1
|
Ibrahim D, Shahin SE, Elnahriry SS, El-Badry SM, Eltarabili RM, Elazab ST, Ismail TA, Abd El-Hamid MI. Liposome encapsulating pine bark extract in Nile tilapia: Targeting interrelated immune and antioxidant defense to combat coinfection with Aeromonas hydrophila and Enterococcus faecalis. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110031. [PMID: 39566669 DOI: 10.1016/j.fsi.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Application of smart delivery systems for encapsulation of natural ingredients provides novel avenues and is being frequently developed. Thus, we aimed to highlight the effects of cyclosome liposomal pine bark extract (CL-PBE) on Nile tilapia growth, immunomodulation, antioxidant capacity and resistance against coinfection with Aeromonas hydrophila and Enterococcus faecalis and their associated virulence genes. The experiment was conducted on four fish groups receiving a control diet (control) along with three baseline meals supplemented with 200, 400 and 600 mg/kg diet of CL-PBE (CL-PBE 200, 400 and 600, respectively). At the end of the 12-weeks feeding trial, the tilapias were intraperitoneally challenged with virulent A. hydrophila strain and five days later, E. faecalis challenge was carried out. The results revealed that tilapias fed diets fortified with CL-PBE displayed significantly enhanced growth rate and feed conversion ratio in a dose-dependent manner. Moreover, we demonstrated that CL-PBE had potent antioxidant property presented by modulation of several markers of oxidative stress; substantial reductions in reactive oxygen species, hydrogen peroxide and malondialdehyde levels, an elevation in total antioxidant capacity and boosting glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) activities in fish serum and muscle tissues. This was also correlated with augmenting the expression of CAT, SOD, GSH-Px, Nrf2 and caspase-1 genes alongside reducing those of COX-2, HSP70 and iNOS genes in response to CL-PBE. Our data demonstrated that CL-PBE fortification counteracted the overly pronounced inflammatory response-mediated induction of IL-1β, TNF-α, MHCII and TLR2 genes at the transcriptional levels post coinfection together with promotion in MUC2 and IL-10 genes expression. Notably, our findings displayed optimal well-functioning fish immune system post dietary supplementation of CL-PBE for the protection against coinfection with A. hydrophila and E. faecalis. This was evident from the decline of their counts and hence encompassing the capacity to reduce cumulative mortality percentage in conjunction with interference with their virulence via the significant downregulatory effects of CL-PBE on E. faecalis esp and gelE and A. hydrophila act and fla virulence genes. Taken together, our study strongly suggested dietary inclusion of CL-PBE for Nile tilapias with superior growth performance and significant economic benefits coupled with potent stimulatory effects on antioxidant capacity and immune response expediting our detailed understanding of how coinfection with A. hydrophila and E. faecalis was controlled.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Sara E Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Shimaa S Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Sara M El-Badry
- Department of Animal Wealth Development, Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44519, Egypt.
| | - Reham M Eltarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
2
|
Lazado CC, Albaladejo-Riad N, Rebl A. Intracellular metabolome elucidates the time-of-day-dependent response to hydrogen peroxide in salmonid gill epithelial cells. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109994. [PMID: 39481503 DOI: 10.1016/j.fsi.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The internal timekeeping system regulates the daily cycle of physiological and behavioural changes in living organisms. This rhythmic phenomenon also influences cellular responses to reactive oxygen species, such as hydrogen peroxide (H2O2). However, the temporal interaction between H2O2 and fish mucosal cells is not well understood. This study examined the temporal variations of immunological and physiological responses to H2O2 in salmonid gill cells using the RTgill-W1 cell line. The results showed that gene expression levels varied during a 24-h cycle but did not exhibit rhythmicity. The presence of a 12-h light-dark cycle (12L:12D) signal increased gene expression levels compared to a 24-h dark cycle (0L:24D). To investigate whether the time of day affects the defences in gills, cells were exposed to H2O2 at two different times (Zeitgebertime 2, ZT2, or ZT14). Although significant expression changes were observed in genes related to stress and NF-κB signalling, only a limited time-dependent pattern of response to H2O2 was observed. The intracellular metabolome of gill cells was primarily composed of organic acid and derivatives, organoheterocyclic compounds, benzoids, organic oxygen and nitrogen compounds. Exposure to H2O2 at ZT2 led to significant changes in the metabolome compared to the control group, while no such changes were observed at ZT14. Within the control groups, the concentrations of 11 metabolites significantly varied between ZT2 and ZT14, with higher levels at ZT14. These metabolites were involved in arginine biosynthesis, amino acid metabolism, and nitrogen metabolism. In contrast, the level of 26 metabolites significantly varied between ZT2 and ZT14 in H2O2-exposed groups, with lower levels at ZT14. Comparing control and H2O2-exposed groups at ZT2, 38 metabolites were affected, primarily organic acid and derivatives and organic oxygen compounds. Functional annotation revealed that these altered metabolites were involved in 15 different pathways, with valine, leucine, and isoleucine biosynthesis being the most affected. This study reveals the presence of a time-dependent response to H2O2 in salmonid gill cells, which is reflected in the intracellular metabolome. The findings provide new insights into the temporal regulation of mucosal defences in fish.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433, Ås, Norway.
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
3
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Mazur M, Rakus K, Adamek M, Surachetpong W, Chadzinska M, Pijanowski L. Effects of light and circadian clock on the antiviral immune response in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108979. [PMID: 37532067 DOI: 10.1016/j.fsi.2023.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The circadian clock mechanism, which is evolutionarily conserved across various organisms, plays a crucial role in synchronizing physiological responses to external conditions, primarily in response to light availability. By maintaining homeostasis of biological processes and behavior, the circadian clock serves as a key regulator. This biological mechanism also coordinates diurnal oscillations of the immune response during infections. However there is limited information available regarding the influence of circadian oscillation on immune regulation, especially in lower vertebrates like teleost fish. Therefore, the present study aimed to investigate the effects of light and the timing of infection induction on the antiviral immune response in zebrafish. To explore the relationship between the timing of infection and the response activated by viral pathogens, we used a zebrafish model infected with tilapia lake virus (TiLV). Our findings demonstrated that light availability significantly affects the antiviral immune response and the functioning of the molecular clock mechanism during TiLV infection. This is evident through alterations in the expression of major core clock genes and the regulation of TiLV replication and type I IFN pathway genes in the kidney of fish maintained under LD (light-dark) conditions compared to constant darkness (DD) conditions. Moreover, infection induced during the light phase of the LD cycle, in contrast to nocturnal infection, also exhibited similar effects on the expression of genes associated with the antiviral response. This study indicates a more effective mechanism of the zebrafish antiviral response during light exposure, which inherently involves modification of the expression of key components of the molecular circadian clock. It suggests that the zebrafish antiviral response to infection is regulated by both light and the circadian clock.
