1
|
Chen XY, Yu DJ, Jia R. Screening high-efficiency promoter to construct trans-vp28 gene Anabaena sp. PCC7120 against white spot syndrome virus of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109912. [PMID: 39299405 DOI: 10.1016/j.fsi.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
This study aimed to select high-quality promoters to construct trans-vp28 gene Anabaena sp. PCC7120 and feed Litopenaeus vannamei to assess the effect of L.vannamei against white spot syndrome virus (WSSV). Transgenic algae were created using five plasmids containing PrbcL, Pcpc560, Ptrc, Ptac, and PpsbA. According to the gene expression efficiency and the growth index of transgenic algae, Pcpc560 was determined to be the most efficient promoter. Shrimps were continuously fed trans-vp28 gene Anabaena sp. PCC7120 for one week and then challenged with WSSV. After the challenge, the transgenic algae group (vp28-7120 group) was continuously immunized [continuous immunization for 0 days (vp28-7120-0d); continuous immunization for 2 days (vp28-7120-2d); continuous immunization for 4 days (vp28-7120-4d)]. After seven days, the daily survival rate of each experimental group was continuously tracked. Following the viral challenge, the hepatopancreas samples were assayed for their levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), thioredoxin peroxidase (TPX), acid phosphatase (ACP), and alkaline phosphatase (AKP) at varying time intervals. In comparison to the positive control group (challenge and no vaccination) and the wild-type group (challenge, fed wild-type Anabaena sp. PCC7120), the vp28-7120 group (challenge, fed trans-vp28 gene Anabaena sp. PCC7120) exhibited a remarkable increase in survival rates, reaching 50 % (vp28-7120-0d), 76.67 % (vp28-7120-2d), and 80 % (vp28-7120-4d). Furthermore, the vp28-7120 group consistently displayed significantly higher activities of SOD, CAT, GSH-Px, ACP, and AKP, while exhibiting notably lower TPX activity, when compared to the control group. These results indicate that the Pcpc560 promoter effectively elevated the expression level of the exogenous vp28 gene and spurred the growth of the trans-vp28 gene Anabaena sp. PCC7120. Consequently, trans-vp28 gene Anabaena sp. PCC7120 significantly bolstered the immunity of L.vannamei. Therefore, utilizing the Pcpc560 promoter to develop trans-vp28 gene Anabaena sp. PCC7120 based oral vaccine is highly beneficial for industrial-scale cultivation, advancing its commercialization prospects.
Collapse
Affiliation(s)
- Xin-Yu Chen
- College of Marine Science and Ecological Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Dian-Jiang Yu
- College of Life Sciences, Xiamen University, Xiamen, 361104, China
| | - Rui Jia
- College of Marine Science and Ecological Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
2
|
Parida S, Sahoo PK. Antioxidant Defence in Labeo rohita to Biotic and Abiotic Stress: Insight from mRNA Expression, Molecular Characterization and Recombinant Protein-Based ELISA of Catalase, Glutathione Peroxidase, CuZn Superoxide Dismutase, and Glutathione S-Transferase. Antioxidants (Basel) 2023; 13:18. [PMID: 38275638 PMCID: PMC10812468 DOI: 10.3390/antiox13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
Fish possess numerous enzymatic antioxidant systems as part of their innate immunity. These systems have been poorly studied in Labeo rohita (rohu). The present study characterized and investigated the role of antioxidant genes in the defence mechanisms against two types of stressors, including infection and ammonia stress. Four key genes associated with antioxidant activity-catalase, glutathione peroxidase, glutathione S-transferase, and CuZn superoxide dismutase were successfully cloned and sequenced. These genes were found to be expressed in different tissues and developmental stages of rohu. The expression levels of these antioxidant genes in the liver and anterior kidney tissues of rohu juveniles were modulated in response to bacterial infection (Aeromonas hydrophila), parasite infection (Argulus siamensis), poly I:C stimulation and ammonia stress. Additionally, the recombinant proteins derived from these genes exhibited significant antioxidant and antibacterial activities. These proteins also demonstrated a protective effect against A. hydrophila infection in rohu and had an immunomodulatory role. Furthermore, indirect ELISA assay systems were developed to measure these protein levels in healthy as well as A. hydrophila and ammonia-induced rohu serum. Overall, this study characterized and emphasised the importance of the antioxidant mechanism in rohu's defence against oxidative damage and microbial diseases.
