1
|
Li Z, Gu J, Huang X, Lu Z, Feng Y, Xu X, Yang J. Transcriptome-based network analysis reveals hub immune genes and pathways of hepatopancreas against LPS in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109696. [PMID: 38871144 DOI: 10.1016/j.fsi.2024.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses. In recent years, studies related to cephalopods immune have been increasing, but the molecular mechanisms associated with the hepatopancreatic immunity are still unclear. In this study, lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, was used for imitating bacteria infection to stimulate the hepatopancreas of A. fangsiao. To investigate the immune process happened in A. fangsiao hepatopancreas, we performed transcriptome analysis of hepatopancreas tissue after LPS injection, and identified 2615 and 1943 differentially expressed genes (DEGs) at 6 and 24 h post-injection, respectively. GO and KEGG enrichment analysis showed that these DEGs were mainly involved in immune-related biological processes and signaling pathways, including ECM-receptor interaction signaling pathway, Phagosome signaling pathway, Lysosome signaling pathway, and JAK-STAT signaling pathways. The function relationships between these DEGs were further analyzed through protein-protein interaction (PPI) networks. It was found that Mtor, Mapk14 and Atm were the three top interacting DEGs under LPS stimulation. Finally, 15 hub genes involving multiple KEGG signaling pathways and PPI relationships were selected for qRT-PCR validation. In this study, for the first time we explored the molecular mechanisms associated with hepatopancreatic immunity in A. fangsiao using a PPI networks approach, and provided new insights for understanding hepatopancreatic immunity in A. fangsiao.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Gu
- Binzhou Testing Center, Binzhou 256600, China
| | - Xiaolan Huang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zhengcai Lu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
2
|
Liu Z, Chen B, Zou Z, Li D, Zhu J, Yu J, Xiao W, Yang H. Non-Additive and Asymmetric Allelic Expression of p38 mapk in Hybrid Tilapia ( Oreochromis niloticus ♀ × O. aureus ♂). Animals (Basel) 2024; 14:266. [PMID: 38254435 PMCID: PMC10812652 DOI: 10.3390/ani14020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Hybridization is a widely used breeding technique in fish species that enhances desirable traits in cultured species through heterosis. However, the mechanism by which hybrids alter gene expression to form heterosis remains unclear. In this study, a group of hybrid tilapia was used to elucidate heterosis through interspecies crossing. Specifically, p38 was analyzed to describe the regulation of gene expression variation in hybrid tilapia. Transcripts from the Nile tilapia allele were found to be significantly higher than those from the blue tilapia allele in hybrid individuals, indicating that the expression of p38 was dominated by Nile tilapia sub-genomic alleles. The study also found a compensatory interaction of cis- and trans-acting elements of the Nile tilapia and blue tilapia sub-genomes, inducing a non-additive expression of p38 in hybrids. Eight specific SNPs were identified in the p38 promoter regions of Nile tilapia and blue tilapia, and were found to be promoter differences leading to differences in gene expression efficiencies between parental alleles using a dual-luciferase reporter system. This study provides insights into the non-additive expression patterns of key functional genes in fish hybrids related to growth and immunity response.
Collapse
Affiliation(s)
- Zihui Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Wei Xiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (B.C.); (Z.Z.); (D.L.); (J.Z.); (J.Y.)
| |
Collapse
|
3
|
Morales-Martínez M, Vega MI. p38 Molecular Targeting for Next-Generation Multiple Myeloma Therapy. Cancers (Basel) 2024; 16:256. [PMID: 38254747 PMCID: PMC10813990 DOI: 10.3390/cancers16020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Resistance to therapy and disease progression are the main causes of mortality in most cancers. In particular, the development of resistance is an important limitation affecting the efficacy of therapeutic alternatives for cancer, including chemotherapy, radiotherapy, and immunotherapy. Signaling pathways are largely responsible for the mechanisms of resistance to cancer treatment and progression, and multiple myeloma is no exception. p38 mitogen-activated protein kinase (p38) is downstream of several signaling pathways specific to treatment resistance and progression. Therefore, in recent years, developing therapeutic alternatives directed at p38 has been of great interest, in order to reverse chemotherapy resistance and prevent progression. In this review, we discuss recent findings on the role of p38, including recent advances in our understanding of its expression and activity as well as its isoforms, and its possible clinical role based on the mechanisms of resistance and progression in multiple myeloma.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology and Clinical Nutrition Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Lee JW, Jo AH, Lee DC, Choi CY, Kang JC, Kim JH. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. ENVIRONMENTAL RESEARCH 2023; 236:116600. [PMID: 37429393 DOI: 10.1016/j.envres.2023.116600] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Cadmium (Cd) in aquatic environments can cause environmental toxicity to fish and induce oxidative stress owing to an excessive production of reactive oxygen species in fish bodies. Fish have developed various antioxidant systems to protect themselves from reactive oxygen species; thus, a change in antioxidant responses in fish can be a criterion for evaluating oxidative stress resulting from Cd exposure. Because Cd exposure may be recognized as an exogenous substance by a fish body, it may lead to the stimulation or suppression of its immune system. Various immune responses can be assessed to evaluate Cd toxicity in fish. This review aimed to identify the impacts of Cd exposure on oxidative stress and immunotoxicity in fish as well as identify accurate indicators of Cd toxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Ju-Wook Lee
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan, South Korea
| | - Deok-Chan Lee
- Shellfish Research Team, South Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyoung 53085, South Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
5
|
Fu X, Zhang Y. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance. J Drug Target 2023; 31:152-165. [PMID: 36264036 DOI: 10.1080/1061186x.2022.2138895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the development of the medical industry, new painkillers continue to appear in people's field of vision, but so far no painkiller can replace morphine. While morphine has a strong analgesic effect, it is also easy to produce pain sensitivity and tolerance. Due to the great inter-individual differences in patient responses, there are few clear instructions on how to optimise morphine administration regimens, which complicates clinicians' treatment strategies and limits the effectiveness of morphine in long-term pain therapy. P38MAPK is a key member of the MAPK family. Across recent years, it has been discovered that p38MAPK rises dramatically in a wide range of morphine tolerance animal models. Morphine tolerance can be reduced or reversed by inhibiting p38MAPK. However, the role and specific mechanism of p38MAPK are not clear. In this review, we synthesise the relevant findings, highlight the function and potential mechanism of p38MAPK in morphine tolerance, as well as the present status and efficacy of morphine tolerance therapy, and underline the future promise of p38MAPK targeted morphine tolerance treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Yanhong Zhang
- Department of Anesthesiology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Li R, Shu M, Liu X, Nei Z, Ye B, Wang H, Gong Y. Genome-wide identification of mitogen-activated protein kinase (MAPK) gene family in yellow catfish (Pelteobagrus fulviadraco) and their expression profiling under the challenge of Aeromonas hydrophila. JOURNAL OF FISH BIOLOGY 2022; 101:699-710. [PMID: 35751135 DOI: 10.1111/jfb.15141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
As serine/threonine protein kinases, mitogen-activated protein kinases (MAPK) take part in cellular metabolism. This work found 14 MAPK genes in the yellow catfish (Pelteobagrus fulviadraco) genome and evaluated their taxonomy, conserved domains and evolutionary linkages for a better understanding of the MAPK gene family's evolutionary relationship and antibacterial immune response. The findings revealed that several MAPK genes are activated in response to immunological and inflammatory responses. Collinearity research revealed that in yellow catfish and zebrafish, there are six pairs of highly similar MAPK genes, indicating that these genes have been more conserved throughout evolution. The MAPK gene quantification findings revealed that JNK1a, JNK1b, p38delta and p38alpha b expression levels were considerably upregulated, indicating that they act in fish innate immunity. The findings implied that MAPK genes may involve in defence against detrimental microbe in yellow catfish, which will help researchers better understand how MAPK genes work in the innate immune system.