Collapse
Affiliation(s)
- Mikolaj Mazur
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, PL30-348, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
5
|
Hu H, Long Y, Song G, Chen S, Xu Z, Li Q, Wu Z. Dysfunction of Prkcaa Links Social Behavior Defects with Disturbed Circadian Rhythm in Zebrafish. Int J Mol Sci 2023; 24:ijms24043849. [PMID: 36835261 PMCID: PMC9961154 DOI: 10.3390/ijms24043849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Protein kinase Cα (PKCα/PRKCA) is a crucial regulator of circadian rhythm and is associated with human mental illnesses such as autism spectrum disorders and schizophrenia. However, the roles of PRKCA in modulating animal social behavior and the underlying mechanisms remain to be explored. Here we report the generation and characterization of prkcaa-deficient zebrafish (Danio rerio). The results of behavioral tests indicate that a deficiency in Prkcaa led to anxiety-like behavior and impaired social preference in zebrafish. RNA-sequencing analyses revealed the significant effects of the prkcaa mutation on the expression of the morning-preferring circadian genes. The representatives are the immediate early genes, including egr2a, egr4, fosaa, fosab and npas4a. The downregulation of these genes at night was attenuated by Prkcaa dysfunction. Consistently, the mutants demonstrated reversed day-night locomotor rhythm, which are more active at night than in the morning. Our data show the roles of PRKCA in regulating animal social interactions and link the social behavior defects with a disturbed circadian rhythm.
Collapse
Affiliation(s)
- Han Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaoxiong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhicheng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhengli Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-27-6878-0100 (Y.L.); +86-23-6836-6018 (Z.W.)
| |
Collapse
|
6
|
Zhang B, Yu C, Xu Y, Huang Z, Cai Y, Li Y. Hepatopancreas immune response during different photoperiods in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108482. [PMID: 36503058 DOI: 10.1016/j.fsi.2022.108482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Photoperiod plays an important role in the growth, development, and metabolism of crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. The hepatopancreas is an important source of innate immune molecules; however, hepatopancreatic patterns of gene expression depending on the photoperiod-which may underlie changes in immune mechanisms-remain unknown. To study the molecular basis of immune regulation in the Chinese mitten crab (Eriocheir sinensis) under different light conditions, a new generation of high-throughput Illumina sequencing technology was used, and functional genes associated with immune function in the hepatopancreas of this crab were explored via assembly of high-quality sequences, gene annotation, and classification. A total of 383,899,798 clean reads from the hepatopancreas of the normal group (12 h/12 h L:D), 387,936,676 clean reads from the continuous light group (24 h/0 h L:D), and 384,872,734 clean reads from the continuous darkness group (0 h/24 h L:D) were obtained. Compared with the normal group, 141, 152, 60, 87, 90, and 101 differentially expressed genes were identified in the groups exposed to continuous light for 2 days, continuous darkness for 2 days, continuous light for 4 days, continuous darkness for 4 days, continuous light for 6 days, and continuous darkness for 6 days, respectively. The results of this study revealed that under continuous light and dark conditions, the crabs were most affected by light on day 2, but the interference gradually decreased with time. We suggest that long-term light or dark treatment makes crabs adaptable to fluctuations in the photoperiod. The expression of genes associated with immune response patterns was found to change during different photoperiods. Prophenoloxidase (proPO) and serine proteinase (kazal-type serine proteinase inhibitor 1 and serine proteinase inhibitor-3) in the proPO-activating system were significantly upregulated in the 2-day continuous light group. Glutathione peroxidase 3 was significantly downregulated under continuous light exposure, while cyclooxygenase was upregulated in the continuous light and dark environments. These results provide insights into the molecular mechanism underlying the effects of the photoperiod on immune regulation and the physiological activity of E. sinensis.
Collapse
Affiliation(s)
- Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ziwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yuqiao Cai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
7
|
Xie S, Liu R, Zhang H, Yu F, Shi T, Zhu J, Zhou X, Yan B, Gao H, Wang P, Xing C. Comparative Analyses of the Exopalaemon carinicauda Gut Bacterial Community and Digestive and Immune Enzyme Activity during a 24-Hour Cycle. Microorganisms 2022; 10:2258. [PMID: 36422328 PMCID: PMC9695413 DOI: 10.3390/microorganisms10112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The change in life activities throughout a cycle of approximately 24 h is called the circadian rhythm. Circadian rhythm has an important impact on biological metabolism, digestion, immunity, and other physiological activities, but the circadian rhythm of crustaceans has rarely been studied. In this study, the activity of digestive enzymes (α-amylase, trypsin, and lipase) and immune enzymes (superoxide dismutase, lysozyme, and catalase), as well as the circadian rhythm of the intestinal bacterial community of Exopalaemon carinicauda, were studied. The results showed that the digestive and immune enzyme activities of E. carinicauda changed significantly (p < 0.05) at four time points throughout the day by one-way ANOVA analysis, with the highest value at 24:00 and the lowest value at 12:00. The highest values of alpha diversity and richness were observed in the 24:00 samples, which were significantly higher than those in the other groups (p < 0.05). The principal coordinate analysis (PCoA) results obviously showed that the samples from the same sampling time had higher similarity in the bacterial community structure. Candidatus hepatoplasma had the highest abundance among the intestinal microorganisms at 24:00, and Marinomonas had the highest abundance at 12:00. This study contributed to the understanding of digestive enzyme activity, immune enzyme activity, and the circadian rhythm of the intestinal bacterial community structure in E. carinicauda. It will play an important role in optimizing feeding times and improving digestion and nutrient utilization for E. carinicauda. The results of this study provide a basis for further study on the physiological mechanism of diurnal variation of intestinal flora in crustaceans.