Collapse
Affiliation(s)
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India;
| |
Collapse
|
3
|
Islam SI, Mou MJ, Sanjida S, Mahfuj S. A review on molecular detection techniques of white spot syndrome virus: Perspectives of problems and solutions in shrimp farming. Vet Med Sci 2023; 9:778-801. [PMID: 36282009 PMCID: PMC10029913 DOI: 10.1002/vms3.979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review aims to provide an update on the current scientific understanding of various aspects of White Spot Syndrome Virus (WSSV) formation, diagnostic procedures, transmission, ecological effects, pathophysiology and management strategies. In terms of production and financial benefits, the WSSV has been the most virulent in shrimp and several other crustacean sectors around the globe. It spreads vertically from diseased broodstock to post-larvae and horizontally by cannibalism, invertebrate vectors, freshwater and sediments. In the transfer of white spot disease (WSD) in newly stocked ponds, the survivability of WSSV in sediment is the most important variable. In typical cultural conditions, it is a highly infectious pathogen capable of inflicting total death within 3-10 days after an outbreak. Some of the current biosecurity strategies used to keep diseases out of shrimp ponds such as pond water disinfection, quarantine of new stocks before stocking and broader usage of specific pathogen-free shrimp. The sequencing and characterisation of various WSSV strains have provided details about pathogen biology, pathogenicity and disease. To develop successful control methods, knowledge of these characteristics is essential. In several shrimp-producing countries in Asia and the Americas, the infections produced by the WSSV have had disastrous socio-economic consequences. As a result of international trade or migration of diseased species, the World Animal Health Organization recognised several illnesses as posing a substantial hazard to farmed shrimp. WSD is receiving much scientific research due to the potential economic effects of the virus. Research is now being done to understand better the molecular biology and pathophysiology of WSSV, as well as how to treat and prevent the virus. However, further study should be conducted in countries with more resilient host species to understand their role in mitigating disease impacts since these revelations may aid in developing a WSD treatment.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological ScienceJashore University of Science and TechnologyJashoreBangladesh
| | - Moslema Jahan Mou
- Department of Genetic Engineering and BiotechnologyFaculty of Life and Earth ScienceUniversity of RajshahiRajshahiBangladesh
| | - Saloa Sanjida
- Department of Environmental Science and TechnologyFaculty of Applied Science and TechnologyJashore University of Science and TechnologyJashoreBangladesh
| | - Sarower Mahfuj
- Department of Fisheries and Marine Bioscience, Faculty of Biological ScienceJashore University of Science and TechnologyJashoreBangladesh
| |
Collapse
|
4
|
Lu YP, Zheng PH, Zhang XX, Li JT, Zhang ZL, Xu JR, Meng YQ, Li JJ, Xian JA, Wang AL. New insights into the regulation mechanism of red claw crayfish (Cherax quadricarinatus) hepatopancreas under air exposure using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108505. [PMID: 36581251 DOI: 10.1016/j.fsi.2022.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Red claw crayfish (Cherax quadricarinatus) is an important freshwater shrimp species worldwide with enormous economic value. Waterless transportation is an inherent feature of red claw crayfish transportation. However, the high mortality of red claw crayfish is a severe problem in the aquaculture of crayfish after waterless transportation. In this study, we investigated the responses of the hepatopancreas from the red claw crayfish undergoing air exposure stress and normal conditions on transcriptome levels. We used Illumina-based RNA sequencing (RNA-Seq) to perform a transcriptome analysis from the hepatopancreas of red claw crayfish challenged by air exposure. An average of 57,148,800 clean reads per library was obtained, and 33,567 unigenes could be predicted and classified according to their homology with matches in the National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), Gene Ontology (GO), a manually annotated and reviewed protein sequence database (Swiss-Prot), protein families (Pfam), Clusters of Orthologous Groups (COG) of proteins, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 690 and 3407 differentially expressed genes (DEGs) were identified between the two stress stages of the red claw crayfish. More DEGs were identified in 12 h, indicating that gene expressions were largely changed at 12 h. Some immune-related pathways and genes were identified according to KEGG and GO enrichment analysis. A total of 12 DEGs involved in immune response and trehalose mechanism were verified by quantitative real-time-polymerase chain reaction (qRT-PCR). The results indicated that the red claw crayfish might counteract the stress of air exposure at the transcriptomic level by increasing expression levels of antioxidant-, immune-, and trehalose metabolism-related genes. These transcriptome results from the hepatopancreas provide significant insights into the influence mechanism of air exposure to the trehalose mechanism and immune response in the red claw crayfish.
