1
|
Betancourt JL, Rodríguez-Ramos T, Dixon B. Pattern recognition receptors in Crustacea: immunological roles under environmental stress. Front Immunol 2024; 15:1474512. [PMID: 39611155 PMCID: PMC11602452 DOI: 10.3389/fimmu.2024.1474512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Innate immunity is the first line of defense against infections and the only known available strategy for invertebrates. Crustaceans, being mostly aquatic invertebrates, are constantly exposed to potential pathogens in the surrounding water. Their immune system abolishes most microbes that enter and are recognized as a threat. However, the stress produced by high population densities and abiotic changes, in aquaculture, disrupts the host-pathogen balance, leading to severe economic losses in this industry. Consequently, crustacean immunology has become a prime area of research where significant progress has been made. This review provides our current understanding of the key pattern recognition receptors in crustaceans, with special focus on Decapoda, and their roles in triggering an immune response. We discuss recent developments in the field of signal transduction pathways such as Toll-like receptors (TLRs) and the immune deficiency (IMD) pathway, and examine the role of antimicrobial peptides (AMPs) in pathogen defense. Additionally, we analyze how environmental stressors-such as temperature fluctuations, ammonia levels, and pollution-impact immune responses and increase susceptibility to diseases. Finally, we highlight future research directions, emphasizing the need to explore the interactions between environmental stressors and immune signaling pathways and to develop strategies to enhance immune responses in crustaceans within aquaculture settings. Altogether, these advancements deepen our understanding of pathogen recognition in invertebrates and the specific defense mechanisms employed by crustaceans, particularly in response to infections triggered by pathogens under abiotic stressors.
Collapse
Affiliation(s)
| | | | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Zheng Q, Liu Z, Sun C, Dong J, Zhang H, Ke X, Gao F, Lu M. Molecular characterization, expression and functional analysis of TAK1, TAB1 and TAB2 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109359. [PMID: 38184182 DOI: 10.1016/j.fsi.2024.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
The MAPK pathway is the common intersection of signal transduction pathways such as inflammation, differentiation and proliferation and plays an important role in the process of antiviral immunity. Streptococcus agalactiae will have a great impact on tilapia aquaculture, so it is necessary to study the immune response mechanism of tilapia to S. agalactiae. In this study, we isolated the cDNA sequences of TAK1, TAB1 and TAB2 from Nile tilapia (Oreochromis niloticus). The TAK1 gene was 3492 bp in length, contained an open reading frame (ORF) of 1809 bp and encoded a polypeptide of 602 amino acids. The cDNA sequence of the TAB1 gene was 4001 bp, and its ORF was 1491 bp, which encoded 497 amino acids. The cDNA sequence of the TAB2 gene was 4792 bp, and its ORF was 2217 bp, encoding 738 amino acids. TAK1 has an S_TKc domain and a coiled coil structure; the TAB1 protein structure contains a PP2C_SIG domain and a conserved PYVDXA/TXF sequence model; and TAB2 contains a CUE domain, a coiled coil domain and a Znf_RBZ domain. Homology analysis showed that TAK1 and TAB1 had the highest homology with Neolamprologus brichardi, and TAB2 had the highest homology with Simochromis diagramma (98.28 %). In the phylogenetic tree, TAK1, TAB1 and TAB2 formed a large branch with other scleractinian fishes. The tissue expression analysis showed that the expression of TAK1, TAB1 and TAB2 was highest in the muscle. The expression of TAK1, TAB1 and TAB2 was significantly induced in most of the tested tissues after stimulation with LPS, Poly I:C and S. agalactiae. The subcellular localization results showed that TAK1 was located in the cytoplasm, and TAB1 and TAB2 had certain distributions in the cytoplasm and nucleus. Coimmunoprecipitation (Co-IP) results showed that TRAF6 did not interact with the TAK1 protein but interacted with TAB2, while TAB1 did not interact with P38γ but interacted with TAK1. There was also an interaction between TAK1 and TAB2.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Chengfei Sun
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Hetong Zhang
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
3
|
Chen Y, Zhuang Z, Liu J, Wang Z, Guo Y, Chen A, Chen B, Zhao W, Niu J. Effects of Hermetia illucens larvae meal on the Pacific white shrimp (Litopenaeus vannamei) revealed by innate immunity and 16S rRNA gene sequencing analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101080. [PMID: 37141643 DOI: 10.1016/j.cbd.2023.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
