1
|
Xu D, Zeng H, Wu W, Liu H, Wang J. Isothermal Amplification and CRISPR/Cas12a-System-Based Assay for Rapid, Sensitive and Visual Detection of Staphylococcus aureus. Foods 2023; 12:4432. [PMID: 38137236 PMCID: PMC10742561 DOI: 10.3390/foods12244432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Staphylococcus aureus exists widely in the natural environment and is one of the main food-borne pathogenic microorganisms causing human bacteremia. For safe food management, a rapid, high-specificity, sensitive method for the detection of S. aureus should be developed. In this study, a platform for detecting S. aureus (nuc gene) based on isothermal amplification (loop-mediated isothermal amplification-LAMP, recombinase polymerase amplification-RPA) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas12a) proteins system (LAMP, RPA-CRISPR/Cas12a) was proposed. In this study, the LAMP, RPA-CRISPR/Cas12a detection platform and immunochromatographic test strip (ICS) were combined to achieve a low-cost, simple and visualized detection of S. aureus. The limit of visual detection was 57.8 fg/µL of nuc DNA and 6.7 × 102 CFU/mL of bacteria. Moreover, the platform could be combined with fluorescence detection, namely LAMP, RPA-CRISPR/Cas12a-flu, to establish a rapid and highly sensitive method for the detection of S. aureus. The limit of fluorescence detection was 5.78 fg/µL of genomic DNA and 67 CFU/mL of S. aureus. In addition, this detection platform can detect S. aureus in dairy products, and the detection time was ~40 min. Consequently, the isothermal amplification CRISPR/Cas12a platform is a useful tool for the rapid and sensitive detection of S. aureus in food.
Collapse
Affiliation(s)
- Danhong Xu
- School of Food Science and Technology, Shanghai Ocean University, Shanghai 201499, China; (D.X.); (W.W.)
| | - Haijuan Zeng
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.Z.); (H.L.)
- Crops Ecological Environment Security Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wenhui Wu
- School of Food Science and Technology, Shanghai Ocean University, Shanghai 201499, China; (D.X.); (W.W.)
| | - Hua Liu
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.Z.); (H.L.)
- Crops Ecological Environment Security Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jinbin Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.Z.); (H.L.)
- Crops Ecological Environment Security Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
2
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Diwan AD, Harke SN, Panche AN. Application of proteomics in shrimp and shrimp aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101015. [PMID: 35870418 DOI: 10.1016/j.cbd.2022.101015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Since proteins play an important role in the life of an organism, many researchers are now looking at how genes and proteins interact to form different proteins. It is anticipated that the creation of adequate tools for rapid analysis of proteins will accelerate the determination of functional aspects of these biomolecules and develop new biomarkers and therapeutic targets for the diagnosis and treatment of various diseases. Though shrimp contains high-quality marine proteins, there are reports about the heavy losses to the shrimp industry due to the poor quality of shrimp production and many times due to mass mortality also. Frequent outbreaks of diseases, water pollution, and quality of feed are some of the most recognized reasons for such losses. In the seafood export market, shrimp occupies the top position in currency earnings and strengthens the economy of many developing nations. Therefore, it is vital for shrimp-producing companies they produce healthy shrimp with high-quality protein. Though aquaculture is a very competitive market, global awareness regarding the use of scientific knowledge and emerging technologies to obtain better-farmed organisms through sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful tool, has therefore been increasingly used to address several issues in shrimp aquaculture. In the present paper, efforts have been made to address some of them, particularly the role of proteomics in reproduction, breeding and spawning, immunological responses and disease resistance capacity, nutrition and health, microbiome and probiotics, quality and safety of shrimp production, bioinformatics applications in proteomics, the discovery of protein biomarkers, and mitigating biotic and abiotic stresses. Future challenges and research directions on proteomics in shrimp aquaculture have also been discussed.