Collapse
Affiliation(s)
- Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Institute of Modern Aquaculture Science and Engineering (IMASE), Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Institute of Modern Aquaculture Science and Engineering (IMASE), Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jia-Rui Xu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Yong-Qi Meng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - An-Li Wang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Liu M, Ni H, Zhang X, Sun Q, Wu X, He J. Comparative transcriptomics reveals the immune dynamics during the molting cycle of swimming crab Portunus trituberculatus. Front Immunol 2022; 13:1037739. [PMID: 36389847 PMCID: PMC9659622 DOI: 10.3389/fimmu.2022.1037739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 03/22/2024] Open
Abstract
Molting is one of the most important biological processes of crustacean species, and a number of molecular mechanisms facilitate this complex procedure. However, the understanding of the immune mechanisms underlying crustacean molting cycle remains very limited. This study performed transcriptome sequencing in hemolymph and hepatopancreas of the swimming crab (Portunus trituberculatus) during the four molting stages: post-molt (AB), inter-molt (C), pre-molt (D), and ecdysis (E). The results showed that there were 78,572 unigenes that were obtained in the hemolymph and hepatopancreas of P. trituberculatus. Further analysis showed that 98 DEGs were involved in immunity response of hemolymph and hepatopancreas, and most of the DEGs participated in the process of signal transduction, pattern recognition proteins/receptors, and antioxidative enzymes system. Specifically, the key genes and pathway involved in signal transduction including the GPCR126, beta-integrin, integrin, three genes in mitogen-activated protein kinase (MAPK) signaling cascade (MAPKKK10, MAPKK4, and p38 MAPK), and four genes in Toll pathway (Toll-like receptor, cactus, pelle-like kinase, and NFIL3). For the pattern recognition proteins/receptors, the lowest expression level of 11 genes was found in the E stage, including C-type lectin receptor, C-type lectin domain family 6 member A and SRB3/C in the hemolymph, and hepatopancreatic lectin 4, C-type lectin, SRB, Down syndrome cell adhesion molecule homolog, Down syndrome cell adhesion molecule isoform, and A2M. Moreover, the expression level of copper/zinc superoxide dismutase isoform 4, glutathione peroxidase, glutathione S-transferase, peroxiredoxin, peroxiredoxin 6, and dual oxidase 2 in stage C or stage D significantly higher than that of stage E or stage AB. These results fill in the gap of the continuous transcriptional changes that are evident during the molting cycle of crab and further provided valuable information for elucidating the molecular mechanisms of immune regulation during the molting cycle of crab.