The larvae of the black soldier fly, Hermetia illucens, are now attracting attention and becoming promising sources for aquafeed ingredient due to the nutritious substance. However, the introduction of a novel ingredient into the recipe may have unpredictable effects on the innate immune function and gut bacteria composition of crustaceans. Therefore, the present study aimed to evaluate how dietary black soldier fly larvae meal (BSFLM) affected the antioxidant ability, innate immunity and gut microbiome of shrimp (Litopenaeus vannamei) fed with a practical diet, including the gene expression of Toll and immunodeficiency (IMD) pathways. Six experimental diets were formulated by replacing gradient levels of fish meal (0 %, 10 %, 20 %, 30 %, 40 % and 50 %) based on a commercial shrimp diet. Four replicates of shrimp were fed different diets three times daily for 60 days. Growth performance linearly decreased with increasing BSFLM inclusion. Results of antioxidative enzyme activities and gene expression suggested that low dietary BSFLM levels activated the antioxidant capacity of shrimp, while dietary BSFLM levels up to 100 g/kg may induce oxidative stress and inhibit glutathione peroxidase activity. Although traf6, toll1, dorsal and relish were significantly upregulated in different BSFLM groups, the expression of tak1 was significantly downregulated in groups containing BSFLM, implying the immune susceptibility may be weakened. Gut flora analysis indicated dietary BSFLM altered both beneficial and opportunistic pathogenic bacterial abundance, with low levels of dietary BSFLM increased the abundance of bacteria that may contribute to carbohydrate utilization, while high levels of dietary BSFLM may cause intestinal disease and low intestinal immune response. To conclude, 60-80 g/kg of dietary BSFLM showed no adverse effects on the growth, antioxidant capacity and gut flora of shrimp, which was the adequate level in shrimp diet. While 100 g/kg dietary BSFLM may induce oxidative stress and potentially weaken the innate immunity of shrimp.
Collapse
Affiliation(s)
- Yongkang Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Zhenxiao Zhuang
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Jieping Liu
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Ziqiao Wang
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Yucai Guo
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Anqi Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Baoyang Chen
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Wei Zhao
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| | - Jin Niu
- State key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
4
|
Wang S, Li H, Li Q, Yin B, Li S, He J, Li C. Signaling events induced by lipopolysaccharide-activated Toll in response to bacterial infection in shrimp. Front Immunol 2023; 14:1119879. [PMID: 36817428 PMCID: PMC9936618 DOI: 10.3389/fimmu.2023.1119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLR) play a crucial role in the detection of microbial infections in vertebrates and invertebrates. Mammalian TLRs directly recognize a variety of structurally conserved microbial components. However, invertebrates such as Drosophila indirectly recognize microbial products by binding to the cytokine-like ligand Spätzle, which activates signaling cascades that are not completely understood. In this study, we investigated the signaling events triggered by Toll in response to lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria, and Vibrio parahaemolyticus infection in the arthropod shrimp Litopenaeus vannamei. We found that five of the nine Tolls from L. vannamei bound to LPS and the RNAi of LvToll1, LvToll2, LvToll3, LvToll5, and LvToll9 weakened LvDorsal-L phosphorylation induced by V. parahaemolyticus. All nine Tolls combined with MyD88 via the TIR domain, thereby conferring signals to the tumor necrosis factor receptor-associated factor 6 (TRAF6)-transforming growth factor-β activated kinase 1 binding protein 2 (TAB2)-transforming growth factor-β activated kinase 1 (TAK1) complex. Further examination revealed that the LvTRAF6-LvTAB2-LvTAK1 complex contributes to Dorsal-L phosphorylation and nuclear translocation during V. parahaemolyticus infection. Overall, shrimp Toll1/2/3/5/9-TRAF6/TAB2/TAK1-Dorsal cascades protect the host from V. parahaemolyticus infection, which provides a better understanding of how the innate immune system recognizes and responds to bacterial infections in invertebrates.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Qinyao Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
| | - Bin Yin
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd, Zhanjiang, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-Association of Southeast Asian Nations (ASEAN) Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
5
|