Collapse
Affiliation(s)
- A D Diwan
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - S N Harke
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
4
|
Söderhäll I, Fasterius E, Ekblom C, Söderhäll K. Characterization of hemocytes and hematopoietic cells of a freshwater crayfish based on single-cell transcriptome analysis. iScience 2022; 25:104850. [PMID: 35996577 PMCID: PMC9391574 DOI: 10.1016/j.isci.2022.104850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Crustaceans constitute a species-rich and ecologically important animal group, and their circulating blood cells (hemocytes) are of critical importance in immunity as key players in pathogen recognition, phagocytosis, melanization, and antimicrobial defense. To gain a better understanding of the immune responses to different pathogens, it is crucial that we identify different hemocyte subpopulations with different functions and gain a better understanding of how these cells are formed. Here, we performed single-cell RNA sequencing of isolated hematopoietic tissue (HPT) cells and hemocytes from the crayfish Pacifastacus leniusculus to identify hitherto undescribed hemocyte types in the circulation and show that the circulating cells are more diversified than previously recognized. In addition, we discovered cell populations in the HPT with clear precursor characteristics as well as cells involved in iron homeostasis, representing a previously undiscovered cell type. These findings may improve our understanding of hematopoietic stem cell regulation in crustaceans and other animals. Single-cell RNA sequencing of hematopoietic cell types reveals new cell types One cell type contains iron homeostasis-associated transcripts Hemocytes and hematopoietic cells differ in their transcript profiles Prophenoloxidase is only expressed in hemocytes
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
- Corresponding author
| | - Erik Fasterius
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Tomtebodavägen 23, SE171 65 Solna, Sweden
| | - Charlotta Ekblom
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden
| |
Collapse
|
5
|
Dong M, Wang W, Wang L, Liu Y, Ma Y, Li M, Liu H, Wang K, Song L. The characterization of an agranulocyte-specific marker (CgCD9) in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 127:446-454. [PMID: 35792345 DOI: 10.1016/j.fsi.2022.06.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The agranulocytes in the Pacific oyster Crassostrea gigas are a group of haemocytes that are significantly different from semi-granulocytes and granulocytes on the morphology. Agranulocytes are the smallest haemocytes characterized by a spherical shape, the largest ratio of nucleus to cytoplasm, and no granules in the cytoplasm. The lack of unique cell surface markers impedes the isolation of agranulocytes from total haemocytes. Previous transcriptome sequencing analysis of three subpopulations of haemocytes revealed that a homologue of CD9 (designed as CgCD9) was highly expressed in agranulocytes of oyster C. gigas (data not shown). In the present study, CgCD9 was identified to share a similarity of 60% with other vertebrates CD9s, and it harbored a typical four transmembrane domain and a conserved Cys-Cys-Gly (CCG) motif. The mRNA transcript of CgCD9 was found to be highly expressed in agranulocytes, which was 6.63-fold (p < 0.05) and 3.68-fold (p < 0.05) of that in granulocytes and semi-granulocytes, respectively. A specific monoclonal antibody of CgCD9 (named 3D8) was successfully prepared by traditional hybridoma technology, and a single positive band at 25.2 kDa was detected in the haemocyte proteins by Western Blotting, indicating that this monoclonal antibody exhibited high specificity and sensitivity to CgCD9 protein. The ELISA positive value of 3D8 monoclonal antibody to recognize agranulocytes, semi-granulocytes and granulocytes was 17.35, 4.48 and 1.55, respectively, indicating that monoclonal antibody was specific to agranulocytes. Immunocytochemistry assay revealed that CgCD9 was specifically distributed on the membrane of agranulocytes. Using immunomagnetic beads coated with 3D8 monoclonal antibody, CgCD9+cells with a purity of 94.53 ± 5.60% were successfully isolated with a smaller diameter, a larger N:C ratio and no granules in cytoplasm, and could be primary culture in the modified L-15 medium in vitro. Collectively, these results suggested that CgCD9 was a specific cell surface marker for agranulocytes, which offered a tool for high-purity capture of agranulocytes from total haemocytes in C. gigas.