Collapse
Affiliation(s)
- Meimei Liu
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhoushan, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Hongwei Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Xiaokang Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Qiufeng Sun
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jie He
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhoushan, China
| |
Collapse
|
6
|
Wang L, Wu N, Zhang Y, Wang G, Pu S, Guan T, Zhu C, Wang H, Li J. Effects of copper on non-specific immunity and antioxidant in the oriental river prawn (Macrobrachium nipponense). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113465. [PMID: 35364505 DOI: 10.1016/j.ecoenv.2022.113465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The copper, as heavy metal has important impacts on the antioxidant and immune defense systems in aquatic organisms, and the toxic effects of copper can be accumulated and magnified with the food chain, thus posing a threat to food safety as well as ecosystems. This study explored the response of the antioxidant system and non-specific immunity in M. nipponense to copper stress. Low concentration of copper (0.05, 0.1 mg L-1) had positive effects on the non-specific immunity in M. nipponense, while the non-specific immunity in M. nipponense could be affect negatively or even be inhibited by high copper concentration (0.15 mg L-1). Even low concentrations of copper could cause oxidative stress, and high copper concentration (0.15 mg L-1) could induce oxidative damage and even apoptosis, and thus causing damage to the antioxidant defense system in M. nipponense. Low concentration of copper could affect the gill and hepatopancreas structure in M. nipponense, but high level oxidative stress caused by high copper concentration could cause oxidative damage to these tissue, resulting in the destruction of gill and hepatopancreas. This study provides the safety concentration for using copper-containing fish drugs in the actual culture of M. nipponense and provides basic data for the toxicity mechanism of copper to M. nipponense.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Nan Wu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China
| | - Yi Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Sunyan Pu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Koiwai K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. eLife 2021; 10:e66954. [PMID: 34132195 PMCID: PMC8266392 DOI: 10.7554/elife.66954] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Crustacean aquaculture is expected to be a major source of fishery commodities in the near future. Hemocytes are key players of the immune system in shrimps; however, their classification, maturation, and differentiation are still under debate. To date, only discrete and inconsistent information on the classification of shrimp hemocytes has been reported, showing that the morphological characteristics are not sufficient to resolve their actual roles. Our present study using single-cell RNA sequencing revealed six types of hemocytes of Marsupenaeus japonicus based on their transcriptional profiles. We identified markers of each subpopulation and predicted the differentiation pathways involved in their maturation. We also predicted cell growth factors that might play crucial roles in hemocyte differentiation. Different immune roles among these subpopulations were suggested from the analysis of differentially expressed immune-related genes. These results provide a unified classification of shrimp hemocytes, which improves the understanding of its immune system.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and TechnologyKoganeiJapan
- Laboratory of Genome Science, Tokyo University of Marine Science and TechnologyMinatoJapan
| | - Takashi Koyama
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of TokyoHamamatsuJapan
- Graduate School of Fisheries and Environmental Sciences, Nagasaki UniversityNagasakiJapan
| | | | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of GeneticsMishimaJapan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of TokyoHamamatsuJapan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo UniversityBunkyoJapan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and TechnologyKoganeiJapan
| |
Collapse
|
8
|
Ruan L, Lin W, Shi H, Wang C, Chen D, Zou C, Ren J, Li X. Characterization of a novel extracellular Cu Zn superoxide dismutase from Rimicaris exoculata living around deep-sea hydrothermal vent. Int J Biol Macromol 2020; 163:2346-2356. [DOI: 10.1016/j.ijbiomac.2020.09.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/30/2023]
|
9
|
Effects of Inbreeding on Genetic Characteristic, Growth, Survival Rates, and Immune Responses of a New Inbred Line of Exopalaemon carinicauda. Int J Genomics 2020; 2020:5735968. [PMID: 31998771 PMCID: PMC6964724 DOI: 10.1155/2020/5735968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/16/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
The Exopalaemon carinicauda could be a useful crustacean laboratory animal in many research fields. We newly established an inbred line of Exopalaemon carinicauda named EC4 inbred line by brother×sister mating and keeping to F11 generation. Trends in heterozygosity in the process of producing EC4 inbred line were examined through the characterization of polymorphisms based on gene frequencies of SNP and EST-SSR loci. The results demonstrated that the number of alleles (N), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) gradually decreased with the increase of inbreeding generations. The genetic detection results indicated that 9 (29.03%, 9/31) of the SNP loci and 15 (32.61%, 15/46) of the EST-SSR loci were homozygous in F11 generation of EC4 inbred line. The variation of the growth-related traits, the immune responses, and antioxidant status were described in experimental full-sibling inbred populations of E. carinicauda at five levels of inbreeding coefficient (F = 0.785, F = 0.816, F = 0.859, F = 0.886, F = 0.908) under controlled laboratory conditions. The body weight, body length, and survival rate in EC4 inbred line of all generations were less than the control population. Inbreeding affected the antibacterial activity, phenoloxidase (PO) activity, and superoxide dismutase (SOD) which decreased at the eleventh generation of EC4 inbred line. This study demonstrated that inbreeding had a negative effect on the economic traits and immune response, but our inbred line was established successfully until F11 and confirmed by genetic detection using SNP and EST-SSR loci.