Jatuyosporn T, Laohawutthichai P, Romo JPO, Gallardo-Becerra L, Lopez FS, Tassanakajon A, Ochoa-Leyva A, Krusong K. White spot syndrome virus impact on the expression of immune genes and gut microbiome of black tiger shrimp Penaeus monodon. Sci Rep 2023; 13:996. [PMID: 36653369 PMCID: PMC9849358 DOI: 10.1038/s41598-023-27906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The gut microbiome plays an essential role in the immune system of invertebrates and vertebrates. Pre and pro-biotics could enhance the shrimp immune system by increasing the phenoloxidase (PO), prophenoloxidase (ProPO), and superoxide dismutase activities. During viral infection, the host immune system alteration could influence the gut microbiome composition and probably lead to other pathogenic infections. Since the JAK/STAT pathway is involved in white spot syndrome virus (WSSV) infection, we investigated the intestine immune genes of STAT-silenced shrimp. During WSSV infection, expression levels of PmVago1, PmDoral, and PmSpätzle in PmSTAT-silenced shrimp were higher than normal. In addition, the transcription levels of antimicrobial peptides, including crustinPm1, crustinPm7, and PmPEN3, were higher in WSSV-challenged PmSTAT-silenced shrimp than the WSSV-infected normal shrimp. Meanwhile, PmSTAT silencing suppressed PmProPO1, PmProPO2, and PmPPAE1 expressions during WSSV infection. The microbiota from four shrimp tested groups (control group, WSSV-infected, PmSTAT-silenced, and PmSTAT-silenced infected by WSSV) was significantly different, with decreasing richness and diversity due to WSSV infection. The relative abundance of Bacteroidetes, Actinobacteria, and Planctomycetes was reduced in WSSV-challenged shrimp. However, at the species level, P. damselae, a pathogen to human and marine animals, significantly increased in WSSV-challenged shrimp. In constrast, Shewanella algae, a shrimp probiotic, was decreased in WSSV groups. In addition, the microbiota structure between control and PmSTAT-silenced shrimp was significantly different, suggesting the importance of STAT to maintain the homeostasis interaction with the microbiota.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juan Pablo Ochoa Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Filiberto Sánchez Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Wang S, Li H, Chen R, Jiang X, He J, Li C. TAK1 confers antibacterial protection through mediating the activation of MAPK and NF-κB pathways in shrimp. FISH & SHELLFISH IMMUNOLOGY 2022; 123:248-256. [PMID: 35301113 DOI: 10.1016/j.fsi.2022.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
MAPK and NF-κB pathways are important components of innate immune system in multicellular animals. In some model organisms, the MAP3-kinase TGF-beta-activated kinase 1 (TAK1) have been shown to regulate both MAPK and NF-κB pathways activation to tailor immune responses to pathogens or infections. However, this process is not fully understood in shrimp. In this study, we investigated the effect of TAK1 on MAPK and NF-κB activation in shrimp Litopenaeus vannamei following Vibrio parahaemolyticus infection. We found that shrimp TAK1 could activate c-Jun and Relish, the transcription factors of MAPK pathway and NF-κB pathway, respectively. Specifically, over-expression of shrimp TAK1 was able to strongly induce the activities of both AP-1 and NF-κB reporters. TAK1 was shown to bind several MAP2-kinases, including MKK4, MKK6 and MKK7, and induced their phosphorylations, the hallmarks for MAPK pathways activation. TAK1 knockdown in vivo also inhibited the nuclear translocation of c-Jun and Relish during V. parahaemolyticus infection. Accordingly, ectopic expression of shrimp TAK1 in Drosophila S2 cells increased the cleavage of co-expressed shrimp Relish, and induced the promoter activity of Relish targeted gene Diptericin (Dpt). Furthermore, knockdown of c-Jun and Relish enhanced the sensitivity of shrimp to V. parahaemolyticus infection. These findings indicated that shrimp TAK1 conferred antibacterial protection through regulating the activation of both MAPK pathway and NF-κB pathway, and suggested that the TAK1-MAPK/NF-κB axis could be a potential therapeutic target for enhancing antibacterial responses in crustaceans.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Rongjian Chen
- Guangdong Hisenor Group Co., Ltd, Guangzhou, PR China
| | - Xiewu Jiang
- Guangdong Hisenor Group Co., Ltd, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/ Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, PR China.
| |
Collapse
|
7
|
Zhou K, Bai L, Nan X, Zhao K, Song Y, Li W, Wang Q. FADD regulates antibacterial immune responses via the immune deficiency signaling pathway in the Chinese mitten crab. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104326. [PMID: 34856310 DOI: 10.1016/j.dci.2021.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
In invertebrates, innate immune responses are the only defense against invading pathogens. The immune deficiency (IMD) signaling pathway protects invertebrates from bacterial infection by secreting antimicrobial peptides (AMPs). Fas-associated protein with death domain (FADD) activates AMPs and triggers apoptosis. However, FADD's function in crustaceans is unclear. Herein, the full-length FADD cDNA (EsFADD) was cloned from the Chinese mitten crab, Eriocheir sinensis. Vibrio parahaemolyticus infection upregulated EsFADD expression markedly. Knockdown of EsFADD in hemocytes suppressed the cytoplasm-to-nucleus translocation of transcription factor Relish under V. parahaemolyticus stimulation, which in turn reduced the expression of several AMPs. In vivo, silencing of EsFADD rendered crabs susceptible to bacterial infection and impaired their bacterial clearance. The results suggest that EsFADD is indispensable in IMD signal transduction in E. sinensis. In contrast to Drosophila, EsFADD barely promoted apoptosis. Our findings revealed the evolutionary conservation of FADD in crustaceans and provided insights into IMD signaling in invertebrates.
