1
|
Mao J, Lu J, Liu S, Liu Y, Lin Z, Xue Q. Genome-Wide Analysis of Family I84 Protease Inhibitor Genes in Three Bivalves Reveals Important Information About the Protein Family's Evolution. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:729-748. [PMID: 37578572 DOI: 10.1007/s10126-023-10236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Family I84 serine protease inhibitors are believed to be mollusk specific proteins involved in host defense. The molecular evolution of the family, however, remains to be understood. In this study, the genes of Family I84 protease inhibitors in 3 bivalves, Crassostrea gigas, Crassostrea virginica and Tegillarca granosa, were analyzed at the genomic level. A total of 66 Family I84 genes (22 in C. gigas, 28 in C. virginica and 16 in T. granosa) were identified from the 3 species. They distributed unevenly in the genomes involving 4 chromosomes in C. gigas and 5 chromosomes in C. virginica and T. granosa and some genes were tandemly duplicated. Most genes had 3 exons with 12 genes having 4 exons and 1 gene having 2 exons. All genes but 1 from C. gigas and 1 from T. granosa encoded peptides with a signal sequence at the N-terminus, and the properties of the predicted mature molecules were similar. Four conserved motifs were identified in the 66 amino acid sequences. Collinear analysis revealed higher collinearity between the 2 oyster species in general genes and in Family I84 genes. Phylogenetic analysis of the 66 genes with those previously reported from 3 other bivalves and 1 gastropod showed that Family I84 protease inhibitor genes from the same species tended to be grouped together in terminal branches of the constructed Maximum likelihood tree, but most internal nodes were poorly supported by the bootstrap values. In addition, differences in expression patterns between the genes of a same species were observed in the developmental stages and tissues of C. gigas and T. granosa. Moreover, the co-expression of genes within Family I84 and Family I84 genes with non-Family I84 were also detected in C. gigas and T. granosa. These results suggested that Family I84 protease inhibitor genes evolved by active duplications and structural and functional diversifications after the speciation of related mollusks, and the diversified protease inhibitor family was likely multifunctional.
Collapse
Affiliation(s)
- Jinxia Mao
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Jiali Lu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Sheng Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Youli Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China.
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China.
| |
Collapse
|
2
|
Proestou DA, Sullivan ME, Lundgren KM, Ben-Horin T, Witkop EM, Hart KM. Understanding Crassostrea virginica tolerance of Perkinsus marinus through global gene expression analysis. Front Genet 2023; 14:1054558. [PMID: 36741318 PMCID: PMC9892467 DOI: 10.3389/fgene.2023.1054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Disease tolerance, a host's ability to limit damage from a given parasite burden, is quantified by the relationship between pathogen load and host survival or reproduction. Dermo disease, caused by the protozoan parasite P. marinus, negatively impacts survival in both wild and cultured eastern oyster (C. virginica) populations. Resistance to P. marinus has been the focus of previous studies, but tolerance also has important consequences for disease management in cultured and wild populations. In this study we measured dermo tolerance and evaluated global expression patterns of two sensitive and two tolerant eastern oyster families experimentally challenged with distinct doses of P. marinus (0, 106, 107, and 108 parasite spores per gram wet weight, n = 3-5 individuals per family per dose). Weighted Gene Correlation Network Analysis (WGCNA) identified several modules correlated with increasing parasite dose/infection intensity, as well as phenotype. Modules positively correlated with dose included transcripts and enriched GO terms related to hemocyte activation and cell cycle activity. Additionally, these modules included G-protein coupled receptor, toll-like receptor, and tumor necrosis factor pathways, which are important for immune effector molecule and apoptosis activation. Increased metabolic activity was also positively correlated with treatment. The module negatively correlated with infection intensity was enriched with GO terms associated with normal cellular activity and growth, indicating a trade-off with increased immune response. The module positively correlated with the tolerant phenotype was enriched for transcripts associated with "programmed cell death" and contained a large number of tripartite motif-containing proteins. Differential expression analysis was also performed on the 108 dosed group using the most sensitive family as the comparison reference. Results were consistent with the network analysis, but signals for "programmed cell death" and serine protease inhibitors were stronger in one tolerant family than the other, suggesting that there are multiple avenues for disease tolerance. These results provide new insight for defining dermo response traits and have important implications for applying selective breeding for disease management.