Collapse
|
10
|
Li F, Xu L, Hui X, Huang W, Yang F. Directed differentiation of granular cells from crayfish hematopoietic tissue cells. FISH & SHELLFISH IMMUNOLOGY 2019; 88:28-35. [PMID: 30826415 DOI: 10.1016/j.fsi.2019.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Hemocytes are the major immune cells of crustaceans. New hemocyte production is required throughout the life cycle of these animals to maintain a functional immune system. The mechanism of crustacean hematopoiesis has just begun to be understood and new methods are needed for the investigation of this process. Here we report the directed differentiation of granular cells (GCs) from the hematopoietic tissue (HPT) cells of Cherax quadricarinatus in vitro. We started by providing the cultured HPT cells with different additives to induce possible differentiation. We found that crayfish muscle extract greatly promoted the physical status of the cells and induced the formation of refractile cytoplasmic granules. The transcription of marker genes and the production of functional prophenoloxidase further confirmed the formation of mature GCs. In our experiments, young GCs usually started to develop in ∼2 weeks post induction and over 60% of the cells became mature within 3-4 weeks. This is the first time that the fully differentiation of crustacean hemocytes is accomplished in vitro. It provides a powerful tool for in-depth study of crustacean hematopoiesis.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xuan Hui
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Wanzhen Huang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
11
|
Chen YH, He JG. Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:744-755. [PMID: 30393174 DOI: 10.1016/j.fsi.2018.10.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The shrimp aquaculture industry is plagued by disease. Due to the lack of deep understanding of the relationship between innate immune mechanism and environmental adaptation mechanism, it is difficult to prevent and control the diseases of shrimp. The shrimp innate immune system has received much recent attention, and the functions of the humoral immune response and the cellular immune response have been preliminarily characterized. The role of environmental stress in shrimp disease has also been investigated recently, attempting to clarify the interactions among the innate immune response, the environmental stress response, and disease. Both the innate immune response and the environmental stress response have a complex relationship with shrimp diseases. Although these systems are important safeguards, allowing shrimp to adapt to adverse environments and resist infection, some pathogens, such as white spot syndrome virus, hijack these host systems. As shrimp lack an adaptive immune system, immunization therapy cannot be used to prevent and control shrimp disease. However, shrimp diseases can be controlled using ecological techniques. These techniques, which are based on the innate immune response and the environmental stress response, significantly reduce the impact of shrimp diseases. The object of this review is to summarize the recent research on shrimp environmental adaptation mechanisms, innate immune response mechanisms, and the relationship between these systems. We also suggest some directions for future research.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
12
|
Saray P, Roytrakul S, Pangeson T, Phetrungnapha A. Comparative proteomic analysis of hepatopancreas in Macrobrachium rosenbergii responded to Poly (I:C). FISH & SHELLFISH IMMUNOLOGY 2018; 75:164-171. [PMID: 29427716 DOI: 10.1016/j.fsi.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Gel-enhanced liquid chromatography coupled with tandem mass spectrometry (GeLC-MS/MS) was used to analyze the proteome of Macrobrachium rosenbergii hepatopancreas responded to Poly (I:C). GeLC-MS/MS analysis identified 515 differentially-expressed proteins with ≥1.5 and ≤ -0.5 log2 fold change. Of these, 195 differentially-expressed proteins were significantly matched to known proteins in the database, of which 102 proteins were up-regulated and 93 proteins were down-regulated. These proteins were classified into 21 categories, i.e. metabolic process, oxidative stress response, signaling, transcription, translation, cell cycle, transport, etc. Several immune factors were up-regulated upon Poly (I:C) injection. Protein-protein interaction network analysis of these immune factors identified three major protein clusters including RNAi, stress responses, and Toll pathway-proPO system, implying that Poly (I:C) activates immune responses in prawn through several mechanisms.
