1
|
Liu F, Huang L, Liu A, Jiang Q, Huang H, Ye H. Identification of a Putative CFSH Receptor Inhibiting IAG Expression in Crabs. Int J Mol Sci 2023; 24:12240. [PMID: 37569617 PMCID: PMC10418988 DOI: 10.3390/ijms241512240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The crustacean female sex hormone (CFSH) is a neurohormone peculiar to crustaceans that plays a vital role in sexual differentiation. This includes the preservation and establishment of secondary female sexual traits, as well as the inhibition of insulin-like androgenic gland factor (IAG) expression in the androgenic gland (AG). There have been no reports of CFSH receptors in crustaceans up to this point. In this study, we identified a candidate CFSH receptor from the mud crab Scylla paramamosain (named Sp-SEFIR) via protein interaction experiments and biological function experiments. Results of GST pull-down assays indicated that Sp-SEFIR could combine with Sp-CFSH. Findings of in vitro and in vivo interference investigations exhibited that knockdown of Sp-SEFIR could significantly induce Sp-IAG and Sp-STAT expression in the AG. In brief, Sp-SEFIR is a potential CFSH receptor in S. paramamosain, and Sp-CFSH controls Sp-IAG production through the CFSH-SEFIR-STAT-IAG axis.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Lin Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| |
Collapse
|
2
|
Zhao J, Dong Z, Zhu L, Song W, Qi P. An Interleukin-17 Isoform from Thick Shell Mussel Mytilus coruscus Serves as a Mediator of Inflammatory Response. Molecules 2023; 28:molecules28041806. [PMID: 36838794 PMCID: PMC9965057 DOI: 10.3390/molecules28041806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
The inflammatory cytokine interleukin-17 (IL17) plays an important role in innate immunity by binding to its receptors (IL17Rs) to activate immune defense signals. To date, information on members of the IL17 family is still very limited in molluscan species. Here, a novel member of the IL17 family was identified and characterized from thick shell mussel Mytilus coruscus, and this gene was designated as McIL17-1 by predicting structural domains and phylogenetic analysis. McIL17-1 transcripts existed in all examined tissues with high expression levels in gills, hemocytes and digestive glands. After the stimuli of different pathogen associated molecular patterns (PAMPs) for 72 h, transcriptional expression of McIL17-1 was significantly upregulated, except for poly I:C stimulation. Cytoplasm localization of McIL17-1 was shown in HEK293T cells by fluorescence microscopy. Further, in vivo and in vitro assays were performed to evaluate the potential function of McIL17-1 played in immune response. McIL17-1 was either knocked down or overexpressed in vivo through RNA inference (RNAi) and recombinant protein injection, respectively. With the infection of living Vibrio alginolyticus, a high mortality rate was exhibited in the McIL17-1 overexpressed group compared to the control group, while a lower mortality rate was observed in the McIL17-1 knocked down group than control group. In vitro, the flow cytometric analysis showed that the apoptosis rate of McIL17-1 inhibited hemocytes was significantly lower than that of the control group after lipopolysaccharide stimulation. These results collectively suggested that the newly identified IL17 isoform is involved in the inflammatory response to bacterial infection in M. coruscus.