Collapse
Affiliation(s)
- Dina A. Proestou
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Mary E. Sullivan
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Kathryn Markey Lundgren
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Tal Ben-Horin
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Erin M. Witkop
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Keegan M. Hart
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| |
Collapse
|
3
|
Liu S, Liu Y, Lu J, Mao J, Lin Z, Xue Q. Genome Wide Identification and Expression Profiling Indicate Expansion of Family I84 Protease Inhibitor via Gene Tandem Duplication and Divergence in Razor Clam Sinonovacula constricta. Front Immunol 2022; 13:907274. [PMID: 35720365 PMCID: PMC9198434 DOI: 10.3389/fimmu.2022.907274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Family I84 protease inhibitors represent a novel family in the MEROPS peptidase database and are likely unique for molluscan host defense. Two Family I84 members, scSI-1 and scSI-2, were reported from the razor clam Sinonovacula constricta in a previous research. In the present study, 12 additional genes, named scSI-3 to scSI-14, were identified via genome wide sequence analyses. Among them, 10 genes were predicted to have a signal sequence, but one (scSI-7) was not. Besides, one sequence (scSI-14) was likely to encode a prematurely terminated peptide. The predicted mature peptides shared characteristics including 12 conserved cysteine residues, isoelectric points of 4.98 to 6.11, and molecular weights of 7.1 to 9.3 kDa with previously reported family members. Four motifs were characterized in 13 predicted mature peptides (with exception of scSI-14), which shared two to four conserved cysteine residues, are possibly to form two functional domain comprised 6 cysteine residues, respectively. At genomic level, all the 14 razor clam Family I84 genes were organized into 3 exons and 2 introns; 13 of them clustered in 3 regions of 100 kb on 3 separate chromosomes, suggesting tandem duplications of related genes. The promoter region of all the 14 genes was predicted to share some transcription factor binding sites, in particular those responsive to pathological and physiological stimuli, but no shared motifs were identified. Analyses also revealed differences in expression patterns among the genes. One gene in a tandem duplicated gene pairs usually showed a higher expression level than the other whereas non-tandem duplicated genes exhibited a higher degree of correlation in expression level. In addition, 8 of the 14 genes demonstrated higher level of expression in Vibrio tolerant clams than in non-tolerant clams following challenges with Vibrio parahaemolyticus. These results generated important information about the evolution of Family I84 protease inhibitors in S. constricta.
Collapse
Affiliation(s)
- Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Youli Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Jiali Lu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Jinxia Mao
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
4
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
5
|
Modak TH, Gomez-Chiarri M. Contrasting Immunomodulatory Effects of Probiotic and Pathogenic Bacteria on Eastern Oyster, Crassostrea Virginica, Larvae. Vaccines (Basel) 2020; 8:vaccines8040588. [PMID: 33036213 PMCID: PMC7720132 DOI: 10.3390/vaccines8040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Several Vibrio spp. cause acute and severe mortality events in hatcheries where larvae of bivalve mollusks are reared, potentially leading to subsequent shortage of bivalve seed for the grow-out industry. In particular, strains of Vibrio coralliilyticus have been identified as a major cause of disease in Pacific, Crassostrea gigas, and eastern, C. virginica, oyster hatcheries in the United States of America. Probiotic bacteria are an inexpensive, practical, and natural method of disease control. Previous research shows that pretreatment of larval oysters with probiotic bacteria Bacillus pumilus RI06-95 (RI) and Phaeobacter inhibens S4 (S4) significantly decreases mortality caused by experimental challenge with the bacterial pathogen V. coralliilyticus RE22 (RE22). This study aims to characterize the immune response of 6-10-day-old eastern oyster larvae to experimental challenge with pathogen V. coralliilyticus