Collapse
Affiliation(s)
- Ronghui Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mingyu Shu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xuanxuan Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhiwei Nei
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ben Ye
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Heyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Qu F, Li J, She Q, Zeng X, Li Z, Lin Q, Tang J, Yan Y, Lu J, Li Y, Li X. Identification and characterization of MKK6 and AP-1 in Anodonta woodiana reveal their potential roles in the host defense response against bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 124:261-272. [PMID: 35427776 DOI: 10.1016/j.fsi.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase kinase 6 (MKK6) and activator protein-1 (AP-1) are two of the essential regulatory proteins in the p38 mitogen-activated protein kinase (MAPK) pathway, which participates in the innate immune response to bacterial infections. In this study, molluscan MKK6 (AwMKK6) and AP-1 (AwAP-1) genes were cloned and identified from Anodonta woodiana. The open reading frame (ORF) of AwMKK6 encodes for a putative polypeptide sequence of 345 amino acids containing a conserved serine/threonine protein kinase (S_TKc) domain, a SVAKT motif and a DVD domain. AwAP-1 consists of 294 amino acids including a typical nuclear localization signal (NLS), a Jun domain and a basic region leucine zipper (BRLZ) domain. Quantitative real-time PCR analysis showed that both AwMKK6 and AwAP-1 were widely expressed in all selected tissues of A. woodiana and their transcript levels in hemocytes were significantly upregulated when challenged with Aeromonas hydrophila and lipopolysaccharide (LPS). Additionally, the signaling molecules of the AwMKK6/AwAP-1 pathway including AwTLR4, AwMyD88, AwTRAF6, AwMEKK1, AwMEKK4, AwASK1, AwTAK1 and Awp38 mRNA expression showed a stronger responsiveness to LPS challenge in hemocytes of A. woodiana. RNA interference (RNAi) experiments indicated that the silencing of AwMKK6 or AwAP-1 could decrease the mRNA expression levels of immune effectors (AwTNF, AwLYZ and AwDefense). Subcellular localization studies suggested that AwMKK6 and AwAP-1 were distributed throughout the cells and nucleus, respectively, and their overexpression could significantly enhance the transcriptional activities of AP-1-Luc in HEK293T cells. These findings suggest that MKK6 and AP-1 play a major role in the host defense response to bacterial injection, which may make contributions to a better understanding of the immune function of the p38 MAPK pathway in mollusks.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhenpeng Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qiang Lin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jie Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yuye Yan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jieming Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yumiao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xiaojie Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
8
|
Qu F, Li J, Zeng X, She Q, Li Y, Xie W, Cao S, Zhou Y, He Z, Tang J, Mao Z, Wang Y, Fang J, Xu W, Liu Z. Grass carp MAP3K4 participates in the intestinal immune response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 120:82-91. [PMID: 34780976 DOI: 10.1016/j.fsi.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) is a multifunctional mediator of the conserved MAPK signaling pathway that plays essential roles in the regulation of immune responses in mammals. However, the function of teleost MAP3K4s in innate immunity, especially in the intestinal immune system, is still poorly understood. In the current study, we identified a fish MAP3K4 homolog (CiMAP3K4) in Ctenopharyngodon idella as well as its immune function in intestine following bacterial infection in vivo and in vitro. The open reading frame (ORF) of CiMAP3K4 encodes putative peptide of 1544 amino acids containing a predicted serine/threonine protein kinase (S_TKc) domain with high identity with other fish MAP3K4s. Phylogenetic analysis revealed the CiMAP3K4 belonged to the fish cluster and showed the closest relationship to Pimephales promelas. Quantitative real-time PCR (qRT-PCR) analysis revealed that CiMAP3K4 transcripts were widely distributed in all tested tissues, especially with high expression in the muscle and intestine of healthy grass carp. In vitro, CiMAP3K4 gene expression was upregulated by bacterial PAMPs (lipolysaccharide (LPS), peptidoglycan (PGN), L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) and muramyl dipeptide (MDP)) and pathogens (Aeromonas hydrophila and Aeromonas veronii) in primary intestinal cells. In vivo, the mRNA expression levels of CiMAP3K4 in the intestine were significantly induced by bacterial MDP challenge in a time-dependent manner; however, this effect could be inhibited by the bioactive dipeptides β-alanyl-l-histidine (carnosine) and alanyl-glutamine (Ala-Gln). Moreover, CiMAP3K4 was located primarily in the cytoplasm, and its overexpression increased the transcriptional activity of AP-1 in HEK293T cells. Collectively, these results suggested that CiMAP3K4 might play an important role in the intestinal immune response to bacterial infections, which paves the way for a better understanding of the intestinal immune system of grass carp.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yurong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wenjie Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yuping Wang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
9
|
Huang Y, Zhang L, Huang S, Wang G. Full-length transcriptome sequencing of Heliocidaris crassispina using PacBio single-molecule real-time sequencing. FISH & SHELLFISH IMMUNOLOGY 2022; 120:507-514. [PMID: 34920131 DOI: 10.1016/j.fsi.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The lack of high-throughput sequencing data makes the research progress of Heliocidaris crassispina slow. Therefore, we used PacBio single-molecule real-time sequencing to generate the first full-length transcriptome. Here, 31,181 isoforms were obtained, with an average length of 2383.20 and a N50 length of 2732 bp. Meanwhile, 764 alternative splicing (AS) events, 5098 long-noncoding RNAs (LncRNAs), 6978 simple sequence repeats (SSRs), and 950 hypothetical transcript factors (TFs) were identified. Moreover, five key innate immune pattern recognition receptors (PRRs), including toll-like receptor (TLR), NACHT domain and leucine-rich repeat (NLR), scavenger receptor cysteine-rich (SRCR), peptidoglycan recognition proteins (PGRP), and gram-negative binding proteins (GNBP), were searched in the transcriptome. In addition, 37 isoforms enriched in KEGG and GO immune systems were also detected. The study provid abundant data support for the current research on H. crassispina.