Collapse
|
3
|
Lv X, Sun J, Li Y, Yang W, Wang L, Leng J, Yan X, Guo Z, Yang Q, Wang L, Song L. CgIL17-5 regulates the mRNA expressions of immune effectors through inducing the phosphorylation of CgMAPKs and the nuclear translocation of CgRel and CgAP-1 in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104263. [PMID: 34563588 DOI: 10.1016/j.dci.2021.104263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Interleukin-17 (IL-17) is a classic pro-inflammatory cytokine that plays an important role in the immune and inflammatory response. In the present study, the sequence feature of CgIL17-5 and its function as a pro-inflammatory factor in inducing the mRNA expressions of downstream immune effectors were investigated in oyster Crassostrea gigas. There were two tightly folded alpha helixes and two pairs of antiparallel beta-pleated sheet in the amino acid sequence of CgIL17-5. The mRNA transcripts of CgIL17-5 were constitutively distributed in all the tested tissues, with the highest level in haemocytes. The mRNA expression level of CgIL17-5 in haemocytes increased significantly at 24 h after Vibrio splendidus stimulation. CgIL17-5 protein was mainly detected in granulocytes which were the main immunocompetent haemocytes in C. gigas. The phosphorylation of mitogen-activated protein kinases (CgJNK, CgERK and CgP38) and nuclear translocation of the transcription factors (CgRel and CgAP-1) in haemocytes were induced after the oysters received an injection of recombinant CgIL17-5 for 2 h. The mRNA expression levels of CgIL-17s, CgTNF-1, Cgdefh1 and Cgdefh2 increased significantly in haemocytes. At the same time, obvious branchial swelling and cilium shedding in gills were observed at 24 h after the oysters received an injection of rCgIL17-5. All the results collectively suggested that CgIL17-5 promoted the activation of CgMAPKs and the nuclear translocation of CgRel and CgAP-1 to promote the mRNA expressions of cytokines and antibacterial peptides.
Collapse
Affiliation(s)
- Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhicheng Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Yang Q, Guo K, Zhou X, Tang X, Yu X, Yao W, Wu Z. Histopathology, antioxidant responses, transcriptome and gene expression analysis in triangle sail mussel Hyriopsis cumingii after bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104175. [PMID: 34147569 DOI: 10.1016/j.dci.2021.104175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 05/26/2023]
Abstract
Bacterial disease outbreaks in filter feeder bivalve Hyriopsis cumingii as water contamination become more frequent in the water ecosystem, especially in intensive aquaculture habitats. To characterize host-pathogen interactions between H. cumingii and bacterial infection, we investigated the effects of Stenotrophomonas maltophilia HOP3 and Aeromonas veronii GL1 on the antioxidant response, tissue invasion and transcriptome expression of H. cumingii by infectivity trials. We showed that bacterial infections resulted in tubular necrosis of the hepatopancreas and induced the acute immune response in H. cumingii. The transcriptomic study identified a total of 5957 differentially expressed genes (DEGs) after A. veronii challenge. These DEGs were implicated in 302 KEGG pathways, notably in Apoptosis, Phagosome and Lysosome. The results showed that the relative expressions of all six immune-related DEGs were effectively stimulated with A. veronii, accompanied by tissue differences. Overall, these findings will contribute to an analysis of the immune response of H. cumingii to bacterial infection at the transcriptomic level and its genomic resource for research.
Collapse
Affiliation(s)
- Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Kefan Guo
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xicheng Zhou
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Weizhi Yao
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Wang N, Wang T, Zhao X, Chen Y, Liu R, Fang Y, Zhang R. Molecular characterization of the nitric oxide synthase gene and its immunomodulation of nitric oxide production in the triangle shell mussel (Hyriopsis cumingii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104136. [PMID: 34004268 DOI: 10.1016/j.dci.2021.104136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide synthase (NOS) is a critical enzyme that catalyzes nitric oxide biosynthesis and orchestrates various immunological responses mediated by nitric oxide (NO) in host animals. In this study, the NOS gene was identified in the triangle shell mussel (Hyriopsis cumingii) (HcNOS). HcNOS was highly conserved in the characteristic gene structures of NOS. Phylogenetic analysis suggested that HcNOS was a typical invertebrate NOS. Further gene expression analysis, NOS activity assays and nitric oxide content measurements demonstrated the inducibility of HcNOS in responses to lipopolysaccharide (LPS) challenge and during tissue transplantation. Of note, mantle grafting induced a prolonged HcNOS/NO response, suggesting that through the HcNOS/NO system, multiple immunomodulators may play decisive roles in tissue grafting in triangle shell mussels. Thus, HcNOS appears to be a crucial player in responding to both bacterial infection and tissue transplantation.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China.
| | - Tingting Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Xinxin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Yulan Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Ruixia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Yu Fang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Rui Zhang
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China.