Collapse
Affiliation(s)
- Pheng Saray
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tanapat Pangeson
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand; Department of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Amnat Phetrungnapha
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
13
|
Guo H, Li K, Wang W, Wang C, Shen Y. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei. Biol Trace Elem Res 2017; 179:318-326. [PMID: 28238057 DOI: 10.1007/s12011-017-0974-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 01/06/2023]
Abstract
Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L-1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6-48 h among shrimp exposed to 1 mg L-1 Cu and at each time points in 5 mg L-1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Kexu Li
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Wei Wang
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Chenggui Wang
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Yuchun Shen
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
| |
Collapse
|
14
|
Hauton C. Recent progress toward the identification of anti-viral immune mechanisms in decapod crustaceans. J Invertebr Pathol 2017; 147:111-117. [DOI: 10.1016/j.jip.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
|
15
|
Cha GH, Wang WN, Peng T, Huang MZ, Liu Y. A Rac1 GTPase is a critical factor in the immune response of shrimp (Litopenaeus vannamei) to Vibrio alginolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:226-237. [PMID: 25892021 DOI: 10.1016/j.dci.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
The small GTPase Rac1 acts as a molecular switch for signal transduction that regulates various cellular functions. However, its functions in crustaceans remain unclear. In this study, a cDNA encoding a RAS GTPase (LvRac1) in the Pacific white shrimp (L. vannamei) was identified and characterized. A recombinant variant of this GTPase, rLvRac1, was expressed in the model organism P. pastoris and its expression was confirmed by mass spectrometry. Biochemical assays indicated that the recombinant protein retained GTPase activity and was expressed in all of the organism's tested tissues. Injection of the bacterium V. alginolyticus into L. vannamei induced hepatopancreatic upregulation of LvRac1 expression. Moreover, knocking down LvRac1 in vivo significantly reduced the expression of the L. vannamei p53 and Cu/Zn superoxide dismutase genes (Lvp53 and LvCu/Zn SOD, respectively) while increasing that of the galectin gene (Lvgal). Hemolymph samples from control and LvRac1-silenced L. vannamei individuals were analyzed by flow cytometry, revealing that the latter exhibited significantly reduced respiratory burst activity and total hemocyte counts. Cumulative mortality in shrimp lacking LvRac1 was significantly greater than in control groups following V. alginolyticus challenge. The silencing of LvRac1 by double-stranded RNA injection thus increased the V. alginolyticus challenge sensitivity of L. vannamei and weakened its bacterial clearance ability in vivo. Suppressing LvRac1 also promoted the upregulation of Lvp53, LvCu/ZnSOD, and Lvgal following V. alginolyticus injection. Taken together, these results suggest that LvRac1 is important in the innate immune response of shrimp to V. alginolyticus infection.
Collapse
Affiliation(s)
- Gui-Hong Cha
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wei-Na Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Ting Peng
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ming-Zhu Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuan Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|