RE22 and probionts RI and S4. Treatments included (a) pathogen and probiont exposure at a concentration of 5 × 104 CFU per mL (~2500 bacterial cells per larva) for a duration of 6 h, (b) probiont exposure at the same concentration for a duration of 24 h, and (c) probiont RI daily treatment of larvae in the hatchery for 4, 11, and 15 days. Differential gene expression analysis compared pathogen or probiotic-treated transcriptomes to unexposed controls. Probiotic and pathogen treatment led to upregulation of transcripts coding for several immune pattern recognition receptors (PRRs) involved in environmental sensing and detection of microbes in oyster larvae. Larval oyster responses to pathogen RE22 suggested suppression of expression of genes in immune signaling pathways (myd88, tak1, nkap), failure in upregulation of immune effector genes, high metabolic demand, and oxidative stress that potentially contributed to mortality. On the other hand, the transcriptomic response to probiotic bacteria RI and S4 suggested activation of immune signaling pathways and expression of immune effectors (e.g., Cv-spi2, mucins and perforin-2). These key features of the host immune response to probiotic bacteria were shared despite the length of probiotic exposure, probiotic species, and the type of environment in which exposures were conducted. This study suggests that pre-exposure of eastern oyster larvae to probiotics for 6-24 h prior to pathogenic challenge leads to a robust and effective immune response that may contribute to protecting larvae from subsequent challenge with V. coralliilyticus RE22. This research provides new insights into host-microbe interactions in larval oysters that could be applied in the management of vibriosis in bivalve hatcheries.
Collapse
Affiliation(s)
- Tejashree H. Modak
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence:
| |
Collapse
|
6
|
Vera M, Pardo BG, Cao A, Vilas R, Fernández C, Blanco A, Gutierrez AP, Bean TP, Houston RD, Villalba A, Martínez P. Signatures of selection for bonamiosis resistance in European flat oyster ( Ostrea edulis): New genomic tools for breeding programs and management of natural resources. Evol Appl 2019; 12:1781-1796. [PMID: 31548857 PMCID: PMC6752124 DOI: 10.1111/eva.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/18/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
The European flat oyster (Ostrea edulis) is a highly appreciated mollusk with an important aquaculture production throughout the 20th century, in addition to playing an important role on coastal ecosystems. Overexploitation of natural beds, habitat degradation, introduction of non-native species, and epidemic outbreaks have severely affected this important resource, particularly, the protozoan parasite Bonamia ostreae, which is the main concern affecting its production and conservation. In order to identify genomic regions and markers potentially associated with bonamiosis resistance, six oyster beds distributed throughout the European Atlantic coast were sampled. Three of them have been exposed to this parasite since the early 1980s and showed some degree of innate resistance (long-term affected group, LTA), while the other three were free of B. ostreae at least until sampling date (naïve group, NV). A total of 14,065 SNPs were analyzed, including 37 markers from candidate genes and 14,028 from a medium-density SNP array. Gene diversity was similar between LTA and NV groups suggesting no genetic erosion due to long-term exposure to the parasite, and three population clusters were detected using the whole dataset. Tests for divergent selection between NV and LTA groups detected the presence of a very consistent set of 22 markers, located within a putative single genomic region, which suggests the presence of a major quantitative trait locus associated with B. ostreae resistance. Moreover, 324 outlier loci associated with factors other than bonamiosis were identified allowing fully discrimination of all the oyster beds. A practical tool which included the 84 highest discriminative markers for tracing O. edulis populations was developed and tested with empirical data. Results reported herein could assist the production of stocks with improved resistance to bonamiosis and facilitate the management of oyster beds for recovery production and ecosystem services provided by this species.