| |
Collapse
|
6
|
Wang N, Qin M, Chen X, Lu Y, Zhao X, Wu Y, Shi J, Li Y, Zhang R. Molecular cloning of complement component C3 gene from pearl mussel, Hyriopsis cumingii and analysis of the gene expression in response to tissue transplantation. FISH & SHELLFISH IMMUNOLOGY 2019; 94:288-293. [PMID: 31494277 DOI: 10.1016/j.fsi.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Complement component C3 is well recognized as the central mediator of complement system, whose activation is responsible for the immune surveillance and elimination of non-self-antigens. In this study, C3 gene (HcC3) from a pearl making mussel, Hyriopsis cumingii, was successfully identified. The putative HcC3 possessed the canonical domains and highly conserved functional residues of C3 family members. In phylogenetic analysis, HcC3 was also clustered into C3 subfamily and separated from α2 macroglobulin clade. HcC3 gene was constitutively expressed in a wide range of tissues of pearl mussels, among which the immune-related tissues like hemocytes got highest expression. After allograft surgery of mantle tissues for aquaculture pearl production, the gene expression of HcC3 exhibited a rapid upregulation on day 1, dropped back on day 3, peaked the value on day 7, and restored to the level similar to control samples on day 14 after mantle allograft. The biphasic expression within the two weeks post the surgery suggests the important roles for HcC3 in alloimmune responses and an intricate complement activation mechanism in mollusks during tissue allograft.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China.
| | - Mengting Qin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Xihua Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Yang Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Xinxin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Yuhui Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Jie Shi
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Yitian Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Rui Zhang
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China.
| |
Collapse
|
7
|
Huang D, Shen J, Li J, Bai Z. Integrated transcriptome analysis of immunological responses in the pearl sac of the triangle sail mussel (Hyriopsis cumingii) after mantle implantation. FISH & SHELLFISH IMMUNOLOGY 2019; 90:385-394. [PMID: 31075406 DOI: 10.1016/j.fsi.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
For pearl culture of bivalve Hyriopsis cumingii, implantation of the sabio may cause nucleus discharge and increased host death rates. We performed a transcriptome analysis of the pearl sac of H. cumingii for 30 days after mantle implantation; 293863 unigenes were obtained, and 27176 unigenes were identified using nr, nt, KO, Swiss-Prot, Pfam, GO, and KOG databases. We detected 4878 differentially expressed genes (DEGs) through pairwise comparisons. We speculated that the physical condition of the recipient mussels returned to normal in about one month; the period was divided into six vital phases (0, 2 h-6 h, 12 h-24 h, 48 h to 7 days, 14 days and 30 days) on the basis of the overall similarities in DEGs. We compared the DEGs between time points and identified key immune-related genes. Our findings provide information on the immunological reactions induced by implantation in pearl mussels.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Jiexuan Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| |
Collapse
|
8
|
Huang D, Bai Z, Shen J, Zhao L, Li J. Identification of tumor necrosis factor receptor-associated factor 6 in the pearl mussel Hyriopsis cumingii and its involvement in innate immunity and pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2018; 80:335-347. [PMID: 29920382 DOI: 10.1016/j.fsi.2018.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) acts as a central intracellular signal adapter molecule that mediates the tumor necrosis factor receptor superfamily and the interleukin-1 receptor/Toll-like receptor family in vertebrates and invertebrates. In the present study, HcTRAF6, a molluscan homologue of TRAF6 from Hyriopsis cumingii, has been cloned and identified. The entire open reading frame of HcTRAF6 was found to comprise a 1965-bp region that encodes a predicted protein of 654 amino acids, which contains conserved characteristic domains including a RING domain, two TRAF-type zinc finger domains, a typical coiled coil and the MATH domain. Phylogenetic analysis revealed that HcTRAF6 was aggregated closely with CsTRAF6 from Cyclina sinensis in the invertebrate cluster of mollusks. Further, qRT-PCR analysis showed that HcTRAF6 mRNA was extensively distributed in mussel tissues with a high expression in gills. After immune stimulation with Aeromonas hydrophila and lipopolysaccharides, the transcription of HcTRAF6 