Collapse
Affiliation(s)
- Yongyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
10
|
Zhang R, Chen L, Huang F, Wang X, Li C. Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced acute lung injury by regulating miR-424-5p/MAPK14 axis. Genes Genomics 2021; 43:815-827. [PMID: 33904112 DOI: 10.1007/s13258-021-01103-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many long non-coding RNAs (lncRNAs) have been suggested to play critical roles in acute lung injury (ALI) pathogenesis, including lncRNA nuclear enriched abundant transcript 1 (NEAT1). OBJECTIVE We aimed to further elucidate the functions and molecular mechanism of NEAT1 in ALI. METHODS Human pulmonary alveolar epithelial cells (HPAEpiCs) stimulated by lipopolysaccharide (LPS) were served as a cellular model of ALI. Cell viability and cell apoptosis were determined by cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The expression of NEAT1, microRNA-424-5p (miR-424-5p), and mitogen-activated protein kinase 14 (MAPK14) was measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis. Caspase activity was determined by caspase activity kit. The inflammatory responses were evaluated using enzyme-linked immunosorbent assay (ELISA). The oxidative stress factors were analyzed by corresponding kits. RESULTS NEAT1 was upregulated in LPS-stimulated HPAEpiCs. NEAT1 knockdown weakened LPS-induced injury by inhibiting apoptosis, inflammation and oxidative stress in HPAEpiCs. Moreover, miR-424-5p was a direct target of NEAT1, and its knockdown reversed the effects caused by NEAT1 knockdown in LPS-induced HPAEpiCs. Furthermore, MAPK14 was a downstream target of miR-424-5p, and its overexpression attenuated the effects of miR-424-5p on reduction of LPS-induced injury in HPAEpiCs. Besides, NEAT1 acted as a sponge of miR-424-5p to regulate MAPK14 expression. CONCLUSION NEAT1 knockdown alleviated LPS-induced injury of HPAEpiCs by regulating miR-424-5p/MAPK14 axis, which provided a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Lina Chen
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Fei Huang
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Xiaorong Wang
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China
| | - Cuihong Li
- Department of Paediatrics, Suizhou Hospital, Hubei University of Medicine, Long Men Street 60th, Zeng Du District, Suizhou, 441300, Hubei, China.
| |
Collapse
|
11
|
Wang D, Sun S, Li S, Lu T, Shi D. Transcriptome profiling of immune response to Yersinia ruckeri in spleen of rainbow trout (Oncorhynchus mykiss). BMC Genomics 2021; 22:292. [PMID: 33882827 PMCID: PMC8061174 DOI: 10.1186/s12864-021-07611-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yersinia ruckeri is a pathogen that can cause enteric redmouth disease in salmonid species, damaging global production of economically important fish including rainbow trout (Oncorhynchus mykiss). Herein, we conducted the transcriptomic profiling of spleen samples from rainbow trout at 24 h post-Y. ruckeri infection via RNA-seq in an effort to more fully understand their immunological responses. RESULTS We identified 2498 differentially expressed genes (DEGs), of which 2083 and 415 were up- and down-regulated, respectively. We then conducted a more in-depth assessment of 78 DEGs associated with the immune system including CCR9, CXCL11, IL-1β, CARD9, IFN, TNF, CASP8, NF-κB, NOD1, TLR8α2, HSP90, and MAPK11, revealing these genes to be associated with 20 different immunological KEGG pathways including the Cytokine-cytokine receptor interaction, Toll-like receptor signaling, RIG-I-like receptor signaling, NOD-like receptor signaling, and MAPK signaling pathways. Additionally, the differential expression of 8 of these DEGs was validated by a qRT-PCR approach and their immunological importance was then discussed. CONCLUSIONS Our findings provide preliminary insight on molecular mechanism underlying the immune responses of rainbow trout following Y. ruckeri infection and the base for future studies of host-pathogen interactions in rainbow trout.
Collapse
Affiliation(s)
- Di Wang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, China.,Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 150070, Harbin, China.,Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, 150070, Harbin, China
| | - Simeng Sun
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, China
| | - Shaowu Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 150070, Harbin, China.,Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, 150070, Harbin, China
| | - Tongyan Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 150070, Harbin, China.,Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, 150070, Harbin, China
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, China.
