and β-adrenoceptors via the second messengers PKA and PKC.
Collapse
|
20
|
Wang X, Wang M, Jia Z, Wang H, Jiang S, Chen H, Wang L, Song L. Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO 2 exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:124-135. [PMID: 27837685 DOI: 10.1016/j.aquatox.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO3-] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO3-] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO2 exposure. Besides, CO2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (p<0.05), suggesting the existence of a [HCO3-]/CgsAC/cAMP signal pathway in oyster. The elevated CO2 could induce an increase of ROS level (p<0.05) and a decrease of phagocytic rate of haemocytes (p<0.05), which could be inhibited by KH7. The results collectively suggest that CgsAC is an important acid-base sensor in oyster and the [HCO3-]/CgsAC/cAMP signal pathway might be responsible for intracellular alkalization effects on oxidative phosphorylation and innate immunity under CO2 exposure. The changes of intracellular pH, ROS, and phagocytosis mediated by CgsAC might help us to further understand the effects of ocean acidification on marine calcifiers.
Collapse
Affiliation(s)
- Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
21
|
Liu Z, Zhou Z, Wang L, Dong W, Qiu L, Song L. The cholinergic immune regulation mediated by a novel muscarinic acetylcholine receptor through TNF pathway in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:139-148. [PMID: 27394930 DOI: 10.1016/j.dci.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Muscarinic receptors, which selectively take muscarine as their ligand, are critical for the immunological and physiological processes in animals. In the present study, the open region frame (ORF) of a homologue of muscarinic acetylcholine (ACh) receptor (mAChR) was amplified from oyster Crassostrea gigas (named as CgmAChR-1), whose full length was 1983 bp and the protein it encoded contained 660 amino acids with a seven transmembrane region. Phylogeny analysis suggested that CgmAChR-1 shared homology with M5 muscarinic receptor found in invertebrates including Habropoda laboriosa, Acromyrmex echinatior and Echinococcus granulosus. After cell transfection of CgmAChR-1 into HEK293T cells and ACh incubation, the level of intracellular Ca(2+) and cAMP increased significantly (p < 0.05). Such trend could be reverted with the addition of M3 and M5 muscarinic receptor antagonists DAMP and DAR. The CgmAChR-1 transcripts were ubiquitously detectable in seven different tissues with the maximal expression level in adductor muscle. When the oysters received LPS stimulation, CgmAChR-1 mRNA expression in haemocyte was increased to the highest level (6.05-fold, p < 0.05) at 24 h, while blocking CgmAChR-1 using receptor antagonists before LPS stimulation promoted the expression of oyster TNF, resulting in the increase of haemocyte apoptosis index. These results suggested that CgmAChR-1 was the key molecule in cholinergic neuroendocrine-immune system contributing to the regulation of TNF expression and apoptosis process.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| | - Wenjing Dong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
Liu Z, Zhou Z, Wang L, Qiu L, Zhang H, Wang H, Song L. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 58:50-58. [PMID: 27633678 DOI: 10.1016/j.fsi.2016.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca2+ increased significantly (p < 0.05). But, this increasing of Ca2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Calcium/metabolism
- Crassostrea/enzymology
- Crassostrea/genetics
- Crassostrea/immunology
- Cyclic AMP/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Hemocytes/immunology
- Immunity, Cellular
- Immunity, Humoral
- Phagocytosis
- Phylogeny
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Sequence Homology, Amino Acid
- Tumor Necrosis Factors/genetics
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
23
|
Franzellitti S, Striano T, Valbonesi P, Fabbri E. Insights into the regulation of the MXR response in haemocytes of the Mediterranean mussel (Mytilus galloprovincialis). FISH & SHELLFISH IMMUNOLOGY 2016; 58:349-358. [PMID: 27670084 DOI: 10.1016/j.fsi.2016.09.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
This study investigated functional and transcriptional modulation of the Multixenobiotic resistance (MXR) system as a cytoprotective mechanism contributing to the physiological chemoresistance of haemocytes in the Mediterranean mussel. Basal transport activity was assessed using the model substrate rhodamine 123 and specific inhibitors for the MXR-related transporters P-glycoprotein (ABCB mRNA) and Multidrug resistance-related protein (ABCC mRNA). Results showed that MXR activity in mussel haemocytes was mainly supported by the Mrp-mediated efflux. In agreement, ABCC was expressed at higher levels than ABCB. Activation of the cyclic-AMP (cAMP) dependent protein kinase A (PKA) resulted in increased rhodamine efflux, which was counteracted by the selective PKA inhibitor H89. Although serotonin, a physiological modulator of cAMP/PKA signaling and ABCB transcription in haemocytes, did not affect basal MXR transport, the environmental pharmaceuticals fluoxetine, propranolol, and carbamazepine, which interact in different ways with the adrenergic and serotoninergic pathways, were showed to act as modulators and substrates of MXR-related transporters and to affect cell viability. While the increased MXR activity may have lowered the cytotoxic effects of propranolol and carbamazepine, the lack of MXR efflux induction by fluoxetine may play a role in the observed cytotoxicity of the compound.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy.