Collapse
Affiliation(s)
- Miren Dong
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youwen Ma
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Haipeng Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Kejian Wang
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Zhu K, Yang F, Li F. Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104407. [PMID: 35364134 DOI: 10.1016/j.dci.2022.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Semigranular cells (SGCs) and granular cells (GCs) are two dominant groups of circulating hemocytes in crayfish Cherax quadricarinatus. Molecular markers are required for the clear classification of the hemocytes and the research of their function and differentiation. In this study, we compared the protein content of GCs and SGCs by using two workflows: one-dimensional gel electrophoresis followed by LC-MS/MS and in-solution digestion of cell lysate followed by LC-MS/MS. Cell type-specific proteins were identified, and their expression in SGCs and GCs was further investigated by RT-PCR, Western blotting, and immunofluorescence analysis. Three molecular markers for GCs (peroxinectin, a mannose-binding protein, and prophenoloxidase-activating enzyme 2a) and three molecular markers for SGCs (a vitelline membrane outer layer protein I-like protein, a C-type lectin, and a peptidase) were identified. The application of some of the markers in Eriocheir sinensis was also analyzed. These molecular markers are useful tools for the research of crustaceans hemocytes.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
7
|
Cui C, Zhu L, Tang X, Xing J, Sheng X, Chi H, Zhan W. Differential white spot syndrome virus-binding proteins in two hemocyte subpopulations of Chinese shrimp (Fenneropenaeus chinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104215. [PMID: 34324898 DOI: 10.1016/j.dci.2021.104215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A number of white spot syndrome virus (WSSV)-binding proteins have been identified previously in the hemocytes of Fenneropenaeus chinensis. In order to further investigate the differential WSSV-binding proteins in hemocyte subpopulations, granular hemocytes and hyalinocytes were sorted from WSSV-infected shrimp by immunomagnetic bead (IMB) method. The results of ELISA and immuno-dot blot assay showed that the WSSV-binding activity of granular hemocytes proteins was much stronger than that of hyalinocytes proteins. And the percentage of WSSV-positive granular hemocytes was significantly higher than that of hyalinocytes post WSSV infection, indicating that granular hemocytes were more susceptible to WSSV infection. Moreover, a total of 9 WSSV-binding proteins were successfully identified in granular hemocytes and hyalinocytes by two-dimensional virus overlay protein binding assay (2D-VOPBA) and MALDI-TOF MS analysis, of which 3 binding proteins (arginine kinase, protease 1 and transglutaminase) existing in both hyalinocytes and granular hemocytes and 6 proteins (F1ATP synthase β-chain, hnRNPs, GAPDH, RACK1, β-actin and cellular retinoic acid) detected only in granular hemocytes. Among these identified WSSV-binding proteins, the transglutaminase (TG) was further recombinantly expressed, and the recombinant TG could be bound with WSSV. Subsequently, quantitative real-time PCR analysis showed that differential expression levels of WSSV-binding proteins were observed in granular hemocytes and hyalinocytes. The results of this study revealed that the WSSV-binding proteins were differentially expressed in granular hemocytes and hyalinocytes, which provided a deeper insight into the interaction between WSSV and hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
8
|
Ekblom C, Söderhäll K, Söderhäll I. Early Changes in Crayfish Hemocyte Proteins after Injection with a β-1,3-glucan, Compared to Saline Injected and Naive Animals. Int J Mol Sci 2021; 22:6464. [PMID: 34208769 PMCID: PMC8234337 DOI: 10.3390/ijms22126464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022] Open
Abstract
Early changes in hemocyte proteins in freshwater crayfish Pacifastacus leniusculus, in response to an injection with the fungal pattern recognition protein β-1,3-glucan (laminarin) were investigated, as well as changes after saline (vehicle) injection and in naïve animals. Injection of saline resulted in rapid recruitment of granular hemocytes from surrounding tissues, whereas laminarin injection on the other hand induced an initial dramatic drop of hemocytes. At six hours after injection, the hemocyte populations therefore were of different composition. The results show that mature granular hemocytes increase in number after saline injection as indicated by the high abundance of proteins present in granular cell vesicles, such as a vitelline membrane outer layer protein 1 homolog, mannose-binding lectin, masquerade, crustin 1 and serine protease homolog 1. After injection with the β-1,3-glucan, only three proteins were enhanced in expression, in comparison with saline-injected animals and uninjected controls. All of them may be associated with immune responses, such as a new and previously undescribed Kazal proteinase inhibitor. One interesting observation was that the clotting protein was increased dramatically in most of the animals injected with laminarin. The number of significantly affected proteins was very few after a laminarin injection when compared to uninjected and saline-injected crayfish. This finding may demonstrate some problematic issues with gene and protein expression studies from other crustaceans receiving injections with pathogens or pattern recognition proteins. If no uninjected controls are included and no information about hemocyte count (total or differential) is given, expressions data for proteins or mRNAs are very difficult to properly interpret.