Collapse
Affiliation(s)
- Shumin Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Runyao Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huiling Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fei Yu
- Lianyungang Marine and Fishery Development Promotion Center, Lianyungang 222044, China
| | - Tingting Shi
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiawei Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinlei Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chaofan Xing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
| |
Collapse
|
8
|
Immunity, Infection, and the Zebrafish Clock. Infect Immun 2022; 90:e0058821. [PMID: 35972269 PMCID: PMC9476956 DOI: 10.1128/iai.00588-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks are universally used to coordinate biological processes with the Earth's 24-h solar day and are critical for the health and environmental success of an organism. Circadian rhythms in eukaryotes are driven by a cell-intrinsic transcription-translation feedback loop that controls daily oscillations in gene expression which regulate diverse physiological functions. Substantial evidence now exists demonstrating that immune activation and inflammatory responses during infection are under circadian control, however, the cellular mechanisms responsible for this are not well understood. The zebrafish (Danio rerio) is a powerful model organism to study vertebrate circadian biology and immune function. Zebrafish contain homologs of mammalian circadian clock genes which, to our current knowledge, function similarly to impart timekeeping ability. Consistent with studies in mammalian models, several studies in fish have now demonstrated a bidirectional relationship between the circadian clock and inflammation: the circadian clock regulates immune activity, and inflammation can alter circadian rhythms. This review summarizes our current understanding of the molecular mechanisms of the zebrafish clock and the bi-directional relationship between the circadian clock and inflammation in fish.
Collapse
|
9
|
Takeuchi T, Hata T, Miyanishi H, Yuasa T, Setoguchi S, Takeda A, Morimoto N, Hikima JI, Sakai M, Kono T. Diel rhythm of the inflammatory cytokine il1b in the Japanese medaka (Oryzias latipes) regulated by core components of the circadian clock. FISH & SHELLFISH IMMUNOLOGY 2022; 127:238-246. [PMID: 35724845 DOI: 10.1016/j.fsi.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, studies on circadian control in immunity have been actively conducted in mammals, but little is known about circadian rhythms in the field of fish immunology. In this study, we aimed to analyse the regulation of the diel oscillation of inflammatory cytokine interleukin-1β (il1b) gene expression by core components of the circadian clock in Japanese medaka (Oryzias latipes). The expression of il1b and clock genes (bmal1 and clock1) in medaka acclimated to a 12:12 light (L): dark (D) cycle showed diel rhythm. Additionally, higher expression of il1b was detected in medaka embryo cells (OLHdrR-e3) overexpressing bmal1 and clock1. A significant decrease in il1b expression was observed in OLHdrR-e3 cells after bmal1 knockdown using morpholino oligos. These changes may be mediated by transcriptional regulation via clock proteins, which target the E-box sequence in the cis-element of il1b as identified using luciferase reporter assays. Moreover, LPS stimulation and pathogenic bacterial infection at different zeitgeber time (ZT) under LD12:12 conditions affected the degree of il1b expression, which showed high and low responsiveness to both immuno-stimulations at ZT2 and ZT14, respectively. These results suggested that fish IL-1β exhibited diel oscillation regulated by clock proteins, and its responsiveness to immune-stimulation depends on the time of day.
Collapse
Affiliation(s)
- Tomoya Takeuchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takahiko Hata
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takumi Yuasa
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Suzuka Setoguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ayaka Takeda
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
10
|
Guidi C, Esteban MÁ, Sánchez-Vázquez FJ, Vera LM. Administration time-dependent effects of poly (I:C) on antioxidant and immune responses along the diurnal time scale in zebrafish. Chronobiol Int 2022; 39:1256-1267. [PMID: 35786237 DOI: 10.1080/07420528.2022.2093735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The circadian clock of vertebrates regulates many biological processes, including the immune system. This paper investigated whether responsiveness to poly (I:C), a synthetic analog of double-stranded RNA used as an immunostimulant, exhibits day/night differences in zebrafish. Fish were intraperitoneally (IP) injected with either phosphate-buffered saline (PBS) or poly (I:C) at two different time points: "Zeitgeber Time" (ZT) 4 (day) and ZT16 (night). Then, 6 h later, fish were euthanized, and tissue samples (skin, liver and kidney) were collected. A control group (intact fish) was also sampled at the same time points. The effect of poly (I:C) on the expression of antioxidant and immune genes was time-of-day-dependent, and the response was stronger following poly (I:C) administration in the day than at night. Time-dependent differences were observed for some genes in the PBS and control groups. However, these differences were tissue-specific. In liver, almost all the genes were affected by time of day. In kidney, poly (I:C) affected the expression of all the gene markers regardless of administration time. These findings highlight the importance of considering the time to administer poly (I:C) when evaluating the fish immune response.
Collapse
Affiliation(s)
- Costanza Guidi
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain
| | - Francisco J Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain
| | - Luisa M Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Ellison AR, Wilcockson D, Cable J. Circadian dynamics of the teleost skin immune-microbiome interface. MICROBIOME 2021; 9:222. [PMID: 34782020 PMCID: PMC8594171 DOI: 10.1186/s40168-021-01160-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Circadian rhythms of host immune activity and their microbiomes are likely pivotal to health and disease resistance. The integration of chronotherapeutic approaches to disease mitigation in managed animals, however, is yet to be realised. In aquaculture, light manipulation is commonly used to enhance growth and control reproduction but may have unknown negative consequences for animal health. Infectious diseases are a major barrier to sustainable aquaculture and understanding the circadian dynamics of fish immunity and crosstalk with the microbiome is urgently needed. RESULTS Here, using rainbow trout (Oncorhynchus mykiss) as a model, we combine 16S rRNA metabarcoding, metagenomic sequencing and direct mRNA quantification methods to simultaneously characterise the circadian dynamics of skin clock and immune gene expression, and daily changes of skin microbiota. We demonstrate daily rhythms in fish skin immune expression and microbiomes, which are modulated by photoperiod and parasitic lice infection. We identify putative associations of host clock and immune gene profiles with microbial composition. Our results suggest circadian perturbation, that shifts the magnitude and timing of immune and microbiota activity, is detrimental to fish health. CONCLUSIONS The substantial circadian dynamics and fish host expression-microbiome relationships we find represent a valuable foundation for investigating the utility of chronotherapies in aquaculture, and more broadly contributes to our understanding of the role of microbiomes in circadian health of vertebrates. Video Abstract.