Collapse
Affiliation(s)
- Manuel Vera
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Belén G. Pardo
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA)Consellería do Mar, Xunta de GaliciaPontevedraSpain
| | - Román Vilas
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA)Consellería do Mar, Xunta de GaliciaPontevedraSpain
- Departamento de Ciencias de la VidaUniversidad de AlcaláMadridSpain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE)University of the Basque Country (UPV/EHU)Basque CountrySpain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, ACUIGEN group, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
- Instituto de AcuiculturaUniversidade de Santiago de CompostelaLugoSpain
| |
Collapse
|
7
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
8
|
Lau YT, Santos B, Barbosa M, Pales Espinosa E, Allam B. Regulation of apoptosis-related genes during interactions between oyster hemocytes and the alveolate parasite Perkinsus marinus. FISH & SHELLFISH IMMUNOLOGY 2018; 83:180-189. [PMID: 30195907 DOI: 10.1016/j.fsi.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
The alveolate Perkinsus marinus is the most devastating parasite of the eastern oyster Crassostrea virginica. The parasite is readily phagocytosed by oyster hemocytes, but instead of intracellular killing and digestion, P. marinus can survive phagocytosis and divide in host cells. This intracellular parasitism is accompanied by a regulation of host cell apoptosis. This study was designed to gain a better understanding of the molecular mechanisms of apoptosis regulation in oyster hemocytes following exposure to P. marinus. Regulation of apoptosis-related genes in C. virginica, and apoptosis-regulatory genes in P. marinus, were investigated via qPCR to assess the possible pathways involved during these interactions. In vitro experiments were also carried out to evaluate the effect of chemical inhibitors of P. marinus antioxidant processes on hemocyte apoptosis. Results indicate the involvement of the mitochondrial pathway (Bcl-2, anamorsin) of apoptosis in C. virginica exposed to P. marinus. In parallel, the antioxidants peroxiredoxin and superoxide dismutase were regulated in P. marinus exposed to C. virginica hemocytes suggesting that apoptosis regulation in infected oysters may be mediated by anti-oxidative processes. Chemical inhibition of P. marinus superoxide dismutase resulted in a marked increase of reactive oxygen species production and apoptosis in infected hemocytes. The implication of oxygen-dependent apoptosis during P. marinus infection and disease development in C. virginica is discussed.
Collapse
Affiliation(s)
- Yuk-Ting Lau
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bianca Santos
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
9
|
Lau YT, Gambino L, Santos B, Pales Espinosa E, Allam B. Regulation of oyster (Crassostrea virginica) hemocyte motility by the intracellular parasite Perkinsus marinus: A possible mechanism for host infection. FISH & SHELLFISH IMMUNOLOGY 2018; 78:18-25. [PMID: 29635064 DOI: 10.1016/j.fsi.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Hemocytes associated with the mucus lining of pallial (mantle, gill) surfaces of the oyster Crassostrea virginica have been recently suggested to facilitate infection by the Alveolate parasite Perkinsus marinus by mediating the uptake and dispersion of parasite cells. These "pallial hemocytes", which are directly exposed to microbes present in surrounding seawater, are able to migrate bi-directionally between mucosal surfaces and the circulatory system, potentially playing a sentinel role. Interestingly, P. marinus was shown to increase trans-epithelial migration of hemocytes suggesting it may regulate cell motility to favor infection establishment. The purpose of this study was to investigate the effect of P. marinus on hemocyte motility and identify specific molecular mechanisms potentially used by the parasite to regulate hemocyte migration. In a first series of experiments, various components of P. marinus (live P. marinus cells, extracellular products, fragments of P. marinus cell membrane, membrane-modified live P. marinus cells, heat-killed P. marinus) along with components of the opportunistic bacterial pathogen Vibrio alginolyticus (bacterial cells and extracellular products) were investigated for their effects on hemocyte motility. In a second series of experiments, inhibitors of specific molecular pathways involved in motility regulation (Y-27632: inhibitor of Rho-associated protein kinase, RGDS: integrin inhibitor, CK-666: Arp2/3 inhibitor) were used in conjunction with qPCR gene expression experiments to identify pathways regulated by P. marinus exposure. Results showed a specific increase in hemocyte motility following exposure to live P. marinus cells. The increase in motility induced by P. marinus was suppressed by RGDS and CK-666 implicating the involvement of integrins and Arp2/3 in cell activation. Gene expression data suggest that Arp2/3 is possibly regulated directly by an effector produced by P. marinus. The implications of increased hemocyte motility prompted by P. marinus during the early stage of the infection process are discussed.