Collapse
Affiliation(s)
- Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Longwei Bai
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Sun M, Li S, Jin S, Li X, Xiang J, Li F. A Novel TRIM9 Protein Promotes NF-κB Activation Through Interacting With LvIMD in Shrimp During WSSV Infection. Front Immunol 2022; 13:819881. [PMID: 35281067 PMCID: PMC8904877 DOI: 10.3389/fimmu.2022.819881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The TRIpartite Motif (TRIM) proteins play key roles in cell differentiation, apoptosis, development, autophagy, and innate immunity in vertebrates. In the present study, a novel TRIM9 homolog (designated as LvTRIM9-1) specifically expressed in the lymphoid organ of shrimp was identified from the Pacific whiteleg shrimp Litopenaeus vannamei. Its deduced amino acid sequence possesses the typical features of TRIM proteins, including a RING domain, two B-boxes, a coiled-coil domain, a FN3 domain, and a SPRY domain. The transcripts of LvTRIM9-1 were mainly located in the lymphoid tubules of the lymphoid organ. Knockdown of LvTRIM9-1 could apparently inhibit the transcriptions of some genes from white spot syndrome virus (WSSV) and reduce the viral propagation in the lymphoid organ. Overexpression of LvTRIM9-1 in mammalian cells could activate the promoter activity of NF-κB, and an in vivo experiment in shrimp showed that knockdown of LvTRIM9-1 reduced the expression of LvRelish in the lymphoid organ. Yeast two-hybridization and co-immunoprecipitation (Co-IP) assays confirmed that LvTRIM9-1 could directly interact with LvIMD, a key component of the IMD pathway, through its SPRY domain. These data suggest that LvTRIM9-1 could activate the IMD pathway in shrimp via interaction with LvIMD. This is the first evidence to show the regulation of a TRIM9 protein on the IMD pathway through its direct interaction with IMD, which will enrich our knowledge on the role of TRIM proteins in innate immunity of invertebrates.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Songjun Jin
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuechun Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Xu Y, Zhu B, Zhang R, Tang J, Liu Y, Wang W, Wang Z, Mao Y, Zeng G, Yan J. TAK1 of blunt snout bream promotes NF-κB activation via interaction with TAB1 in response to pathogenic bacteria. FISH & SHELLFISH IMMUNOLOGY 2022; 120:481-496. [PMID: 34923116 DOI: 10.1016/j.fsi.2021.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Transforming growth factor-β activated kinase-1 (TAK1) is an important upstream signaling molecules involved in the NF-κB signaling pathway. TAK1 interacts with TAB1 to form the TAK1-TAB1 complex, which elicits NF-κB activation through a series of cascade reactions in mammals. However, the function of TAK1 in blunt snout bream (Megalobrama amblycephala ( maTak1) and the effects of their interaction between TAK1 and TAB1 on the NF-κB activation still remains largely unknown. In the present study, maTak1 was cloned and characterized successfully based on transcriptome data. Its open reading frame is composed of 1626 nucleotides and the predicted maTAK1 protein contains 541 amino acids, which includes an N-terminal Serine/Threonine protein kinases (S/TKc) and a C-terminal coiled-coil region. Phylogenetic analysis showed that maTAK1 were clustered with those of other teleosts. MaTak1 displayed ubiquitous transcriptional expression in all the examined tissues of healthy blunt snout bream but with varied expression levels. And maTrak1 expression was dramatically enhanced in different tissues and MAF cells after LPS stimulation and A. hydrophila challenge. The result from subcellular localization analysis indicated that both maTAK1 and maTAB1 were cytoplasmic protein. The activity of NF-κB promoter could not be induced by overexpression of maTak1 or maTab1 alone, however, it could be enhanced by co-expression of maTak1 and maTab1. Co-immunoprecipitation and subcellular co-localization assay revealed that maTAK1 can combine with maTAB1 directly. The transcriptional expression level of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) increased distinctly after the overexpression of maTak1 and maTab1. Taken together, the data obtained in this study demonstrated that the direct interaction between maTAK1 and maTAB1 might play a pivotal role in mediating host innate immune response to pathogen invasion by the production of pro-inflammatory cytokines via NF-κB signaling pathway, which might lay a solid foundation for the establishment of novel therapeutic approach to combat bacterial infection in fish.