Collapse
Affiliation(s)
- Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, LL57 2DG, UK.
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
12
|
Qin C, Memon NH, Gong Q, Shi Q, Yang Q. Diurnal expression of CXC receptors 4 (CXCR4) and CXC chemokine ligand 12 (CXCL12) in Pelteobagrus vachellii. Chronobiol Int 2021; 38:1299-1307. [PMID: 34024229 DOI: 10.1080/07420528.2021.1927070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The CXC chemokine ligand 12/CXC receptor 4 ligand/receptor interaction is the most ancient chemokine system in vertebrates, and it plays a pivotal role in the immune system's response against bacterial infection. In the current study, 1211 bp CXCR4 and 937 bp CXCL12 genes, which encode 364 and 99 amino acids, respectively, were isolated. Within the 24-hour light/dark cycle, the maximum of CXCR4 in the intestine, spleen, and anterior kidney of Pelteobagrus vachellii occurs at 8:00, 16:00, and 16:00, respectively. The maximum of CXCL12 in the intestine, spleen, and anterior kidney of P. vachellii occurs at 20:00, 12:00, and 20:00, respectively. CXCR4 and CXCL12 expressions showed 24-hour variation, which contributed to understanding of the immune rhythm of the teleost.
Collapse
Affiliation(s)
- Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation, Utilization in the Upper Reaches of the Yangtze River, Neijiang, Sichuan, PR China.,College of Life Science, Neijiang Normal University, Neijiang, Sichuan, PR China
| | - Nazakat Hussain Memon
- Key Laboratory of Sichuan Province for Fishes Conservation, Utilization in the Upper Reaches of the Yangtze River, Neijiang, Sichuan, PR China.,College of Life Science, Neijiang Normal University, Neijiang, Sichuan, PR China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, PR China
| | - Qinchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation, Utilization in the Upper Reaches of the Yangtze River, Neijiang, Sichuan, PR China.,College of Life Science, Neijiang Normal University, Neijiang, Sichuan, PR China
| | - Qingfa Yang
- Research and Development Department, Sichuan Hengneng Fisheries Ltd, Neijiang, Sichuan, PR China
| |
Collapse
|
13
|
Taira G, Onoue T, Hikima JI, Sakai M, Kono T. Circadian clock components Bmal1 and Clock1 regulate tlr9 gene expression in the Japanese medaka (Oryzias latipes). FISH & SHELLFISH IMMUNOLOGY 2020; 105:438-445. [PMID: 32653586 DOI: 10.1016/j.fsi.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Currently, circadian regulation of immune molecules in lower vertebrates, particularly, diurnal oscillation in the immune status of a fish, is not well understood. In this study, the diurnal oscillation of toll-like receptor (Tlr) 9, which plays a role in pathogen recognition, was investigated in the Japanese medaka fish (Oryzias latipes). We confirmed the expression of tlr9 and clock genes (bmal1 and clock1) in the central and peripheral tissues of medaka. These genes were expressed in a diurnal manner in medaka acclimated to a 12-h:12-h light-dark (12:12 LD) cycle. In addition, increased tlr9 expression was detected in medaka embryo cells (OLHdrR-e3) overexpressing both bmal1 and clock1 genes; however, this result was not obtained when only one or neither of the genes was overexpressed. This suggests that the increase in expression was mediated by the Bmal1 and Clock1 proteins together. In vitro stimulation of the head kidney with CpG-oligodeoxynucleotides (CpG-ODNs) at different zeitgeber times (ZTs; ZT0 = light on, ZT12 = light off) affected the degree of tlr9 gene expression, showing high and low responsiveness to CpG-ODN stimulation at ZT6/10 and ZT18/22, respectively. Similarly, bacterial infection at different ZT points induced a difference in the expression of Tlr9 signaling pathway-related genes (tlr9 and myd88). These results suggested that fish tlr9 exhibits diurnal oscillation, which is regulated by clock proteins, and its responsiveness to immune-stimulation/pathogen infection depends on the time of the day.
Collapse
Affiliation(s)
- Genki Taira
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Teika Onoue
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
14
|
Qin C, Wang J, Shi Q, Lv Y, Wan J, He Y, Hu P. Diurnal rhythm expression of transcription factor NF-κB subunit p65 in Pelteobagrus vachellii. FISH & SHELLFISH IMMUNOLOGY 2020; 99:572-577. [PMID: 32112890 DOI: 10.1016/j.fsi.2020.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The pleiotropic transcription factor nuclear factor-kappa B (NF-κB) has important functions in viral resistance. In the present study, we isolated a p65 subunit of NF-κB cDNA from Pelteobagrus vachellii (termed Pvp65) and characterized it. The full-length p65 cDNA comprised 3651 bp, including a 148-bp 5'-untranslated region (UTR), a 106-bp 3'-UTR, and an open reading frame encoding a 1067-amino acid putative protein. The protein sequence comprised a DNA binding motif, a Rel-homology domain, a Rel protein signature, a putative transcription activation domain, a nuclear localization signal, and a transcription initiation factor IIA domain. The expression of Pvp65 displayed a daily rhythm, with an acrophase at approximately at 15:32 h in the liver, 11:34 h in the spleen, and 16:45 h in the head kidney. In addition, infection with Aeromonas hydrophila caused Pvp65 expression to increase significantly (P < 0.05), and peaking at 12 h post infection in the spleen, at 24 in the head kidney, and at 12 h in the liver. Thus, NF-κB expression might be under light/dark cycle control in P. vachellii, and may be involved in the immune response to A. hydrophila.