| |
Collapse
|
12
|
Sun Z, Sun W, Pan B, Yao Y, Yan C. Molecular characterization of a novel p38 MAPK cDNA from Cyclina sinensis and its potential immune-related function under the threat of Vibrio anguillarum. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110599. [PMID: 33845220 DOI: 10.1016/j.cbpb.2021.110599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) is one important member of MAPK family and reported to serve a predominant function in regulating innate immunity after the occurrence of certain infection. In the present study, one novel p38 MAPK gene was acquired from Cyclina sinensis based on the RNA-seq analysis and designated as Csp38 MAPK. This novel gene contained a full length of 1781 bp, 1104 bp of which was deemed as open reading frames and gave rise to a peptide of 367 amino acids with a predicted molecular weight of 42.31 KDa. A conserved serine/threonine protein kinase (S_Tkc) region along with a Thr-Gly-Tyr motif was discovered in the deduced sequence. According to the phylogenetic analysis, there was a close relationship between this kinase and Meretrix petechialis p38 MAPK. As for the expression pattern, this newly-identified Csp38 MAPK was ubiquitously distributed in several tissues throughout the body but with varied abundance. After the challenge of Vibrio anguillarum, both the transcription and phosphorylation level of Csp38 MAPK in hemolymph were coordinately altered with a time-dependent manner. Besides, with the application of double strand RNA homologous to myeloid differentiation factor 88 (MyD88) of C. sinensis, the activation of Csp38 MAPK was found to obviously decrease in hemolymph after the pathogen stimulation. Hence, our experimental data presented evidence for the potential involvement of p38 MAPK in response to bacterial invaders in C. sinensis, possibly facilitating the understanding for pathogen-induced innate immunity in clams.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Baoping Pan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yuan Yao
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
13
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
14
|
Talwar H, McVicker B, Tobi M. p38γ Activation and BGP (Biliary Glycoprotein) Induction in Primates at Risk for Inflammatory Bowel Disease and Colorectal Cancer-A Comparative Study with Humans. Vaccines (Basel) 2020; 8:E720. [PMID: 33276422 PMCID: PMC7712431 DOI: 10.3390/vaccines8040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common cause of cancer-related deaths largely due to CRC liver metastasis (CRLM). Identification of targetable mechanisms continues and includes investigations into the role of inflammatory pathways. Of interest, MAPK is aberrantly expressed in CRC patients, yet the activation status is not defined. The present study assessed p38γ activation in CRC patients, cancer cells, and tissues of cotton top tamarin (CTT) and common marmoset (CM). The primate world is an overlooked resource as colitis-CRC-prone CTT are usually inure to liver metastasis while CM develop colitis but not CRC. The results demonstrate that p38γ protein and phosphorylation levels are significantly increased in CRC patients compared to normal subjects and CTT. Furthermore, p38γ phosphorylation is significantly elevated in human CRC cells and hepatoblastoma cells but not in CM colon. Additionally, carcinoembryonic antigen (CEA) and biliary glycoprotein (BGP) are induced in the CRC patients that showed p38γ phosphorylation. Inhibition of p38 MAPK in CRC cells showed a significant decline in cell growth with no effect on apoptosis or BGP level. Overall, p38γ is activated in CRC tumorigenesis and likely involves CEA antigens during CRLM in humans but not in the CTT or CM, that rarely develop CRLM.
Collapse
Affiliation(s)
- Harvinder Talwar
- Research and Development VA Medical Center and Internal Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Benita McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, The University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Martin Tobi
- Research and Development Service, Department of Internal Medicine, Detroit VAMC, Detroit, MI 48201, USA
- Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| |
Collapse
|
15
|
Comparative Characterization of Two cxcl8 Homologs in Oplegnathus fasciatus: Genomic, Transcriptional and Functional Analyses. Biomolecules 2020; 10:biom10101382. [PMID: 32998424 PMCID: PMC7601086 DOI: 10.3390/biom10101382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
CXCL8 (interleukin-8, IL-8) is a CXC family chemokine that recruits specific target cells and mediates inflammation and wound healing. This study reports the identification and characterization of two cxcl8 homologs from rock bream, Oplegnathus fasciatus. Investigation of molecular signature, homology, phylogeny, and gene structure suggested that they belonged to lineages 1 (L1) and 3 (L3), and designated Ofcxcl8-L1 and Ofcxcl8-L3. While Ofcxcl8-L1 and Ofcxcl8-L3 revealed quadripartite and tripartite organization, in place of the mammalian ELR (Glu-Leu-Arg) motif, their peptides harbored EMH (Glu-Met-His) and NSH (Asn-Ser-His) motifs, respectively. Transcripts of Ofcxcl8s were constitutively detected by Quantitative Real-Time PCR (qPCR) in 11 tissues examined, however, at different levels. Ofcxcl8-L1 transcript robustly responded to treatments with stimulants, such as flagellin, concanavalin A, lipopolysaccharide, and poly(I:C), and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus, when compared with Ofcxcl8-L3 mRNA. The differences in the putative promoter features may partly explain the differential transcriptional modulation of Ofcxcl8s. Purified recombinant OfCXCL8 (rOfCXCL8) proteins were used in in vitro chemotaxis and proliferation assays. Despite the lack of ELR motif, both rOfCXCL8s exhibited leukocyte chemotactic and proliferative functions, where the potency of rOfCXCL8-L1 was robust and significant compared to that of rOfCXCL8-L3. The results, taken together, are indicative of the crucial importance of Ofcxcl8s in inflammatory responses and immunoregulatory roles in rock bream immunity.
Collapse
|
16
|
Expression Levels of the Immune-Related p38 Mitogen-Activated Protein Kinase Transcript in Response to Environmental Pollutants on Macrophthalmus japonicus Crab. Genes (Basel) 2020; 11:genes11090958. [PMID: 32825142 PMCID: PMC7565651 DOI: 10.3390/genes11090958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution in the aquatic environment poses a threat to the immune system of benthic organisms. The Macrophthalmus japonicus crab, which inhabits tidal flat sediments, is a marine invertebrate that provides nutrient and organic matter cycling as a means of purification. Here, we characterized the M. japonicus p38 mitogen-activated protein kinase (MAPK) gene, which plays key roles in the regulation of cellular immune and apoptosis responses. M. japonicusp38 MAPK displayed the characteristics of the conserved MAPK family with Thr-Gly-Tyr (TGY) motif and substrate-binding site Ala-Thr-Arg-Trp (ATRW). The amino acid sequence of the M. japonicus p38 MAPK showed a close phylogenetic relationship to Eriocheir sinensis MAPK14 and Scylla paramamosainp38 MAPK. The phylogenetic tree displayed two origins of p38 MAPK: crustacean and insect. The tissue distribution patterns showed the highest expression in the gills and hepatopancreas of M. japonicus crab. In addition, p38 MAPK expression in M. japonicus gills and hepatopancreas was evaluated after exposure to environmental pollutants such as perfluorooctane sulfonate (PFOS), irgarol, di(2-ethylhexyl) phthalate (DEHP), and bisphenol A (BPA). In the gills, p38 MAPK expression significantly increased after exposure to all concentrations of the chemicals on day 7. However, on day 1, there were increased p38 MAPK responses observed after PFOS and irgarol exposure, whereas decreased p38 MAPK responses were observed after DEHP and BPA exposure. The upregulation of p38 MAPK gene also significantly led to M. japonicus hepatopancreas being undertested in all environmental pollutants. The findings in this study supported that anti-stress responses against exposure to environmental pollutants were reflected in changes in expression levels in M. japonicusp38 MAPK signaling regulation as a cellular defense mechanism.