Collapse
Affiliation(s)
- Yuk-Ting Lau
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Laura Gambino
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bianca Santos
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
10
|
Long-term affected flat oyster (Ostrea edulis) haemocytes show differential gene expression profiles from naïve oysters in response to Bonamia ostreae. Genomics 2018; 110:390-398. [PMID: 29678683 DOI: 10.1016/j.ygeno.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
European flat oyster (Ostrea edulis) production has suffered a severe decline due to bonamiosis. The responsible parasite enters in oyster haemocytes, causing an acute inflammatory response frequently leading to death. We used an immune-enriched oligo-microarray to understand the haemocyte response to Bonamia ostreae by comparing expression profiles between naïve (NS) and long-term affected (AS) populations along a time series (1 d, 30 d, 90 d). AS showed a much higher response just after challenge, which might be indicative of selection for resistance. No regulated genes were detected at 30 d in both populations while a notable reactivation was observed at 90 d, suggesting parasite latency during infection. Genes related to extracellular matrix and protease inhibitors, up-regulated in AS, and those related to histones, down-regulated in NS, might play an important role along the infection. Twenty-four candidate genes related to resistance should be further validated for selection programs aimed to control bonamiosis.
Collapse
|
11
|
Wang X, Xue Q, Mao X, Dong Y, Li C, Lin Z. Two I84 family protease inhibitors from Chinese razor clams Sinonovacula constricta expressed in response to environmental challenges. FISH & SHELLFISH IMMUNOLOGY 2018; 75:149-157. [PMID: 29427715 DOI: 10.1016/j.fsi.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Protease inhibitors play critical roles in numerous biological processes including host defense in all multicellular organisms. Eighty three evolutionary families of protease inhibitors are currently accommodated in the MEROPS database and the I84 family currently consists of 3 novel serine protease inhibitors from the eastern oyster Crassostrea virginica. In this study, we identified 2 new I84 family members from the Chinese razor clam Sinonovacula constricta, scSI-1 and scSI-2, using cDNA cloning and sequencing. The scSI-1 cDNA consisted of 494 bp with a 282 bp ORF encoding a 93-amino acid polypeptide that was predicted to have a 19-amino acid signal peptide and a 74-residue mature protein with a calculated molecular mass of 8248.5 Da. The scSI-2 cDNA was 490 bp long with a 273 bp ORF encoding a 90-amino acid polypeptide that was predicted to have an 18-amino acid signal peptide and a 72-residue nature protein with a calculated molecular mass of 7528.4 Da. ScSI-1 and scSI-2 shared high sequence similarity with the 3 known members of I84 family and both expressed primarily in the clam digestive glands. Protease inhibitory activity in the clam plasma also exhibited the signature kinetic characteristics of the I84 members from the oyster. In addition, levels of scSI-1 and scSI-2 gene expression in digestive glands and the protease inhibitory activity in plasma elevated significantly in clams challenged by bacterial injections and Vibrio harveyi was more effective than Staphylococcus epidermidis in inducing the gene expression and plasma protease inhibitory activity. Moreover, drastic changes of salinity and temperature also caused significant changes in the gene expression and plasma activity. These results indicated that scSI-1 and scSI-2 represented 2 new members of the I84 family and they likely play a role in clam host defense against infections and in reactions against physiochemical stressors.