Collapse
Affiliation(s)
- Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China.
| | - Juanjuan Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China
| | - Qinchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China
| | - Jun Wan
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China
| | - Peng Hu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641000, PR China; College of Life Science, Neijiang Normal University, Neijiang, 641000, PR China
| |
Collapse
|
15
|
Lazado CC, Voldvik V. Temporal control of responses to chemically induced oxidative stress in the gill mucosa of Atlantic salmon (Salmo salar). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111851. [PMID: 32172134 DOI: 10.1016/j.jphotobiol.2020.111851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/22/2020] [Accepted: 03/04/2020] [Indexed: 01/26/2023]
Abstract
Molecular clocks are known to mediate cellular responses during oxidative stress. This important interplay is less understood in fish, particularly at mucosal surfaces. Here we report the coordinated modulation of the molecular clocks and antioxidant defence following chemically induced oxidative stress in the gill mucosa of Atlantic salmon (Salmo salar). A short-term gill explant (GE) culture was used as a model in a series of experiments aiming to demonstrate how photoperiod during culture, levels of environmental reactive oxygen species (ROS), time of oxidative stress induction, and the daily light-dark cycle affect the expression of molecular clocks and antioxidant genes in the gills. Photoperiod (either 12 light:12 dark cycle, LD or 0 light:24 dark cycle, DD) during explant culture affected the transcription of two clock genes, circadian locomotor output cycles kaput (clk) and period 1 (per1), as well as one antioxidant gene, glutathione peroxidase (gpx). When the GEs were exposed to two ROS-generating oxidants (i.e., peracetic acid, PAA and hydrogen peroxide, H2O2), photoperiod condition was demonstrated to have a significant impact on the transcription of the core genes. PAA significantly downregulated the expression of reverb alpha (reverbα) under LD, while per1 and per2 expression were significantly upregulated under DD. Nevertheless, there was no distinct pattern in the oxidant-induced expression of clock genes. On the other hand, photoperiod was shown to influence the antioxidant defence under increased ROS level, where significant transcriptional upregulation was a hallmark response under LD. Interestingly, no changes were identified under DD. Induction of oxidative stress either at ZT2 (2 h after lights on) or at ZT14 (2 h after lights off) revealed striking differences that highlighted the temporal sensitivity of the oxidative defence repertoire. Per1 was significantly modulated following time-dependent induction of oxidative stress among the clock genes. Inducing oxidative stress at ZT2 resulted in a significant upregulation of antioxidant genes; but when the same stimuli were given at ZT14, all antioxidant genes exhibited downregulation. It was further revealed that neither of the genes demonstrated daily rhythmicity in their expression in the GE cultures. Collectively, the study revealed the coordinated expression of the core elements in the molecular clock and antioxidant systems in the gill mucosa following oxidative stress. Furthermore, the results reveal that the time of day plays a crucial influence on how defences are mobilised during oxidative stress, adding new insights into the rhythms of oxidative stress response in mucosal tissues in fish.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Ås, Norway.
| | - Vibeke Voldvik
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
16
|
Effect of Light–Dark Cycle on Skin Mucosal Immune Activities of Gilthead Seabream (Sparus aurata) and European Sea Bass (Dicentrarchus labrax). FISHES 2020. [DOI: 10.3390/fishes5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in different immune activities in the skin mucus of gilthead seabream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) specimens exposed to a constant light–dark photoperiod (12 h L:12 h D) were studied. Samples were collected at 08:00 (light on), 14:00, 20:00 (light off), 02:00, and again at 08:00 to determine immunoglobulin M (IgM) levels, several enzymes related to the immune system, and bactericidal activity. IgM levels were higher during the day in seabream and reached a minimum value at 20:00, but it was hardly affected in sea bass. No significant variations were recorded in the levels of protease and antiprotease. Peroxidase reached its maximum level in seabream at 02:00, the same time that it reached its minimum level in sea bass. Lysozyme showed little variation in seabream, but it was significantly lower at 14:00 than during the rest of the cycle in sea bass. Finally, different interspecific variations on bactericidal activity against Vibrio harveyi were recorded. The findings demonstrate that the immune parameters present in skin mucus of these important fish species are affected by the light–dark cycle and that there are substantial interspecies differences.
Collapse
|
17
|
Baekelandt S, Milla S, Cornet V, Flamion E, Ledoré Y, Redivo B, Antipine S, Mandiki SNM, Houndji A, El Kertaoui N, Kestemont P. Seasonal simulated photoperiods influence melatonin release and immune markers of pike perch Sander lucioperca. Sci Rep 2020; 10:2650. [PMID: 32060347 PMCID: PMC7021833 DOI: 10.1038/s41598-020-59568-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Melatonin is considered as the time-keeping hormone acting on important physiological functions of teleosts. While the influence of melatonin on reproduction and development is well described, its potential role on immune functions has little been considered. In order to better define an immune modulation by the melatonin hormone, we hypothesized that natural variations of photoperiod and subsequent changes in melatonin release profile may act on immune status of pikeperch. Therefore, we investigated during 70 days the effects of two photoperiod regimes simulating the fall and spring in western Europe, on pikeperch physiological and immune responses. Samples were collected at 04:00 and 15:00 at days 1, 37 and 70. Growth, plasma melatonin levels, innate immune markers and expression of immune-relevant genes in head kidney tissue were assessed. While growth and stress level were not affected by the seasonal simulated photoperiods, nocturnal levels of plasma melatonin were photoperiod-dependent. Innate immune markers, including lysozyme, complement, peroxidase and phagocytic activities, were stimulated by the fall-simulated photoperiod and a significant correlation was made with plasma melatonin. In addition to bring the first evidence of changes in fish immunocompetence related to photoperiod, our results provide an additional indication supporting the immunomodulatory action of melatonin in teleosts.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium.
| | - Sylvain Milla
- Animal and Functionality of Animal Products Research Unit (URAFPA), University of Lorraine, Boulevard des Aiguillettes, BP 236, 54506, Vandoeuvre-Les-Nancy, France
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Yannick Ledoré
- Animal and Functionality of Animal Products Research Unit (URAFPA), University of Lorraine, Boulevard des Aiguillettes, BP 236, 54506, Vandoeuvre-Les-Nancy, France
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Sascha Antipine
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Alexis Houndji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Najlae El Kertaoui
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
| |
Collapse
|
18
|
Secretory Proteins in the Skin Mucus of Nile Tilapia (Oreochromis niloticus) are Modulated Temporally by Photoperiod and Bacterial Endotoxin Cues. FISHES 2019. [DOI: 10.3390/fishes4040057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although it is well known that the biological and physical characteristics of skin mucus in fishes are strongly affected by changes in environmental conditions, the influence of photoperiod and time-dependent bacterial endotoxin stimulation is not well documented. In the present study, we determined the diel variations in the basal activities of secretory proteins with known defense functions in the skin mucus of Nile tilapia (Oreochromis niloticus) maintained under two photic environments: equal length of day and night (12L:12D, LD) or total darkness (0L:24D, DD). A second experiment was conducted to determine how time-dependent (i.e., day versus night) lipopolysaccharide (LPS) challenge could influence these skin mucosal defenses. The results revealed that LD signal differentially modulated the activities of mucosal immune molecules. Fish subjected to LD regime showed significantly higher levels of skin mucus lysozyme and protease at nighttime than at daytime. This distinct feature was not observed in fish under DD. There was no general mucosal response patterns to time-dependent LPS challenge. Nonetheless, protease and lysozyme, which were identified to be at elevated levels at night, were significantly modulated when the endotoxin was administered at nighttime. Ceruloplasmin was the only molecule that responded to LPS challenge at daytime, where its activity significantly increased at 8 h post-stimulation. Collectively, the results revealed that photoperiod cues influenced the activities of mucosal defenses and this may play, at least in part, in the temporal sensitivity to bacterial endotoxin.