Collapse
|
17
|
Transcriptome Analysis of Maternal Gene Transcripts in Unfertilized Eggs of Misgurnus anguillicaudatus and Identification of Immune-Related Maternal Genes. Int J Mol Sci 2020; 21:ijms21113872. [PMID: 32485896 PMCID: PMC7312655 DOI: 10.3390/ijms21113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal genes are important in directing early development and determining egg quality in fish. We here report the de novo transcriptome from four tissue libraries of the cyprinid loach, Misgurnus anguillicaudatus, and for the first time identified maternal gene transcripts in unfertilized eggs and suggest their immune system involvement. Expression profiles and functional enrichment revealed a total 24,116 transcripts were expressed as maternal transcripts in unfertilized eggs, which were involved in a wide range of biological functions and pathways. Comparison expression profiles and analysis of tissue specificity revealed that the large numbers of maternal transcripts were stored in unfertilized eggs near the late phase of ovarian maturation and before ovulation. Functional classification showed a total of 279 maternal immune-related transcripts classified with immune system process GO term and immune system KEGG pathway. qPCR analysis showed that transcript levels of identified maternal immune-related candidate genes were dynamically modulated during development and early ontogeny of M. anguillicaudatus. Taken together, this study could not only provide knowledge on the protective roles of maternal immune-related genes during early life stage of M. anguillicaudatus but could also be a valuable transcriptomic/genomic resource for further analysis of maternally provisioned genes in M. anguillicaudatus and other related teleost fishes.
Collapse
|
18
|
Sun Y, Xu W, Li D, Zhou H, Qu F, Cao S, Tang J, Zhou Y, He Z, Li H, Zhou Z, Liu Z. p38 mitogen-activated protein kinases (MAPKs) are involved in intestinal immune response to bacterial muramyl dipeptide challenge in Ctenopharyngodon idella. Mol Immunol 2020; 118:79-90. [DOI: 10.1016/j.molimm.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023]
|
19
|
Zhang S, Yu J, Wang H, Liu B, Yue X. p38 MAPK is involved in the immune response to pathogenic Vibrio in the clam Meretrix petechialis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:456-463. [PMID: 31669282 DOI: 10.1016/j.fsi.2019.10.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 05/15/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are involved in the response to various extracellular stimuli via regulating gene expression. In the present study, a p38 MAPK gene (MpP38) was identified from the clam Meretrix petechialis. The full-length cDNA of MpP38 measures 1,720 bp, consisting of a 134-bp 5'-UTR, a 1,095-bp ORF and a 491-bp 3'-UTR. Both the mRNA and protein expression levels of MpP38 increased after Vibrio challenge, implying that MpP38 is involved in clam immunity. Based on our previous study, a transcription factor activated by p38 MAPK, i.e. microphthalmia-associated transcription factor (MITF), participated in clam immunity by regulating the expression of phenoloxidase (PO). Coupled with other related reports, the mechanism underlying the involvement of MpP38 in clam immunity is most likely that pathogen stimuli induce the phosphorylation of p38 MAPK and thus activate MITF to regulate the expression of the immune-related gene PO. The results obtained in this study support this mechanism. First, we found that the MpP38 phosphorylation level increased in response to Vibrio challenge. Second, as revealed by a yeast two-hybrid assay, there was a direct interaction between MpP38 and MITF. Meanwhile, inhibiting the phosphorylation of MpP38 decreased the phosphorylation level of MpMITF, implying that MpP38 phosphorylation is required for MpMITF activation. Additionally, our results showed that there was a regulatory relationship between MpP38 phosphorylation level and PO expression level. With increased MpP38 phosphorylation level, the PO expression level was also increased after Vibrio challenge; when MpP38 phosphorylation was inhibited, the PO expression level was significantly decreased. This study describes the immune function of p38 MAPK in the clam for the first time and analyses its potential underlying mechanism, which will help to elucidate the immune mechanism in the clam M. petechialis.