Collapse
Affiliation(s)
- Yandong Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Bi Zhu
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ru Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yang Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Wenjun Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Zuzhen Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Ying Mao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China; Yueyang Maternal and Child Health-Care Hospital, Department of Medical Genetics, Yueyang, 414000, China
| | - Guoqing Zeng
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China.
| |
Collapse
|
10
|
Ou J, Chen H, Liu Q, Bian Y, Luan X, Jiang Q, Ji H, Wang Z, Lv L, Dong X, Zhao W, Zhang Q. Integrated transcriptome analysis of immune-related mRNAs and microRNAs in Macrobrachium rosenbergii infected with Spiroplasma eriocheiris. FISH & SHELLFISH IMMUNOLOGY 2021; 119:651-669. [PMID: 34742900 DOI: 10.1016/j.fsi.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Macrobrachium rosenbergii (M. rosenbergii), is a major aquaculture species in China and Southeast Asia. However, infection with Spiroplasma eriocheiris (S. eriocheiris) has caused huge economic losses to the cultivation of M. rosenbergii. Currently, there are few reports on the immune response mechanism of M. rosenbergii that are infected with S. eriocheiris. To clarify the immune response mechanism of M. rosenbergii infected with S. eriocheiris, the key immune genes which respond to the infection with the pathogen and the regulation of related microRNAs (miRNAs) on them were identified. In this study, the mRNA and miRNA transcriptome of hepatopancreas of M. rosenbergii at different infection stages were analyzed using high-throughput sequencing and qRT-PCR. In the mRNA transcriptome, 27,703 and 33,402 genes were expressed in healthy and susceptible M. rosenbergii, respectively. By digital gene-expression profiling analysis, 23,929 and 24,325 genes were expressed, and 223 and 373 genes were significantly up-regulated and down-regulated, respectively. A total of 145 key genes related to Toll, IMD, JAK/STAT and MAPK were excavated from the transcriptome. In the miRNA transcriptome, 549 miRNAs (Conserved: 41, PN-type: 83, PC-type: 425) were sequenced, of which 87 were significantly up-regulated and 23 were significantly down-regulated. Among the related immune pathways, there are 259 miRNAs involved in the regulation of target genes in the Toll and IMD pathways, 231 JAK/STAT pathways and 122 MAPK pathways. qRT-PCR differential detection of immune-related miRNAs and mRNAs showed that 22 miRNAs with significant differences (P < 0.05) such as mro-miR-100, PC-mro-3p-27 and PN-mro-miR-316 had corresponding regulatory relationships with 22 important immune genes such as TLR2, TLR3, TLR4, TLR5, MyD88, Pelle and Relish in different stages after infection. In this study, the immune genes and related regulatory miRNAs of M. rosenbergii in response to S. eriocheiris infection were obtained. The results can provide basic data to further reveal the immune defense mechanism of M. rosenbergii against S. eriocheiris infection.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| | - Hao Chen
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Yunxia Bian
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qicheng Jiang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Hao Ji
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Linlan Lv
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xuexing Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| |
Collapse
|
11
|
Li D, Kong L, Cui Z, Zhao F, Deng Y, Tan A, Jiang L. MEKK3 in hybrid snakehead (Channa maculate ♀ ×Channa argus ♂): Molecular characterization and immune response to infection with Nocardia seriolae and Aeromonas schubertii. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110643. [PMID: 34186154 DOI: 10.1016/j.cbpb.2021.110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is a serine/threonine protein kinase that acts as a key regulator and is widely involved in various innate and acquired immune signaling pathways. In this study, we first cloned the complete open reading frame (ORF) of the MEKK3 gene (named CcMEKK3) in a hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The full-length ORF of CcMEKK3 is 1851 bp, and encodes a putative protein of 616 amino acids containing a serine/threonine kinase catalytic (S-TKc) domain and a Phox and Bem1p (PB1) domain. A sequence alignment and phylogenetic tree analysis showed that CcMEKK3 is highly conserved relative to the MEKK3 proteins of other teleost species. CcMEKK3 was constitutively expressed in all the healthy hybrid snakehead tissues tested, with greatest expression in the immune tissues, such as the head kidney and spleen. The expression of CcMEKK3 was usually upregulated in the head kidney, spleen, and liver at different time points after infection with Nocardia seriolae or Aeromonas schubertii. Similarly, the dynamic expression levels of CcMEKK3 in head kidney leukocytes after stimulation revealed that CcMEKK3 was induced by LTA, LPS, and poly(I:C). In the subcellular localization analysis, CcMEKK3 was evenly distributed in the cytoplasm of HEK293T cells, and its overexpression significantly promoted the activities of NF-κB and AP-1. These results suggest that CcMEKK3 is involved in the immune defense against these two pathogens, and plays a crucial role in activating the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lulu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China.