Collapse
Affiliation(s)
- Charlotta Ekblom
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Irene Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| |
Collapse
|
9
|
Koiwai K, Koyama T, Tsuda S, Toyoda A, Kikuchi K, Suzuki H, Kawano R. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. eLife 2021; 10:e66954. [PMID: 34132195 PMCID: PMC8266392 DOI: 10.7554/elife.66954] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Crustacean aquaculture is expected to be a major source of fishery commodities in the near future. Hemocytes are key players of the immune system in shrimps; however, their classification, maturation, and differentiation are still under debate. To date, only discrete and inconsistent information on the classification of shrimp hemocytes has been reported, showing that the morphological characteristics are not sufficient to resolve their actual roles. Our present study using single-cell RNA sequencing revealed six types of hemocytes of Marsupenaeus japonicus based on their transcriptional profiles. We identified markers of each subpopulation and predicted the differentiation pathways involved in their maturation. We also predicted cell growth factors that might play crucial roles in hemocyte differentiation. Different immune roles among these subpopulations were suggested from the analysis of differentially expressed immune-related genes. These results provide a unified classification of shrimp hemocytes, which improves the understanding of its immune system.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and TechnologyKoganeiJapan
- Laboratory of Genome Science, Tokyo University of Marine Science and TechnologyMinatoJapan
| | - Takashi Koyama
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of TokyoHamamatsuJapan
- Graduate School of Fisheries and Environmental Sciences, Nagasaki UniversityNagasakiJapan
| | | | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of GeneticsMishimaJapan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of TokyoHamamatsuJapan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo UniversityBunkyoJapan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and TechnologyKoganeiJapan
| |
Collapse
|
10
|
Lu X, Tan S, Wu M, Ju H, Liang X, Li P. Evaluation of a new magnetic bead as an integrated platform for systematic CTC recognition, capture and clinical analysis. Colloids Surf B Biointerfaces 2020; 199:111542. [PMID: 33373845 DOI: 10.1016/j.colsurfb.2020.111542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/11/2020] [Accepted: 12/12/2020] [Indexed: 12/28/2022]
Abstract
A novel form of magnetic bead, namely antibody-coated magnetic lipid nano-vehicle (AMLV), was synthesized by embedding Fe3O4 nanoparticles into an amphiphilic antibody-modified liposome as a high-performance circulating tumor cell (CTC) hunter. The CTC capture performance of AMLV was validated based on an enlarged patient sample (including 318 colorectal, 78 breast, 77 lung and 55 liver cancer patients) with high detection rate. The preliminary comparison with Cellsearch was also conducted, indicating that the cell membrane-semblance AMLVEpCAM showed higher capture performance for different kinds of EpCAM-expressed circulating tumor cells in the peripheral blood (4.4 ± 1.2-fold for AMLVEpCAM vs CellsearchTM, n=5, P<0.001). Moreover, the AMLVEpCAM-isolated CTCs could be used as a functional material to provide various clinical information for tumor patients and work as an alternative of tumor tissue to conduct gene analysis after conventional PCR amplification.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Sheng Tan
- Department of Cardiothoracic Surgery, The Affiliated Hospital of XuZhou Medical University, Xuzhou, PR China
| | - Muyu Wu
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Huijun Ju
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai 200032, PR China.
| | - Peiyong Li
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China.