Collapse
Affiliation(s)
- Shujing Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
20
|
Xu X, Tao L, Wang A, Li L, Fan K, Shen Y, Li J. Genome-wide identification of JNK and p38 gene family in Ctenopharyngodon idella and their expression profiles in response to bacterial challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100647. [PMID: 31794883 DOI: 10.1016/j.cbd.2019.100647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
c-Jun N-terminal kinases (JNKs) and p38s are central components of signal transduction pathways, which are stimulated mainly by environmental stress and inflammatory cytokines. Manipulation of JNK and p38 dependent immune responses either boosts or subdues immune responses to infectious diseases or inflammatory disorders. In this study, we analyzed the whole-genome database of the grass carp and identified 4 JNK and 6 p38 genes. JNK and p38 genes of grass carp were distributed in 7 out of 24 chromosomes. All JNK and p38 proteins contained characteristic dual-phosphorylation site. The JNKs contain a specific dual-phosphorylation consensus ((Thr-Pro-Tyr) that is different from that of the p38 proteins (Thr-Gly-Tyr). Deduced gene secondary structure analyses as well as the syntenic analyses further supported their annotation and orthologs. Results of tissue distribution detection revealed that JNK and p38 genes exhibited lower expression in health grass carp. The mRNA expression levels of JNK and p38 genes were significantly up-regulated in tissues and CIK cells after bacterial infection, indicating their potential roles in bacterial-regulated immune responses. These findings in our study will facilitate the further evolutionary characterization of JNK and p38 genes in teleost species and provide a theoretical basis for their functional study.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Liuyang Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kun Fan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
21
|
Pan W, Wei N, Xu W, Wang G, Gong F, Li N. MicroRNA-124 alleviates the lung injury in mice with septic shock through inhibiting the activation of the MAPK signaling pathway by downregulating MAPK14. Int Immunopharmacol 2019; 76:105835. [PMID: 31476692 DOI: 10.1016/j.intimp.2019.105835] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022]
|
22
|
Caglayan C, Kandemir FM, Yildirim S, Kucukler S, Eser G. Rutin protects mercuric chloride-induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats. J Trace Elem Med Biol 2019; 54:69-78. [PMID: 31109623 DOI: 10.1016/j.jtemb.2019.04.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mercury is a dangerous industrial and environmental pollutant which induces severe damage in diverse organs in animal and humans. The aim of this study was to investigate the protective effect of rutin (50 and 100 mg/kg body weight) against mercuric chloride (HgCl2) (1.23 mg/kg b.w.) toxicity in rats. METHODS The experiment was carried out in male Sprague Dawley rats (n = 35) which was divided into five groups as follow: control, rutin-100, HgCl2, HgCl2 + rutin-50 and HgCl2 + rutin-100. RESULTS The results showed that HgCl2 caused a marked increase in the malondialdehyde (MDA) level and significantly decreased antioxidant enzyme activities (p < 0.05). HgCl2 also provoked inflammatory responses by elevating the levels of tumor necrosis factor-α (TNF-α), B-cell lymphoma-3 (Bcl-3), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB), interleukin-33 (IL-33), and activities of mitogen-activated protein kinase 14 (MAPK 14) and myeloperoxidase (MPO) (p < 0.05). HgCl2 also prompted the apoptotic pathway by increasing the levels of Bcl-2 associated X protein (Bax) and p53, expression of terminal deoxynucleotidyl transferase dUNT nick end labeling (TUNEL) and cysteine aspartate specific protease-3 (caspase-3). HgCl2 changed histological integrity of kidney and expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) while caused a decrease in aquaporin 1 (AQP1) water channel protein level. In contrast to this, rutin significantly decreased oxidative stress, apoptosis, inflammation and histopathological alterations while increased AQP1 levels in kidney tissues (p < 0.05). CONCLUSION The present study indicated that rutin has a nephroprotective effect due to its anti-inflammatory, antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Gizem Eser
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
23
|
Zhang JY, Hong CL, Chen HS, Zhou XJ, Zhang YJ, Efferth T, Yang YX, Li CY. Target Identification of Active Constituents of Shen Qi Wan to Treat Kidney Yang Deficiency Using Computational Target Fishing and Network Pharmacology. Front Pharmacol 2019; 10:650. [PMID: 31275142 PMCID: PMC6593161 DOI: 10.3389/fphar.2019.00650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Kidney yang deficiency syndrome (KYDS) is one of the most common syndromes treated with traditional Chinese medicine (TCM) among elderly patients. Shen Qi Wan (SQW) has been effectively used in treating various diseases associated with KYDS for hundreds of years. However, due to the complex composition of SQW, the mechanism of action remains unknown. Purpose: To identify the mechanism of the SQW in the treatment of KYDS and determine the molecular targets of SQW. Methods: The potential targets of active ingredients in SQW were predicted using PharmMapper. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the Molecule Annotation System (MAS3.0). The protein–protein interaction (PPI) network of these potential targets and “components-targets-pathways” interaction networks were constructed using Cytoscape. We also established a KYDS rat model induced by adenine to investigate the therapeutic effects of SQW. Body weight, rectal temperature, holding power, water intake, urinary output, blood urea nitrogen (BUN), serum creatinine (Scr), adrenocorticotrophic hormone (ACTH), cortisol (CORT), urine total protein (U-TP), and 17-hydroxy-corticosteroid (17-OHCS) were measured. Additionally, the mRNA expression levels of candidates were detected by qPCR. Results: KYDS-caused changes in body weight, rectal temperature, holding power, water intake, urinary output, BUN, Scr, ACTH, CORT, U-TP, and 17-OHCS were corrected to the baseline values after SQW treatment. We selected the top 10 targets of each component and obtained 79 potential targets, which were mainly enriched in the proteolysis, protein binding, transferase activity, T cell receptor signaling pathway, and focal adhesion. SRC, MAPK14, HRAS, HSP90AA1, F2, LCK, CDK2, and MMP9 were identified as targets of SQW in the treatment of KYDS. The administration of SQW significantly suppressed the expression of SRC, HSP90AA1, LCK, and CDK2 and markedly increased the expression of MAPK14, MMP9, and F2. However, HRAS levels remained unchanged. Conclusion: These findings demonstrated that SQW corrected hypothalamic–pituitary–target gland axis disorder in rats caused by KYDS. SRC, MAPK14, HRAS, HSP90AA1, F2, LCK, CDK2, and MMP9 were determined to the therapeutic target for the further investigation of SQW to ameliorate KYDS.