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| |
Collapse
|
12
|
Bai L, Zhou K, Li H, Qin Y, Wang Q, Li W. Bacteria-induced IMD-Relish-AMPs pathway activation in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2020; 106:866-875. [PMID: 32889097 DOI: 10.1016/j.fsi.2020.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The innate immune response is an important line of defense against invading pathogens in invertebrates. Signaling pathways, including the IMD pathway, play critical roles in the production of antimicrobial peptides (AMPs), which induce the transcription of immune effectors that protect against bacterial invasion. In the present study, the cDNA of IMD from Eriocheir sinensis was cloned (designated EsIMD) and shown to be significantly upregulated following Gram-positive and Gram-negative bacterial infection. In vivo and in vitro studies collectively suggested that both the Gram-negative bacterium Vibrio parahemolyticus and the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis elicit the translocation of Relish. Moreover, EsIMD positively regulated EsRelish translocation from the cytoplasm to the nucleus following stimulation with both Gram-positive and Gram-negative bacteria. EsRelish knockdown in hemocytes significantly suppressed AMPs' expression. Furthermore, both Lys-type and DAP-type peptidoglycan-containing bacteria activated the IMD pathway and elicited antibacterial responses in crab. Conclusively, these findings demonstrate that both Gram-positive and Gram-negative bacteria activate IMD signaling, via a mechanism that is distinct with that by which Gram-negative bacteria activate IMD signaling in Drosophila. These findings might pave the way for a better understanding of the innate immune system and the fundamental network of the IMD signaling pathway in crustacean.
Collapse
Affiliation(s)
- Longwei Bai
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
13
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Zhou YL, Wang LZ, Gu WB, Xu YP, Li B, Liu ZP, Dong WR, Chen YY, Shu MA. Transforming growth factor-β-activating kinase 1 and its binding protein 1 participate in the innate immune responses via modulating the IMDNFκB signaling in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2019; 90:80-90. [PMID: 31022453 DOI: 10.1016/j.fsi.2019.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Transforming growth factor-β-activating kinase 1 (TAK1) is essential for diverse important biological functions, such as innate immunity, development and cell survival. In the present study, the homologs of TAK1 and TAK1-binding protein 1 (TAB1) were identified and characterized from mud crab Scylla paramamosain for the first time. The full-length cDNAs of SpTAK1 and SpTAB1 were 2, 226 bp and 2, 433 bp with 1, 782 bp and 1, 533 bp open reading frame (ORF), respectively. The deduced SpTAK1 protein contained a conserved S_TKc (Serine/threonine protein kinases, catalytic) domain, and the putative SpTAB1 protein possessed a typical PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain and a potential TAK1 docking motif. Real-time PCR analysis showed that SpTAK1 and SpTAB1 were highly expressed at early development stages, suggesting their participation in crab's development process. Moreover, the expression levels of SpTAK1 and SpTAB1 in hepatopancreas were positively stimulated after challenge with Vibro alginolyticus and Poly (I:C), implying the involvement of SpTAK1 and SpTAB1 in innate immune responses against both bacterial and viral infections. When SpTAK1 or SpTAB1 were silenced in vivo, the expression levels of two IMDNFκB signaling components (SpIKKβ and SpRelish) and six antimicrobial peptide (AMP) genes (SpALF1-5 and SpCrustin) were significantly reduced, and the bacteria clearance capacity of crabs was also markedly impaired in SpTAK1 or SpTAB1 silenced crabs. Additionally, overexpression of SpTAK1 and SpTAB1 in HEK293T cells could markedly activate the mammalian NF-κB signaling. Collectively, our results suggested that TAK1 and TAB1 regulated crab's innate immunity via modulating the IMDNFκB signaling. These findings may provide new insights into the TAK1/TAB1-mediated signaling cascades in crustaceans and pave the way for a better understanding of crustacean innate immune system.