| | - Teresa Striano
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| |
Collapse
|
24
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
25
|
Liu Z, Zhou Z, Wang L, Song X, Chen H, Wang W, Liu R, Wang M, Wang H, Song L. The enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2015; 45:250-259. [PMID: 25907641 DOI: 10.1016/j.fsi.2015.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
26
|
Liu Z, Zhou Z, Wang L, Jiang S, Wang W, Zhang R, Song L. The immunomodulation mediated by a delta-opioid receptor for [Met(5)]-enkephalin in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:217-224. [PMID: 25475959 DOI: 10.1016/j.dci.2014.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Opioid receptors (OR) are a group of G protein-coupled receptors with opioids as ligands, which play an important role in triggering the second messengers to modulate immune response in vertebrate immunocytes. In the present study, the full length cDNA of a homologue of δ-opioid receptor (DOR) for [Met(5)]-enkaphalin was cloned from oyster Crassostrea gigas (designated as CgDOR), which was 1104 bp encoding a peptide of 367 amino acids containing a conserved 7tm_1 domain. After the stimulation of [Met(5)]-enkephalin, the concentration of second messengers Ca(2+) and cAMP in the HEK293T cells decreased significantly (p <0.05) with the expression of CgDOR. However, this trend was reverted with the addition of DOR antagonist BNTX. The CgDOR transcripts were ubiquitously detected in the tested tissues including haemocytes, gonad, mantle, kidney, gill, adductor muscle and hepatopancreas, with the highest expression level in the hepatopancreas. After LPS stimulation, the expression level of CgDOR mRNA began to increase (4.05-fold, p <0.05) at 6 h, and reached the highest level (5.00-fold, p <0.05) at 12 h. Haemocyte phagocytic and antibacterial activities increased significantly after [Met(5)]-enkephalin stimulation, whereas the increase was repressed with the addition of DOR antagonist BNTX. These results collectively suggested that CgDOR for [Met(5)]-enkephalin could modulate the haemocyte phagocytic and antibacterial functions through the second messengers Ca(2+) and cAMP, which might be requisite for pathogen elimination and homeostasis maintenance in oyster.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Benzylidene Compounds/pharmacology
- Calcium/metabolism
- Cell Line
- Cloning, Molecular
- Crassostrea/immunology
- Cyclic AMP/metabolism
- DNA, Complementary/genetics
- Enkephalin, Methionine/immunology
- HEK293 Cells
- Hepatopancreas/metabolism
- Humans
- Lipopolysaccharides
- Molecular Sequence Data
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Phagocytosis/immunology
- RNA, Messenger/biosynthesis
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/immunology
- Sequence Alignment
- Signal Transduction/immunology
- Vibrio/immunology
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
27
|
Zhang H, Zhou Z, Yue F, Wang L, Yang C, Wang M, Song L. The modulation of catecholamines on immune response of scallop Chlamys farreri under heat stress. Gen Comp Endocrinol 2014; 195:116-24. [PMID: 24239796 DOI: 10.1016/j.ygcen.2013.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023]
Abstract
Catecholamines (CAs) play key roles in mediating the physiological responses to various stresses. In the present study, the expression of CA-related genes were examined in the hemocytes of scallop Chlamys farreri under heat stress, and several immune or metabolism-related parameters were investigated after heat stress and adrenoceptor antagonist stimulation. After the scallops were cultured at 28°C, the mRNA expression level of dopa decarboxylase (CfDDC) and α-adrenoceptor (CfαAR) increased significantly (P<0.01), whereas that of monoamine oxidase (CfMAO) was down-regulated in the first 6h (P<0.05), and then up-regulated to the maximum level at 24h (P<0.01). In the hemocytes of scallops injected with adrenoceptor antagonist, the expression levels of peptidoglycan-recognition protein (CfPGRP-S1) and C-type lectin (CfLec-1) began to increase significantly at 2 and 3h post propranolol and high temperature treatment, respectively (P<0.01). While the up-regulation of heat shock protein 70 (CfHSP70) post heat stress was significantly inhibited by prazosin injection (P<0.01), and that of hexokinase (CfHK) was inhibited by both prazosin and propranolol injection (P<0.01). Moreover, the remarkable increase of relative specific activity of SOD in the hemolymph post heat stress (P<0.01) was further up-regulated early after prazosin or propranolol injection (P<0.01), while that of the relative anti-bacterial ability was down-regulated by prazosin or propranolol treatment (P<0.01). These results collectively indicated that the catecholaminergic neuroendocrine system in scallop could be activated by heat stress to release CAs, which subsequently modulated the immune response and energy metabolism via α- and β-adrenoceptors.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate School, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|