Collapse
Affiliation(s)
- Jie Ying Zhang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun Lan Hong
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Hong Shu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Jie Zhou
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Jia Zhang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Yuan Xiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chang Yu Li
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Qu F, Tang J, Peng X, Zhang H, Shi L, Huang Z, Xu W, Chen H, Shen Y, Yan J, Li J, Lu S, Liu Z. Two novel MKKs (MKK4 and MKK7) from Ctenopharyngodon idella are involved in the intestinal immune response to bacterial muramyl dipeptide challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:103-114. [PMID: 30633955 DOI: 10.1016/j.dci.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Mitogen-activated protein kinase kinases (MKKs) are a class of evolutionarily conserved signalling intermediates of the MAPK signalling pathway that can be activated by a diverse range of pathogenic stimuli and are crucial for the regulation of host immune defence. In this study, two fish MKK genes (CiMKK4 and CiMKK7) were first identified and characterized from grass carp (Ctenopharyngodon idella). Similar to other reported MKKs, the present CiMKK4 and CiMKK7 contained a conserved serine/threonine protein kinase (S_TKc) domain and a canonical dual phosphorylation motif. Quantitative real-time PCR results showed that CiMKK4 and CiMKK7 were broadly transcribed in all selected tissues and developmental stages of grass carp. The mRNA expression levels of CiMKK4 and CiMKK7 in the intestine were significantly induced by bacterial muramyl dipeptide (MDP) challenge in a time-dependent manner (P < 0.01). Additionally, the stimulatory effects of bacterial MDP on CiMKK4 and CiMKK7 expression in the intestine were inhibited by the bioactive dipeptide β-alanyl-l-histidine (carnosine) and alanyl-glutamine (Ala-Gln) (P < 0.05). Moreover, overexpression analysis revealed that CiMKK4 and CiMKK7 were localized throughout the entire cell and could significantly enhance AP-1 reporter gene activation in HEK293T cells. Taken together, these results provide the first experimental demonstration that CiMKK4 and CiMKK7 are involved in the intestinal immune response to MDP challenge in C. idella, which may provide new insight into the bacterial-induced intestinal inflammation of bony fishes.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xiangyu Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Hui Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Liping Shi
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhenzhen Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Huiqing Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Ying Shen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Shuangqing Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
25
|
Zhang CN, Rahimnejad S, Lu KL, Zhou WH, Zhang JL. Molecular characterization of p38 MAPK from blunt snout bream (Megalobrama amblycephala) and its expression after ammonia stress, and lipopolysaccharide and bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 84:848-856. [PMID: 30381267 DOI: 10.1016/j.fsi.2018.10.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
p38 mitogen-activated protein kinase (MAPK) is an important protein which plays a key role in regulating the innate immunity, so exploring its molecular characterization is helpful in understanding the resistance against microbial infections in cultured fish. Here, a full-length cDNA of p38 MAPK was cloned from liver of blunt snout bream (Megalobrama amblycephala) which covered 2419 bp with an open reading frame of 1086 bp encoding 361 amino acids. p38 MAPK contained the characteristic structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW), which are conserved in MAPK family. To investigate p38 MAPK functions, two in vivo experiments were carried out to examine its expression following ammonia exposure and bacterial challenge. Also, an in vitro experiment was conducted to assess the role of p38 MAPK in inflammation of primary hepatocytes induced by lipopolysaccharide (LPS). The results showed the ubiquitous expression of p38 MAPK in all the tested tissues with varying levels. p38 MAPK mRNA expression was significantly up-regulated by ammonia stress and Aeromonas hydrophila challenge, and altered in a time-dependent manner. Moreover, the results indicated that the inflammatory response induced by LPS in hepatocytes is p38 MAPK dependent as knockdown of p38 MAPK using siRNA technology depressed the expression of IL-1β and IL-6. The findings in this study showed that p38 MAPK has anti-stress property, and plays key role in protection against bacterial infection and inflammation in blunt snout bream.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Samad Rahimnejad
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Kang-Le Lu
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Wen-Hao Zhou
- Laboratory of Aquatic Animal Nutrition and Physiology, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
26
|
Zhan Y, Wang Y, Li K, Song J, Chang Y. A novel p38 MAPK gene in the sea cucumber Apostichopus japonicus (Ajp38) is associated with the immune response to pathogenic challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 81:250-259. [PMID: 30026174 DOI: 10.1016/j.fsi.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/11/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK), an important component of the MAPK signal cascade, is activated by extracellular stimuli, such as environmental stress and pathogenic infection. To clarify the function of p38 MAPKs in echinoderms, we used transcriptome database mining and rapid amplification of cDNA ends (RACE) to identify a novel p38 MAPK gene in the sea cucumber Apostichopus japonicus (here designated Ajp38). The full-length cDNA of Ajp38 was 2231 bp, including an open reading frame encoding 356 amino acid residues. Our sequence analysis indicated that the predicted Ajp38 protein contained the dual phosphorylation site Thr-Gly-Tyr (TGY) and was similar to the p38 homolog in sea urchins. Quantitative real-time PCR analysis showed that Ajp38 was ubiquitously expressed in all examined tissues of healthy adult A. japonicus, with the highest level of expression identified in the coelomocytes. Ajp38 mRNA expression was significantly upregulated in the coelomocytes 4, 12, and 72 h post in vivo infection with Vibrio splendidus. Our results provide more information about the characteristics and immune functions of the p38 homolog in sea cucumbers.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Kaiquan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
27
|
Sun HY, Huang MZ, Li YW, Huang JH, Mo ZQ, Chen RA, Dan XM. Two novel p38 MAPKs identified from Epinephelus coioides and their expression pattern in response to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2017; 67:459-466. [PMID: 28602680 DOI: 10.1016/j.fsi.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/22/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
P38 mitogen-activated protein kinases (MAPKs) are one of the most important central regulatory proteins response to extra environmental stresses. In this study, two novel p38 MAPKs, Ec-P38γ and Ec-P38δ, were identified from Epinephelus coioides, an economically important cultured fish in China and Southeast Asian counties. Both of Ec-p38γ and Ec-p38δ sequences contain a serine/threonine protein kinase (S_TKc) domain and a highly conserved Thr-Gly-Tyr (TGY) motif. Analysis of phylogenetic relationships illustrated that p38 amino acid sequences were conserved between different species indicating that the functions may be similar. The four subtypes of p38 (α, β, γ, and δ) mRNA can be detected in all thirteen tissues examined, but the expression level is different in these tissues. The expression patterns of the four Ec-p38 subtypes in E. coioides were also detected response to Cryptocaryon irritans infection, one of the most important protozoan pathogens of marine fish. The expression of four p38 subtypes was up-regulated in the tissues examined, with the highest expressions of Ec-p38α (5.2 times) and Ec-p38δ (4.2 times) occurring in the skin, while Ec-p38β (24.8 times) and γ (16.6 times) occurred in the spleen. There was no significantly correlation between the expression of Ec-p38γ/Ec-p38δ and the expression of nuclear factor kappaB (NF-kB). The results indicated the sequences and the characters of Ec-p38γ and Ec-p38δ were conserved, the p38 subtypes showed tissue-specific expression patterns in healthy grouper, and their expressions were significantly up-regulated post C. irritans infection, suggesting these p38 MAPKs may play important roles in these tissues during pathogen-caused inflammation.