Collapse
Affiliation(s)
- Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Ping Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Yin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
16
|
Huang D, Bai Z, Shen J, Zhao L, Li J. Identification of tumor necrosis factor receptor-associated factor 6 in the pearl mussel Hyriopsis cumingii and its involvement in innate immunity and pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2018; 80:335-347. [PMID: 29920382 DOI: 10.1016/j.fsi.2018.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) acts as a central intracellular signal adapter molecule that mediates the tumor necrosis factor receptor superfamily and the interleukin-1 receptor/Toll-like receptor family in vertebrates and invertebrates. In the present study, HcTRAF6, a molluscan homologue of TRAF6 from Hyriopsis cumingii, has been cloned and identified. The entire open reading frame of HcTRAF6 was found to comprise a 1965-bp region that encodes a predicted protein of 654 amino acids, which contains conserved characteristic domains including a RING domain, two TRAF-type zinc finger domains, a typical coiled coil and the MATH domain. Phylogenetic analysis revealed that HcTRAF6 was aggregated closely with CsTRAF6 from Cyclina sinensis in the invertebrate cluster of mollusks. Further, qRT-PCR analysis showed that HcTRAF6 mRNA was extensively distributed in mussel tissues with a high expression in gills. After immune stimulation with Aeromonas hydrophila and lipopolysaccharides, the transcription of HcTRAF6 was obviously induced in the gills and hemocytes. In addition, significant fluctuation in HcTRAF6 expression was observed in the pearl sac, gills and hemocytes after mantle implantation. These findings confirmed its role in the alloimmune response. Dual-luciferase reporter assay showed that over-expression of HcTRAF6 could enhance the activity of the NF-κB reporter in a dose-dependent manner. Further, the RNA interference showed that the up-regulation of antimicrobial peptides in anti-bacterial infection was strongly suppressed in HcTRAF6-silenced mussels and that depletion of HcTRAF inhibited the elimination of A. hydrophila. All these findings together prove that HcTRAF6 functions as an efficient regulator in innate immune mechanisms against invading pathogens and the alloimmune mechanism after mantle implantation in H. cumingii.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Jiexuan Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Liting Zhao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| |
Collapse
|
17
|
Aweya JJ, Wang W, Zhang Y, Yao D, Li S, Wang F. Identification and molecular characterization of the Pim1 serine/threonine kinase homolog in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 74:491-500. [PMID: 29355758 DOI: 10.1016/j.fsi.2018.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The Pim1 serine/threonine kinase is associated with multiple cellular functions including proliferation, survival, differentiation, apoptosis, tumorigenesis, immune regulation and inflammation in vertebrates. However, little is known about the role of Pim1 in invertebrate immunity. In this study, we identified and characterized for the first time, a Pim1 (LvPim1) gene in Litopenaeus vannamei, with a full-length cDNA of 2352 bp and a 1119 bp open reading frame (ORF) encoding a putative protein of 372 amino acids, which contains a typical serine/threonine kinase domain. Sequence and phylogenetic analysis revealed that LvPim1 shared a close evolutionary relationship with Pim1 from vertebrates. Real-time qPCR analysis showed that LvPim1 was widely expressed in all tissues tested; with its transcript level induced in hepatopancreas and hemocytes upon challenge with Vibrio parahaemolyticus, Streptoccocus iniae, lipopolysaccharide (LPS), and white spot syndrome virus (WSSV), thus, suggesting its probable involvement in shrimp immune response. Moreover, knockdown of LvPim1 resulted in increased hemocytes apoptosis; shown by high caspase3/7 activity, coupled with increase in pro-apoptotic LvCaspase3 and LvCytochrome C, and decrease in pro-survival LvBcl2, LvIAP1, and LvIAP2 mRNA expression in hemocytes. Finally, LvPim1 knockdown renders shrimps more susceptible to V. parahaemolyticus infection. Taken together, our present data strongly suggest that LvPim1 is involved in modulating shrimp resistance to pathogen infection, promote hemocytes survival, and therefore plays a role in shrimp immune response.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Wei Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
18
|
Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:81-93. [PMID: 28501515 DOI: 10.1016/j.dci.2017.05.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Walaiporn Charoensapsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| | - Sureerat Tang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
19
|
Bao SY, Sun QX, Yao CL. The interaction of TAK1 and TAB1 enhances LPS-induced cytokine release via modulating NF-κB activation (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2018; 74:450-458. [PMID: 29325713 DOI: 10.1016/j.fsi.2018.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Transforming growth factor-β-activating kinase 1 (TAK1) is triggered by foreign pathogenic infection and involves in proinflammatory response through the activation of nuclear factor-κB (NF-κB), which is specifically regulated by TAK1-binding protein 1 (TAB1). However, the expression and regulatory characterizations of TAK1 and TAB1 in fish immune response remain largely unknown. In the present study, the cDNA sequences of TAK1 (LcTAK1) and TAB1 (LcTAB1) were identified from large yellow croaker, Larimichthys crocea. The open reading frame (ORF) of LcTAK1 was 1725 bp in length, encoding 574 amino acids. The putative LcTAK1 protein contained a protein kinase domain and a C-terminal coiled-coil region. The ORF of LcTAB1 was 1518 bp encoding 505 amino acids. And a typical PP2Cc domain and a conserved sequence motif (PYVDFSQFYLLWGSDH) at C-terminal were identified in the predicted LcTAB1 protein. Multiple alignments showed that LcTAK1 shared 74.0-97.9% and LcTAB1 shared 37.4-95.8% sequence identities with TAK1 and TAB1 proteins from other species, respectively. Quantitative PCR analysis indicated that both LcTAK1 and LcTAB1 were broadly expressed in all examined tissues, with the most predominant expression in brain and the weakest expression in muscle, respectively. Subcellular localization revealed that both LcTAK1 and LcTAB1 expressed in the cytoplasm. In addition, LcTAK1 transcripts increased significantly in LCK cells after flagellin, LPS and poly I:C stimulation while LcTAB1 enhanced greatly after LPS and poly I:C challenge. Furthermore, the roles of them in NF-κB activation were investigated by overexpression of LcTAK1 and LcTAB1 in HEK293T cells. Our results revealed that NF-κB luciferase promoter expression could not be induced by overexpression of LcTAK1 or LcTAB1 alone, however, it could be induced by co-expression of LcTAK1 and LcTAB1 together. Moreover, the roles of LcTAK1 and LcTAB1 in immune response analysis showed that NF-κB activation enhanced significantly in co-overexpressed HEK293T cells following LPS and poly I:C stimulation. However, the expression levels of tumor necrosis factor (TNF)-α, Interleukin-6 (IL-6) and IL-8 were induced only after LPS challenge (p < .05). These findings suggested that the TAK1-TAB1 complex of large yellow croaker might play an important role in pro-inflammatory cytokines and chemokine release after LPS stimulation via inducing NF-κB activation.