Collapse
Affiliation(s)
- Xiarong Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Qinggang Xue
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| | - Xiaowei Mao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Chenhua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
12
|
Lv Z, Qiu L, Wang W, Liu Z, Xue Z, Yu Z, Song X, Chen H, Wang L, Song L. A GTP-dependent Phosphoenolpyruvate Carboxykinase from Crassostrea gigas Involved in Immune Recognition. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:318-329. [PMID: 28888537 DOI: 10.1016/j.dci.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is well known as a key enzyme involved in the metabolic pathway of gluconeogenesis in organisms, but the information about its involvement in immune response is still very limited. In the present study, a novel PEPCK homolog named CgPEPCK was identified from oyster Crassostrea gigas. The deduced amino acid sequence of CgPEPCK shared 52%-74% similarities with those from other known PEPCKs. There were one conserved guanosine triphosphate (GTP) binding site, one substrate binding site, one metal binding site and one active site in CgPEPCK. The mRNA transcripts of CgPEPCK were constitutively expressed in all the tested tissues including hemolymph, mantle, gill, muscle, gonad and hepatopancreas. CgPEPCK proteins were mainly distributed in adductor muscle, gonad, gill and mantle, and rarely detected in hepatopancreas by using immunohistochemical analysis. After the stimulations with lipopolysaccharide (LPS), peptidoglycan (PGN), Vibrio splendidus and V. anguillarum, CgPEPCK transcripts in hemocytes were significantly up-regulated and peaked at 6 h (LPS, 9.62-fold, p < 0.01), 9 h (PGN, 4.25-fold, p < 0.01), 12 h (V. splendidus, 5.72-fold, p < 0.01), 3 h (V. anguillarum, 2.87-fold, p < 0.01), respectively. The recombinant CgPEPCK protein (rCgPEPCK) exhibited Mn2+/Mg2+ dependent GTP binding activity, and the activities to bind LPS and PGN, but not β-1,3-glucan (GLU), lipoteichoic acid (LTA), mannan (MAN) nor polyinosinic-polycytidylic (Poly I: C). It could also bind Escherichia coli, Staphylococcus aureus, Micrococcus luteus and significantly inhibit their growth. All these results collectively suggested that CgPEPCK could not only exert GTP binding activity involved in gluconeogenesis, but also mediate the bacteria recognition and clearance in immune response of oysters.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
13
|
Young T, Kesarcodi-Watson A, Alfaro AC, Merien F, Nguyen TV, Mae H, Le DV, Villas-Bôas S. Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:229-245. [PMID: 28373065 DOI: 10.1016/j.dci.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection by OsHV-1 μVar, but little information exists regarding metabolic or pathophysiological responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 μVar; some of which have not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles were able to separate infected from non-infected larvae. Correlation analysis revealed the presence of major perturbations in the underlying biochemical networks and secondary pathway analysis of functionally-related metabolites identified a number of prospective pathways differentially regulated in virus-exposed larvae. These results provide new insights into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied to develop disease mitigation strategies and/or as new phenotypic information for selective breeding programmes aiming to enhance viral resistance.
Collapse
Affiliation(s)
- Tim Young
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | - Andrea C Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao V Nguyen
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Hannah Mae
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Dung V Le
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2026-2035. [PMID: 28392403 DOI: 10.1016/j.bbamcr.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023]
Abstract
The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Laura Marino-Puertas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain
| | - Theodoros Goulas
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Structural Biology Unit, "María-de-Maeztu" Unit of Excellence, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park; c/Baldiri Reixac, 15-21, 08028, Barcelona, Spain..
| |
Collapse
|
15
|
Xue Q, Beguel JP, Gauthier J, La Peyre J. Identification of cvSI-3 and evidence for the wide distribution and active evolution of the I84 family of protease inhibitors in mollusks. FISH & SHELLFISH IMMUNOLOGY 2017; 62:332-340. [PMID: 28159692 DOI: 10.1016/j.fsi.2017.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Protease inhibitors are an extremely diverse group of proteins that control the proteolytic activities of proteases and play a crucial role in biological processes including host defenses. The I84 family of protease inhibitors in the MEROPS database currently consists of cvSI-1 and cvSI-2, two novel serine protease inhibitors purified and characterized from the eastern oyster Crassostrea virginica plasma and believed to play a role in host defense and disease resistance. In the present study, a third member of I84 family, named cvSI-3, was identified from C. virginica by cDNA cloning and sequencing. The full cvSI-3 cDNA was composed of 342 bp including a 255 bp open reading frame (ORF) that encodes an 84-amino acid peptide. The mature cvSI-3 molecule was predicted to have 68 amino acid residues after removal of a 16-amino acid signal peptide, with a calculated molecular mass of 7724.5 Da and a theoretical isoelectric point (pI) of 6.28. CvSI-3 amino acid sequence shared 41% identity with cvSI-2 and 37% identity with cvSI-1, which included 12 conserved cysteines. Quantitative real-time PCR determined that cvSI-3 gene expressed primarily in oyster digestive glands. Real-time PCR also detected that cvSI-1, cvSI-2 and cvSI-3 expression levels in digestive glands varied significantly, with cvSI-2 showing the highest expression level and cvSI-3 the lowest. Additionally, a significant correlation was detected between cvSI-2 and cvSI-3 mRNAs levels. Searches into sequence databases using cvSI-1, cvSI-2 and cvSI-3 as queries retrieved ESTs suggesting the possible existence of at least 9 more I84 family members in eastern oysters and of I84 family protease inhibitors in various bivalve and gastropod species. Moreover, orthologs of all C. virginica I84 family members or potential member genes were found to be present in the C. gigas genome, and their distributions among species provided important information about the evolution of the I84 family of protease inhibitors. It appears that the I84 family of protease inhibitors is widely distributed and actively evolving in the Phylum Mollusca.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resources and College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Jean-Phillipe Beguel
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Julie Gauthier
- Loyola University, Department of Biological Sciences, New Orleans, LA 70118, USA
| | - Jerome La Peyre
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Pardo BG, Álvarez-Dios JA, Cao A, Ramilo A, Gómez-Tato A, Planas JV, Villalba A, Martínez P. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray. FISH & SHELLFISH IMMUNOLOGY 2016; 59:331-344. [PMID: 27815201 DOI: 10.1016/j.fsi.2016.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species.
Collapse
Affiliation(s)
- Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidade de Santiago de Compostela, 15781 Santiago de Compostela, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
| | - Andrea Ramilo
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
| | - Antonio Gómez-Tato
- Departamento de Matemáticas, Facultad de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Josep V Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08007, Barcelona, Spain.
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Spain.
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| |
Collapse
|
17
|
Guo X, He Y, Zhang L, Lelong C, Jouaux A. Immune and stress responses in oysters with insights on adaptation. FISH & SHELLFISH IMMUNOLOGY 2015; 46:107-119. [PMID: 25989624 DOI: 10.1016/j.fsi.2015.05.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments.
Collapse
Affiliation(s)
- Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA.
| | - Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Linlin Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Christophe Lelong
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen, France; Centre de Référence sur l'Huître (CRH), Université de Caen Basse Normandie, Esplanade de la Paix, 14032 Caen, France
| | - Aude Jouaux
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen, France; Centre de Référence sur l'Huître (CRH), Université de Caen Basse Normandie, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
18
|
The use of -omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol 2015; 131:137-54. [PMID: 26021714 DOI: 10.1016/j.jip.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/09/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023]
Abstract
Our understanding of disease processes and host-pathogen interactions in model species has benefited greatly from the application of medium and high-throughput genomic, metagenomic, epigenomic, transcriptomic, and proteomic analyses. The rate at which new, low-cost, high-throughput -omic technologies are being developed has also led to an expansion in the number of studies aimed at gaining a better understanding of disease processes in bivalves. This review provides a catalogue of the genetic and -omic tools available for bivalve species and examples of how -omics has contributed to the advancement of marine bivalve disease research, with a special focus in the areas of immunity, bivalve-pathogen interactions, mechanisms of disease resistance and pathogen virulence, and disease diagnosis. The analysis of bivalve genomes and transcriptomes has revealed that many immune and stress-related gene families are expanded in the bivalve taxa examined thus far. In addition, the analysis of proteomes confirms that responses to infection are influenced by epigenetic, post-transcriptional, and post-translational modifications. The few studies performed in bivalves show that epigenetic modifications are non-random, suggesting a role for epigenetics in regulating the interactions between bivalves and their environments. Despite the progress -omic tools have enabled in the field of marine bivalve disease processes, there is much more work to be done. To date, only three bivalve genomes have been sequenced completely, with assembly status at different levels of completion. Transcriptome datasets are relatively easy and inexpensive to generate, but their interpretation will benefit greatly from high quality genome assemblies and improved data analysis pipelines. Finally, metagenomic, epigenomic, proteomic, and metabolomic studies focused on bivalve disease processes are currently limited but their expansion should be facilitated as more transcriptome datasets and complete genome sequences become available for marine bivalve species.
Collapse
|