Collapse
Affiliation(s)
- Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, 515063, Guangdong Province, PR China
| | - Mian-Zhi Huang
- Marine and Fisheries of Jieyang, 522000, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Jia-Hao Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
28
|
Umasuthan N, Bathige SDNK, Thulasitha WS, Jayasooriya RGPT, Shin Y, Lee J. Identification of a gene encoding a membrane-anchored toll-like receptor 5 (TLR5M) in Oplegnathus fasciatus that responds to flagellin challenge and activates NF-κB. FISH & SHELLFISH IMMUNOLOGY 2017; 62:276-290. [PMID: 28111358 DOI: 10.1016/j.fsi.2017.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and induces the downstream signaling through the myeloid differentiation primary response gene 88 (MyD88) protein to produce proinflammatory cytokines. In this study, we describe a TLR5 membrane form (OfTLR5M) and its adaptor protein MyD88 (OfMyD88) in rock bream, Oplegnathus fasciatus. Both Oftlr5m (6.7 kb) and Ofmyd88 (3.7 kb) genes displayed a quinquepartite structure with five exons and four introns. Protein structure of OfTLR5M revealed the conventional architecture of TLRs featured by an extracellular domain with 22 leucine rich repeats (LRR), a transmembrane domain and an endodomain with TIR motif. Primary OfTLR5M sequence shared a higher homology with teleost TLR5M. The evolutional analysis confirmed that TLR5 identified in the current study is a membrane receptor and the data further suggested the co-evolution of the membrane-anchored and soluble forms of TLR5 in teleosts. Inter-lineage comparison of gene structures in vertebrates indicated that the tlr5m gene has evolved with extensive rearrangement; whereas, the myd88 gene has maintained a stable structure throughout the evolution. Inspection of 5' flanking region of these genes disclosed the presence of several transcription factor binding sites including NF-κB. Quantitative real-time PCR (qPCR) detected Oftlr5m mRNA in eleven tissues with the highest abundance in liver. In vivo flagellin administration strongly induced the transcripts of both Oftlr5m and Ofmyd88 in gills and head kidney tissues suggesting their ligand-mediated upregulation. In a luciferase assay, HEK293T cells transiently transfected with Oftlr5m and Ofmyd88 demonstrated a higher NF-κB activity than the mock control, and the luciferase activity was intensified when cells were stimulated with flagellin. Collectively, our study represents the genomic, evolutional, expressional and functional insights into a receptor and adaptor molecules of teleost origin that are involved in flagellin sensing.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-8570, Japan
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Younhee Shin
- Insilicogen Inc., Giheung-gu, Yongin-si, Gyeonggi-do, 16954, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
29
|
Perera NCN, Godahewa GI, Lee J. Mitogen-activated protein kinase 1 from disk abalone (Haliotis discus discus): Roles in early development and immunity-related transcriptional responses. FISH & SHELLFISH IMMUNOLOGY 2016; 59:57-65. [PMID: 27765698 DOI: 10.1016/j.fsi.2016.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/10/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) is involved in the regulation of cellular events by mediating signal transduction pathways. MAPK1 is a member of the extracellular-signal regulated kinases (ERKs), playing roles in cell proliferation, differentiation, and development. This is mainly in response to growth factors, mitogens, and many environmental stresses. In the current study, we have characterized the structural features of a homolog of MAPK1 from disk abalone (AbMAPK1). Further, we have unraveled its expressional kinetics against different experimental pathogenic infections or related chemical stimulants. AbMAPK1 harbors a 5' untranslated region (UTR) of 23 bps, a coding sequence of 1104 bps, and a 3' UTR of 448 bp. The putative peptide comprises a predicted molecular mass of 42.2 kDa, with a theoretical pI of 6.28. Based on the in silico analysis, AbMAPK1 possesses two N-glycosylation sites, one S_TK catalytic domain, and a conserved His-Arg-Asp domain (HRD). In addition, a conservative glycine rich ATP-phosphate-binding loop and a threonine-x-tyrosine motif (TEY) important for the autophosphorylation were also identified in the protein. Homology assessment of AbMAPK1 showed several conserved regions, and ark clam (Aplysia californica) showed the highest sequence identity (87.9%). The phylogenetic analysis supported close evolutionary kinship with molluscan orthologs. Constitutive expression of AbMAPK1 was observed in six different tissues of disk abalone, with the highest expression in the digestive tract, followed by the gills and hemocytes. Highest AbMAPK1 mRNA expression level was detected at the trochophore developmental stage, suggesting its role in abalone cell differentiation and proliferation. Significant modulation of AbMAPK1 expression under pathogenic stress suggested its putative involvement in the immune defense mechanism.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
30
|
Qu F, Xiang Z, Zhang Y, Li J, Xiao S, Zhang Y, Mao F, Ma H, Yu Z. A novel p38 MAPK indentified from Crassostrea hongkongensis and its involvement in host response to immune challenges. Mol Immunol 2016; 79:113-124. [PMID: 27768933 DOI: 10.1016/j.molimm.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are conserved serine/threonine-specific kinases that are activated by various extracellular stimuli and play crucial regulatory roles in immunity, development and homeostasis. However, the function of p38s in mollusks, the second most diverse group of animals, is still poorly understood. In this study, a novel molluscan p38 (designated Chp38) was cloned and characterized from the Hong Kong oyster Crassostrea hongkongensis. Its full-length cDNA encoded a putative protein of 353 amino acids with a calculated molecular weight of approximately 40.3kDa. Similar to other reported p38 family proteins, the deduced Chp38 sequence contained a conserved dual phosphorylation TGY motif and a substrate binding site of ATRW. Phylogenetic analysis revealed that Chp38 was closest to its homolog from the Pacific oyster and belonged to the mollusk cluster. Quantitative real-time PCR analysis showed that Chp38 was constitutively expressed in all examined oyster tissues and developmental stages and that its expression in hemocytes was significantly up-regulated after pathogen (Vibrio alginolyticus and Staphylococcus haemolyticus) and PAMP (lipopolysaccharide and peptidoglycan) infections. Moreover, overexpression analysis revealed that Chp38 was localized in both the cytoplasm and nucleus of HEK293T cells and that it could significantly enhance AP-1 reporter gene activation in a dose-dependent manner. Altogether, these results provide the first experimental evidence of a functional p38 in oysters and suggest its involvement in the innate immunity of C. hongkongensis.
Collapse
Affiliation(s)
- Fufa Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
31
|
Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus. Sci Rep 2016; 6:31845. [PMID: 27545457 PMCID: PMC4992823 DOI: 10.1038/srep31845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022] Open
Abstract
Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.
Collapse
|