Collapse
|
19
|
Baekelandt S, Mandiki SNM, Kestemont P. Are cortisol and melatonin involved in the immune modulation by the light environment in pike perch Sander lucioperca? J Pineal Res 2019; 67:e12573. [PMID: 30924977 DOI: 10.1111/jpi.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022]
Abstract
The pineal gland is the main organ involved in the transduction process converting environmental light information into a melatonin response. Since light environment was described as an important factor that could affect physiology of teleosts, and because melatonin is a crucial hormone regulating numerous physiological processes, we hypothesized that environmental light may act on both stress and circadian axes which in turn could influence the immune status of pike perch. Therefore, we investigated the effects of two light spectra (red and white) and two light intensities (10 and 100 lx) with a constant photoperiod 12L(8:00-20:00) /12D on pike perch physiological and immune responses. Samples were collected at 04:00 and 16:00 at days 1 and 30 of the experiment. Stress markers, plasma melatonin levels, humoral innate immune markers, and expression of key immune genes in the head kidney were assessed. Light intensity clearly affected pike perch physiology. This included negative growth performances, increase in stress status, decrease in plasma melatonin levels, and immune depression. Light spectrum had only little influences. These results demonstrate that high stress status may have impacted melatonin production and secretion by the pineal organ. The drop in circulating melatonin and the increase in stress status may both be involved in the immune suppression.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| |
Collapse
|
20
|
Wu L, Han M, Song Z, Xu S, Li J, Li X, Wang Y, Yue X, Li X. Effects of different light spectra on embryo development and the performance of newly hatched turbot (Scophthalmus maximus) larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 90:328-337. [PMID: 31071463 DOI: 10.1016/j.fsi.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Light is a key environmental factor that synchronizes various life stages from embryo development to sexual maturation in fish. For turbot, light spectra have the most influence at the larval and juvenile stages. In the current study, differences in the development of embryos and the performance of newly hatched turbot larvae exposed to five different spectra: full spectrum (LDF), blue (LDB, peak at 450 nm), green (LDG, peak at 533 nm), orange (LDO, peak at 595 nm) and red (LDR, peak at 629 nm), were examined. At 62.8 h post fertilization, a higher number of embryos exposed to short-wavelengths (LDG and LDB) had developed a heartbeat in comparison with embryos exposed to other wavelengths. Larvae exposed to the green spectrum had higher malformation rates than larvae exposed to the other spectra, indicating that larvae exposed to green light may have significantly reduced survival rates. The results of non-specific immunity parameters showed that the mRNA expression levels of cathepsin D (CTSD), cathepsin F (CTSF), catalase (CAT) and metallothionein (MT) in larvae exposed to LDB were significantly higher than those exposed to other spectra, but CAT activity in larvae exposed to LDB was significantly lower than larvae exposed to the other spectra. There was no significant difference in MT activity in larvae exposed to the five different spectra. The mRNA expression level of lysozyme (LZM) in larvae exposed to LDR was significantly higher than other spectra, while there was no significant difference in LZM activity observed in larvae exposed to LDR, LDG, LDB and LDF. The difference of the enzyme activity of total superoxide dismutase (T-SOD) was not significant among larvae exposed to the five spectra. mRNA expression of the heat shock protein 70 (HSP70) was significantly higher in newly hatched larvae exposed to LDB, LDR and LDG, indicating that larvae exposed to LDB, LDG and LDR exhibited a stress response. The mRNA expression level of the insulin-like growth factor-1 (IGF-1) and growth parameters in the newly hatched larvae exposed to the different spectra were not significantly different. The results of the present study indicate that LDO and LDF should be used for embryo incubation and newly hatched larvae when rearing turbot. This study provides a theoretical basis for optimizing the incubation light environment for fertilized turbot eggs, promoting immunity and reducing stress responses in newly hatched larvae.
Collapse
Affiliation(s)
- Lele Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mingming Han
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai, 264200, PR China
| | - Shihong Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Xueqing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Yanfeng Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xinlu Yue
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai, 264200, PR China
| | - Xian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
21
|
Lazado CC, Nayak S, Khozin-Goldberg I, Zilberg D. The gut mucosal barrier of zebrafish (Danio rerio) responds to the time-restricted delivery of Lobosphaera incisa-enriched diets. FISH & SHELLFISH IMMUNOLOGY 2019; 89:368-377. [PMID: 30965086 DOI: 10.1016/j.fsi.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Recent studies in mammalian models revealed compelling evidence that along with the intrinsic characteristics of diets, the time of their delivery could have a profound impact on their benefits. In this study, we explored a time-dependent modulation of the gut mucosal barrier by delivering diets enriched with the green microalga (Lobosphaera incisa) either in a time-restricted regime or randomly to zebrafish (Danio rerio). The basal diet was enriched with microalgal biomass through two inclusion levels (i.e., 10% and 15% w/w), and the feeding trial lasted for six weeks. The control group was fed with the basal diet. After collection of tissue samples at week 6, the remaining fish were challenged by intraperitoneal injection of Streptococcus inaie. A histological analysis of the gut structure revealed that the fish that received the microalgae randomly exhibited shorter villi length. Genes coding for immunity were modulated in the gut by dietary treatments. Notably, the transcript levels of lysozyme, β-defensin and hepcidin were significantly higher in the group subjected to the time-restricted feeding regime. Dietary microalgae affected the fatty acid content in the gut, particularly the level of arachidonic acid (ARA), and the time-restricted feeding influenced its accumulation. Groups that received diets enriched with 15% microalgae, regardless of the feeding strategy, displayed a significantly higher resistance to S. inaie 16 days post-infection, though differences between the delivery strategies were pronounced during the early stage of infection. In conclusion, the dietary inclusion of L. incisa modulated some of the features of the gut mucosal barrier of zebrafish, and the time of delivery appeared to have a considerable influence on immunomodulatory functions.