| |
Collapse
|
11
|
Cui C, Liang Q, Tang X, Xing J, Sheng X, Zhan W. Differential Apoptotic Responses of Hemocyte Subpopulations to White Spot Syndrome Virus Infection in Fenneropenaeus chinensis. Front Immunol 2020; 11:594390. [PMID: 33365030 PMCID: PMC7750459 DOI: 10.3389/fimmu.2020.594390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
The apoptosis of hemocytes plays an essential function in shrimp immune defense against pathogen invasions. In order to further elucidate the differential apoptotic responses of the granulocytes and the hyalinocytes in Fenneropenaeus chinensis post WSSV infection, the characteristics of apoptotic dynamics and viral proliferation in total hemocytes and hemocyte subpopulations were respectively investigated in the present work. The results showed that the apoptotic rate of hemocytes changed significantly, and the apoptosis-related genes also showed significantly differential expression responses during WSSV infection. Interestingly, we found that the apoptotic rate of virus-negative hemocytes was significantly higher than that of virus-positive hemocytes in the early stage of WSSV infection, while it was significantly lower than that of virus-positive cells in the middle and late infection stages. The difference of apoptosis between virus-positive and virus-negative hemocytes seems to be an important way for the WSSV to destroy the host’s immune system and facilitate the virus spread at different infection stages. It was further found that the apoptosis rate of granulocytes was always significantly higher than that of hyalinocytes during WSSV infection, indicating that granulocytes have a stronger apoptotic response to WSSV infection. Moreover, a higher viral load was detected in granulocytes, and the density of granulocytes decreased more rapidly post WSSV infection, indicating that the granulocytes are more susceptible and vulnerable to WSSV infection compared with the hyalinocytes. These results collectively demonstrated that the apoptotic response in shrimp hemocytes was significantly influenced by the WSSV infection, and the differential apoptotic response of granulocytes and hyalinocytes to WSSV indicated the differences of antiviral mechanisms between the two hemocyte subpopulations.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qianrong Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Cui C, Zhu L, Tang X, Xing J, Sheng X, Zhan W. Molecular characterization of prohibitins and their differential responses to WSSV infection in hemocyte subpopulations of Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:296-306. [PMID: 32717325 DOI: 10.1016/j.fsi.2020.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In our previous work, prohibitin1 (PHB1) was identified to be only expressed in granulocytes of Fenneropenaeus chinensis. In order to elucidate the potential immunological properties of prohibitins in hemocyte subpopulations, in this paper, the full-length cDNAs of PHB1 and PHB2 were firstly cloned from F. chinensis using rapid amplification of cDNA ends approach, and they were designated FcPHB1 and FcPHB2, respectively. Based on the sequence analysis and multiple sequence alignment, FcPHB1 and FcPHB2 were members of SPFH protein family. By quantitative real-time RT-PCR, the higher mRNA transcription levels of FcPHB1 and FcPHB2 were detected in intestine and hemocytes of F. chinensis, and these two genes in hemocytes were significantly up-regulated upon WSSV infection. The FcPHB1 and FcPHB2 were recombinantly expressed in Escherichia coli BL21 (DE3), and employed as immunogens to produce the polyclonal antibodies (PAbs) in rabbits. Indirect immunofluorescence assay (IFA) revealed that the FcPHB1 and FcPHB2 were located both in the cytoplasm and nuclei of hemocytes, which could also be specifically recognized by the PAbs against FcPHB1 or FcPHB2 in Western blot. Interestingly, it was found that FcPHB1 and FcPHB2 were only expressed in the granulocytes of heathy shrimp and highly expressed in the WSSV-infected granulocytes, however only weak expressions of FcPHB1 and FcPHB2 were observed in the hyalinocytes of WSSV-infected shrimp. Meanwhile, silencing of FcPHB1 and FcPHB2 genes were performed by small interfering RNA, and the results showed that the WSSV copies in hemocytes were increased by knockdown of either FcPHB1 or FcPHB2, and the cumulative mortalities of shrimp in the silenced groups were also markedly increased. These results demonstrated that FcPHB1 and FcPHB2 played important roles in anti-WSSV infection, and their differential expression characteristics in hemocyte subpopulations provided a further understanding of the immune functions of granulocytes and hyalinocytes.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
13
|