Collapse
Affiliation(s)
- Shi-Yuan Bao
- Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Qing-Xue Sun
- Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Cui-Luan Yao
- Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
20
|
Wang S, Yin B, Li H, Xiao B, Lǚ K, Feng C, He J, Li C. MKK4 from Litopenaeus vannamei is a regulator of p38 MAPK kinase and involved in anti-bacterial response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:61-70. [PMID: 28939483 DOI: 10.1016/j.dci.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
LvMKK4, a homologue of the mammalian mitogen-activated protein kinase kinase 4 (MKK4), was isolated and identified from Litopenaeus vannamei in the present study. The full-length cDNA of LvMKK4 is 1947 bp long, with an open reading frame (ORF) of 1185 bp encoding a putative protein of 388 amino acids. LvMKK4 contains several characteristic domains such as D domain, SIAKT motif and kinase domain, all of which are conserved in MAP kinase kinase family. Like mammalian MKK4 but not Drosophila MKK4, LvMKK4 could bind to, phosphorylate and activate p38 MAPK, which provided some insights into the signal transduction mechanism of MKK4-p38 cascade in invertebrates. Our real-time PCR data indicated that LvMKK4 was ubiquitously expressed in all tested tissues and extraordinarily abundant in muscle. Dual luciferase reporter assays in Drosophila S2 cells revealed that LvMKK4 activated the transcription of antimicrobial peptide genes (AMPs), including Drosophila Attacin A, Drosomycin, and shrimp Penaeidins. Additionally, LvMKK4 was up-regulated in both intestine and hepatopancreas by a variety of inflammatory stimuli including LPS, Vibrio parahaemolyticus, Staphhylococcu saureus, Poly (I: C) and white spot syndrome virus. Furthermore, RNAi-mediated knockdown of LvMKK4 enhanced the sensitivity of L. vannamei to V. parahaemolyticus infection. These findings suggested that LvMKK4 played an important role in anti-bacterial response and could be a potential target for inflammation treatment.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Chiguang Feng
- School of Medicine, University of Maryland, Maryland, USA
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
21
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Wang S, Li M, Yin B, Li H, Xiao B, Lǚ K, Huang Z, Li S, He J, Li C. Shrimp TAB1 interacts with TAK1 and p38 and activates the host innate immune response to bacterial infection. Mol Immunol 2017; 88:10-19. [PMID: 28577391 DOI: 10.1016/j.molimm.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Mammalian TAB1 has been previously identified as transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) binding protein, which functions as the activator of TAK1 and p38. This report, for the first time, identified and characterized the homolog of TAB1 in shrimp, to be specific, the homolog gene from Litopenaeus vannamei, containing a 1560-bp open reading frame (ORF) that encoded a putative protein of 519 amino acids with the conserved PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain in N-terminal and a TAK1 binding motif in C-terminus, has been cloned and named LvTAB1. LvTAB1 was most abundant in gills and its expression could respond significantly to a series of stimuli, including LPS, Vibrio parahemolyticus and Staphylococcus aureus. Moreover, Co-immunoprecipitation (Co-IP) experiments showed that LvTAB1 could combine with LvTAK1 as well as Lvp38, two members of IMD-NF-κB/MAPK pathway, which meant LvTAB1 could have a role in regulating the activities of these kinases. Over-expression of LvTAB1 in drosophila S2 cells could improve the transcriptional levels of antimicrobial peptide genes (AMPs) such as Diptericin (Dpt), the hallmark of drosophila NF-κB activated genes, indicating its activation effect on NF-κB pathway. Furthermore, suppression of LvTAB1 expression in vivo by RNA-interference increased the sensibility of shrimps to V. parahaemolyticus infection, implying its protective role against bacterial infection. In conclusion, these results provide some insight into the function of LvTAB1 during bacterial infection.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Mengqiao Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhijian Huang
- Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang, Zhanjiang, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|