Collapse
Affiliation(s)
- Carlo C Lazado
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel; Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Sagar Nayak
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Dina Zilberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
22
|
Onoue T, Nishi G, Hikima JI, Sakai M, Kono T. Circadian oscillation of TNF-α gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol 2019; 70:362-371. [DOI: 10.1016/j.intimp.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
|
23
|
Westwood ML, O'Donnell AJ, de Bekker C, Lively CM, Zuk M, Reece SE. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol 2019; 3:552-560. [PMID: 30886375 PMCID: PMC7614806 DOI: 10.1038/s41559-019-0831-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Biological rhythms coordinate organisms' activities with daily rhythms in the environment. For parasites, this includes rhythms in both the external abiotic environment and the within-host biotic environment. Hosts exhibit rhythms in behaviours and physiologies, including immune responses, and parasites exhibit rhythms in traits underpinning virulence and transmission. Yet, the evolutionary and ecological drivers of rhythms in traits underpinning host defence and parasite offence are largely unknown. Here, we explore how hosts use rhythms to defend against infection, why parasites have rhythms and whether parasites can manipulate host clocks to their own ends. Harnessing host rhythms or disrupting parasite rhythms could be exploited for clinical benefit; we propose an interdisciplinary effort to drive this emerging field forward.
Collapse
Affiliation(s)
- Mary L Westwood
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Aidan J O'Donnell
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, IL, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Reece
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Qin C, Sun J, He Y, Wang J, Han Y, Li H, Liao X. Diurnal rhythm and pathogens induced expression of toll-like receptor 9 (TLR9) in Pelteobagrus vachellii. FISH & SHELLFISH IMMUNOLOGY 2019; 87:879-885. [PMID: 30794932 DOI: 10.1016/j.fsi.2019.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Toll-like receptor 9 (TLR9) is activated by bacterial DNA and induces the production of inflammatory cytokines. In this study, the darkbarbel catfish Pelteobagrus vachellii TLR9 cDNA was cloned and sequenced. The daily expression pattern of TLR9 mRNA was investigated in various tissues. Furthermore, its expression was analyzed following exposure to the pathogen Aeromonas hydrophila. The 4249 bp cDNA includes a 3201 bp open reading frame (ORF) encoding 1067 amino acids. The predicted amino acid sequence comprises a leucine-rich domain (LRD), a toll/interleukin-1 receptor (TIR), and a transmembrane domain. P. vachellii TLR9 showed 42-87% amino acid sequence identity with TLR9 sequences of Ictalurus punctatus, Rhincodon typus, and Miichthys miiuy. The P. vachellii TLR9 mRNA was highly expressed in intestines, head kidney, and spleen in an apparently healthy fish. Following pathogen challenge, TLR9 expression increased significantly (P < 0.05) and peaked at 48 h post-exposure in the liver, at 24 in the head kidney, and at 12 h in the spleen. In addition, the pattern of TLR9 expression over a 24-h period showed a circadian rhythm in the head kidney, spleen, and intestine, with the acrophase at 20:34, 18:45, and 3:50, respectively. This result provided the basis for further study of the rhythm of innate immunity against bacteria in catfish.
Collapse
Affiliation(s)
- Chuanjie Qin
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang, 641000, PR China.
| | | | - Yang He
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang, 641000, PR China
| | - Jun Wang
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang, 641000, PR China
| | | | - Huatao Li
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang, 641000, PR China
| | - Xufeng Liao
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang, 641000, PR China
| |
Collapse
|
25
|
Ren DL, Wang XB, Hu B. Circadian gene period1b regulates proinflammatory cytokine expression through NF-κB signalling in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 80:528-533. [PMID: 29958979 DOI: 10.1016/j.fsi.2018.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock plays a critical role in regulating the immune system. Our previous publication revealed that a mutation in the circadian gene period1b (per1b) in zebrafish significantly decreased proinflammatory gene expression, particularly under constant darkness (DD) conditions; however, the underlying mechanisms remain unclear. In this study, using per1b-null mutant zebrafish and a larval tail fin injury model, we observed that the loss of per1b resulted in the downregulation expression of proinflammatory cytokines, such as IL-6 and TNF-α, at protein level. Furthermore, the loss of per1b downregulated ERK phosphorylation and inhibited p65 phosphorylation, leading to reduced NF-κB activation, which could downregulate the expression of proinflammatory cytokines, such as IL-6 and TNF-α, in zebrafish. These results provided insight into the communication between the circadian clock and immune functions.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|
26
|
Prokkola JM, Nikinmaa M. Circadian rhythms and environmental disturbances – underexplored interactions. J Exp Biol 2018; 221:221/16/jeb179267. [DOI: 10.1242/jeb.179267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT
Biological rhythms control the life of virtually all organisms, impacting numerous aspects ranging from subcellular processes to behaviour. Many studies have shown that changes in abiotic environmental conditions can disturb or entrain circadian (∼24 h) rhythms. These expected changes are so large that they could impose risks to the long-term viability of populations. Climate change is a major global stressor affecting the fitness of animals, partially because it challenges the adaptive associations between endogenous clocks and temperature – consequently, one can posit that a large-scale natural experiment on the plasticity of rhythm–temperature interactions is underway. Further risks are posed by chemical pollution and the depletion of oxygen levels in aquatic environments. Here, we focused our attention on fish, which are at heightened risk of being affected by human influence and are adapted to diverse environments showing predictable changes in light conditions, oxygen saturation and temperature. The examined literature to date suggests an abundance of mechanisms that can lead to interactions between responses to hypoxia, pollutants or pathogens and regulation of endogenous rhythms, but also reveals gaps in our understanding of the plasticity of endogenous rhythms in fish and in how these interactions may be disturbed by human influence and affect natural populations. Here, we summarize research on the molecular mechanisms behind environment–clock interactions as they relate to oxygen variability, temperature and responses to pollutants, and propose ways to address these interactions more conclusively in future studies.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
27
|