Tang X, Cui C, Liang Q, Sheng X, Xing J, Zhan W. Apoptosis of hemocytes is associated with the infection process of white spot syndrome virus in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 94:907-915. [PMID: 31604147 DOI: 10.1016/j.fsi.2019.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have demonstrated that white spot syndrome virus (WSSV) could induce hemocytes apoptosis in shrimps, however the inter-relationship between apoptotic process and the WSSV infection status is still currently underexplored. In the present work, the apoptosis and the viral proliferation in hemocytes of Litopenaeus vannamei were simultaneously investigated post WSSV infection by two-color immunofluorescence flow cytometry and real-time quantitative PCR. The apoptotic hemocytes of WSSV-infected shrimp was significantly increased at 12 h post infection (hpi), whereas underwent a slight decline at 24 hpi subsequently. Since 24 hpi, the apoptotic rate of hemocytes in the WSSV-infected shrimp exhibited a rapid and significant increase, and reached the peak level at 48 hpi with the ratio of 18.1 ± 2.0%. Meanwhile, the percentage of WSSV-infected hemocytes and WSSV copies in hemocytes significantly increased at 24 hpi and maintained at a high level afterwards. With the rapid increase of hemocytes apoptosis, hemocyte density in hemolymph decreased dramatically to less than 20% of the mean value of control. Co-localization assay showed that the apoptotic WSSV-infected hemocytes occupied the dominant proportion of total apoptotic hemocytes, which reached the peak at 48 hpi with 12.6 ± 1.5%. The expression profiles of seven pro-apoptotic genes and two apoptosis-inhibiting genes showed significant differential responses at different stages of WSSV infection, reflecting the interplay between the virus and the host immune response. Our results demonstrated that the apoptotic response of shrimp hemocytes could be significantly influenced by the WSSV infection process, which might provide an insight into deeper relationships between viral infection and apoptosis.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Qianrong Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
14
|
Yang S, Tang X, Sheng X, Xing J, Zhan W. Analysis of the role of IL-10 in the phagocytosis of mIgM + B lymphocytes in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 92:813-820. [PMID: 31271840 DOI: 10.1016/j.fsi.2019.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
B cells have been found to have phagocytic activity in recent years, but the studies exploring the regulation mechanisms are still lacking to date. In the present study, the recombinant interleukin-10 (rIL-10) was obtained to study the function of IL-10 on phagocytosis of flounder (Paralichthys olivaceus) mIgM+ B lymphocytes. Flow cytometric analysis showed that IL-10 significantly enhanced the phagocytosis of Edwardsiella tarda but not Lactococcus lactis by mIgM+ B lymphocytes. Moreover, significantly higher intracellular ROS levels were detected in mIgM+ B lymphocytes following rIL-10 stimulation. The qRT-PCR analysis showed that rIL-10 could upregulate the expressions of IL-10Rb and Stat3 in mIgM+ B lymphocytes, suggesting that IL-10 might modulate the phagocytosis of mIgM+ B lymphocytes by activating IL-10R and Stat3. In addition, we also found that the enhancing effect of IL-10 on phagocytosis and intracellular ROS levels of mIgM+ B lymphocytes were suppressed by the administration of niclosamide. These results collectively demonstrated that IL-10 enhanced mIgM+ B lymphocyte-mediated phagocytosis of E. tarda and intracellular bactericidal ability, and IL-10R and Stat3 might play a curial role in the regulation of IL-10-stimulated phagocytosis, which would deepen our understanding of regulation mechanism of B cell phagocytosis.
Collapse
Affiliation(s)
- Shun Yang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
15
|
Tang X, Yang S, Sheng X, Xing J, Zhan W. Transcriptome Analysis of Immune Response of mIgM + B Lymphocytes in Japanese Flounder ( Paralichthys olivaceus) to Lactococcus lactis in vitro Revealed That IFN I-3 Could Enhance Their Phagocytosis. Front Immunol 2019; 10:1622. [PMID: 31379827 PMCID: PMC6646603 DOI: 10.3389/fimmu.2019.01622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
B cells have recently been proven to have phagocytic activities, but few studies have explored the relevant regulation mechanisms. In this study, we showed that the Japanese flounder (Paralichthys olivaceus) membrane-bound (m)IgM+ B lymphocyte population could phagocytose inactivated Lactococcus lactis with a mean phagocytic rate of 25%. High-purity mIgM+ B lymphocytes were subsequently sorted to investigate the cellular response to L. lactis stimulation in vitro. Transcriptome analysis identified 1,375 differentially expressed genes (DEGs) after L. lactis stimulation, including 975 upregulated and 400 downregulated genes. Many of these DEGs were enriched in multiple pathways associated with phagocytosis such as focal adhesion, the phagosome, and actin cytoskeleton regulation. Moreover, many genes involved in phagolysosomal function and antigen presentation were also upregulated