was obviously induced in the gills and hemocytes. In addition, significant fluctuation in HcTRAF6 expression was observed in the pearl sac, gills and hemocytes after mantle implantation. These findings confirmed its role in the alloimmune response. Dual-luciferase reporter assay showed that over-expression of HcTRAF6 could enhance the activity of the NF-κB reporter in a dose-dependent manner. Further, the RNA interference showed that the up-regulation of antimicrobial peptides in anti-bacterial infection was strongly suppressed in HcTRAF6-silenced mussels and that depletion of HcTRAF inhibited the elimination of A. hydrophila. All these findings together prove that HcTRAF6 functions as an efficient regulator in innate immune mechanisms against invading pathogens and the alloimmune mechanism after mantle implantation in H. cumingii.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Jiexuan Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| |
Collapse
|
9
|
Zhang R, Qin M, Shi J, Tan L, Xu J, Tian Z, Wu Y, Li Y, Li Y, Wang N. Molecular cloning and characterization of Pif gene from pearl mussel, Hyriopsis cumingii, and the gene expression analysis during pearl formation. 3 Biotech 2018; 8:214. [PMID: 29651379 DOI: 10.1007/s13205-018-1233-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/02/2018] [Indexed: 02/04/2023] Open
Abstract
In the present study, the Pif gene of the freshwater pearl aquaculture mussel, Hyriopsis cumingii (HcPif) was successfully cloned and functionally characterized. The full sequence of HcPif gene consists of 3415 base pairs, which putatively encode two proteins, HcPif90 and HcPif80. A sequence analysis revealed that HcPif contained a von Willebrand factor type A domain and a chitin-binding domain, and shared many functional residues with other Pif homologues. A highly conserved sequence, FKGLDEIELML, at the C-terminus of Pif80s was identified as the key functional site. The corresponding peptide fragment markedly modified the morphology of calcite crystallites in CaCO3 crystallization assay and might play an essential role in the interactive binding between HcPif80 and CaCO3. Moreover, real-time PCR results showed that HcPif gene was dominantly expressed in the pearl secreting tissues and its expression changed in response to the different development status of the pearl sac during pearl aquaculture. The gene expression of HcPif was maximum 7 days after mantle grafting and declined to about the control level on day 30. Our in vitro and in vivo experimental data indicated that HcPif gene possessed the inherent characteristics of a nacre formation gene and its expression might faithfully reflect the pearl secretion status of the pearl mussels examined. Our findings may extend the understanding of the biomineralization mechanism of nacre formation and provide a potential biomarker for pearl farming.
Collapse
|
10
|
Li Q, Bai Z, Zhao L, Li J. Characterization of allograft inflammatory factor-1 in Hyriopsis cumingii and its expression in response to immune challenge and pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2016; 59:241-249. [PMID: 27794460 DOI: 10.1016/j.fsi.2016.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
The allograft inflammatory factor-1 (AIF-1) is one of the key factors associated with inflammatory response and immune defense. In the present study, we report the identification and characterization of AIF-1 from triangle sail mussel Hyriopsis cumingii (HcAIF-1). The full-length cDNA of HcAIF-1 consisted of a 5'-terminal untranslated region (UTR) of 80 bp, a 3'-UTR of 420 bp with a poly (A) tail, and an open reading frame of 444 bp encoding a polypeptide of 147 amino acids with two conserved EF-hand Ca2+-binding motifs. HcAIF-1 mRNA and protein were expressed in all examined tissues and showed higher mRNA expression levels were observed in immune tissues, especially hemocytes and mantle, and the highest protein expression level was in mantle. The expression level of HcAIF-1 mRNA was significantly upregulated in hemocytes 12-48 h after lipopolysaccharide challenge. After mantle tissue implantation, the expression level of this gene in pearl sac decreased significantly at 3-48 h (P < 0.01), and then was significantly upregulated at 96 h (P < 0.05) and recovered to the control level at 21-28 d. There was significant increase HcAIF-1 transcript abundance in hemocytes 96 h (P < 0.05) after mantle tissue implantation. The phagocytosis rate was significantly enhanced in hemocytes 3-24 h (P < 0.01) after the injection of recombinant HcAIF-1 protein. These findings suggest that HcAIF-1 is important in the underlying mechanism of the innate immune responses and pearl sac formation of H. cumingii.
Collapse
Affiliation(s)
- Qingqing Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|