Ren DL, Zhang JL, Yang LQ, Wang XB, Wang ZY, Huang DF, Tian C, Hu B. Circadian genes period1b and period2 differentially regulate inflammatory responses in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 77:139-146. [PMID: 29605504 DOI: 10.1016/j.fsi.2018.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock has been shown to regulate various immune processes in different animals. Our previous report demonstrated that the innate immune responses in zebrafish show significant rhythmicity that could be regulated by melatonin. Here, we used diurnal zebrafish to determine the role of circadian genes in the inflammatory responses. Our results indicate that circadian genes exhibit rhythmic oscillations in zebrafish leukocytes, and mutations of the clock genes period1b (per1b) and period2 (per2) considerably affect these oscillations. Using a wounded zebrafish inflammation model, we found that under constant dark conditions (DD), the expression of pro-inflammatory cytokines is significantly downregulated in per1b gene mutant zebrafish and significantly upregulated in the per2 gene mutant zebrafish. Furthermore, using real-time imaging technology, we found that the per1b gene markedly disturbs the rhythmic recruitment of neutrophils toward the injury, whereas the per2 gene does not show a significant effect. Taken together, our results reveal differential functions of the circadian genes per1b and per2 in the inflammatory responses, serving as evidence that circadian rhythms play a vital role in immune processes.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Jun-Long Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Lei-Qing Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Deng-Feng Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Chen Tian
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|
28
|
Khan JR, Lazado CC, Methling C, Skov PV. Short-term feed and light deprivation reduces voluntary activity but improves swimming performance in rainbow trout Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:329-341. [PMID: 29101685 DOI: 10.1007/s10695-017-0438-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Rainbow trout Oncorhynchus mykiss (~ 180 g, 16 °C and < 5 kg m-3) that were feed deprived and kept in total darkness showed a significant increase in critical swimming speed (U crit) between 1 and 12 days of deprivation (from 3.35 to 4.46 body length (BL) s-1) with no increase in maximum metabolic rate (MMR). They also showed a significant decrease in the estimated metabolic rate at 0 BL s-1 over 12 days which leads to a higher factorial aerobic metabolic scope at day 12 (9.38) compared to day 1 (6.54). Routine metabolic rates were also measured in ~ 90 g rainbow trout that were swimming freely in large circular respirometers at 16 °C. These showed decreasing consumption oxygen rates and reductions in the amount of oxygen consumed above standard metabolic rate (a proxy for spontaneous activity) over 12 days, though this happened significantly faster when they were kept in total darkness when compared to a 12:12-h light-dark (LD) photoperiod. Weight loss during this period was also significantly reduced in total darkness (3.33% compared to 4.98% total body weight over 12 days). Immunological assays did not reveal any consistent up- or downregulation of antipathogenic and antioxidant enzymes in the serum or skin mucus of rainbow trout between 1 and 12 days of feed and light deprivation. Overall, short periods of deprivation do not appear to significantly affect the performance of rainbow trout which appear to employ a behavioural energy-sparing strategy, albeit more so in darkness than under a 12:12-h LD regime.
Collapse
Affiliation(s)
- J R Khan
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark.
| | - C C Lazado
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - C Methling
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark
| | - P V Skov
- DTU Aqua, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, P.O. Box 101, 9850, Hirtshals, Denmark
| |
Collapse
|
29
|
Lazado CC, Gesto M, Madsen L, Jokumsen A. Interplay between daily rhythmic serum-mediated bacterial killing activity and immune defence factors in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2018; 72:418-425. [PMID: 29146445 DOI: 10.1016/j.fsi.2017.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Circadian rhythm is emerging as an important regulator of immune functions. However, there is a paucity of information on the influence of this biological phenomenon in the antimicrobial factors in teleost fish. This study investigated the dynamics and interplay of serum-mediated bacterial killing activity and immune defence factors throughout the light:dark (LD) cycle in rainbow trout (Oncorhynchus mykiss). The juvenile fish came from two different emergence time fractions (i.e., late and early) that were believed to exhibit behavioural and physiological differences. Serum collected during the day from fish (mean ± SD: 39.8 ± 6.3 g) reared under 14L:10D photoperiod demonstrated bactericidal activity against Flavobacterium psychrophilum, Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida of varying magnitude, but no significant differences between the emergence fractions were observed. A day-night comparison in the same batch of fish revealed time-of-day dependence in the bactericidal activity against F. psychrophilum and Y. ruckeri amongst emergence fractions. A group of fish (63.3 ± 4.7 g) from each fraction was entrained to 12L:12D photoperiod for 21 days to investigate whether serum bactericidal activity exhibited daily rhythm. Serum-mediated bacterial killing activity against F. psychrophilum and Y. ruckeri displayed significant daily rhythm in both emergence fractions, where the peak of activity was identified during the light phase. Moreover, several serum defence factors manifested variations during the LD cycle, where anti-protease (ANTI) and myeloperoxidase (MPO) activities exhibited significant daily oscillation. However, there were no remarkable differences in the daily changes of serum factors amongst emergence fractions. Acrophase analysis revealed that the peaks of activity of alkaline phosphatase (only in late fraction), ANTI, lysozyme (only in early fraction) and MPO were identified during the light phase and corresponded with the period when serum-mediated bacterial killing activity was also at its highest. The daily dynamics of bactericidal activity and immune defence factors displayed positive correlation, particularly between MPO and, the two pathogens (i.e., F. pyschrophilum and Y. ruckeri). Taken together, the study revealed that serum-mediated bacterial killing activity and immune defence factors remarkably varied during the LD cycle in rainbow trout. In addition, the two emergence fractions displayed nearly comparable immunological profiles.
Collapse
Affiliation(s)
- Carlo C Lazado
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark; Nofima, The Norwegian Institute of Food, Fisheries & Aquaculture Research, Ås, Norway.
| | - Manuel Gesto
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| | - Lone Madsen
- Technical University of Denmark, National Veterinary Institute, Kgs. Lyngby, Denmark
| | - Alfred Jokumsen
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| |
Collapse
|
30
|
Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:497-523. [PMID: 28549941 DOI: 10.1016/j.fsi.2017.05.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
31
|
Zheng JL, Yuan SS, Wu CW, Lv ZM, Zhu AY. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:113-119. [PMID: 27888766 DOI: 10.1016/j.aquatox.2016.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97mgL-1 cadmium for 12h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhen-Ming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ai-Yi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|