after stimulation, indicating that mIgM+ B lymphocytes may degrade the internalized bacteria and present processed antigenic peptides to other immune cells. Interestingly, the type I interferon 3 (IFN I-3) gene was upregulated after L. lactis stimulation, and further analysis showed that the recombinant (r)IFN I-3 significantly enhanced phagocytosis of L. lactis and Edwardsiella tarda by mIgM+ B lymphocytes. In addition, significantly higher intracellular reactive oxygen species (ROS) levels were detected in mIgM+ B lymphocytes following rIFN I-3 treatment. We also found that IFN I-3 significantly upregulated Stat1 expression in mIgM+ B lymphocytes, and the enhancing effect of IFN I-3 on mIgM+ B lymphocyte-mediated phagocytosis was suppressed by fludarabine treatment. Collectively, these results demonstrate that mIgM+ B cell-mediated phagocytosis in the Japanese flounder is effectively triggered by bacterial stimulation, and further enhanced by IFN I-3, which itself may be regulated by Stat1.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shun Yang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Dong M, Song X, Wang M, Wang W, Zhang P, Liu Y, Li M, Wang L, Song L. CgAATase with specific expression pattern can be used as a potential surface marker for oyster granulocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 87:96-104. [PMID: 30633961 DOI: 10.1016/j.fsi.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12 h and reached the highest level (27.40-fold compared to control group, p < 0.05) at 6 h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (p < 0.05) and 2.80-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7 ± 4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7 ± 1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.
Collapse
Affiliation(s)
- Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
17
|
Zhu L, Tang X, Xing J, Sheng X, Zhan W. Differential proteome of haemocyte subpopulations responded to white spot syndrome virus infection in Chinese shrimp Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:82-93. [PMID: 29427599 DOI: 10.1016/j.dci.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In our previous study, the differentially expressed proteins have been identified by proteomic analysis in total haemocytes of shrimp (Fenneropenaeus chinensis) after white spot syndrome virus (WSSV) infection. To further investigate the differential response of haemocyte subpopulations to WSSV infection, granulocytes and hyalinocytes were separated from healthy and WSSV-infected shrimp by immunomagnetic bead (IMB) method, respectively. Then two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to analyze the differentially expressed proteins in haemocyte subpopulations between healthy and WSSV-infected shrimp. The results of flow cytometry (FCM) showed that about 98% of granulocytes and about 96% of hyalinocytes in purity were obtained. Quantitative intensity analysis revealed that 26 protein spots in granulocytes and 24 spots in hyalinocytes were significantly changed post WSSV infection. Among them, 24 proteins in granulocytes and 23 proteins in hyalinocytes were identified by MS analysis, which could be divided into eight categories according to Gene Ontology. The identification of prophenoloxidase (proPO), proPO 2 and peroxiredoxin in WSSV-infected granulocytes was consistent with the facts that the proPO-activating system and peroxiredoxin were mainly existed in granulocytes. The phagocytosis of hyalinocytes seemed to be enhanced during the infection, because several proteins that involved in phagocytosis, including clathrin heavy chain, ADP ribosylation factor 4 and Alpha2 macroglobulin were up-regulated in hyalinocytes upon WSSV infection. Our results also reflected the vital biological significance of calcium ion binding proteins in granulocytes and ATPase/GTPase in hyalinocytes during WSSV infection. The data in this study verified the roles of granulocytes and hyalinocytes involved in WSSV infection, and differentially expressed proteins identified in granulocytes and hyalinocytes had a close correlation with their function characteristics.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
18
|
Koiwai K, Kondo H, Hirono I. RNA-seq identifies integrin alpha of kuruma shrimp Marsupenaeus japonicus as a candidate molecular marker for phagocytic hemocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:271-278. [PMID: 29258750 DOI: 10.1016/j.dci.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Phagocytosis is main cellular immunity, however, it is still unknown or debated upon which types of hemocyte contributes phagocytosis in penaeid shrimps. The hemocyte characterization in kuruma shrimp have been mainly performed based on its morphology by microscopic observation. Therefore, establishment of molecular markers to distinguish phagocytic hemocytes is required. In this study, using magnetic fluorescent beads, we enriched phagocytic hemocytes and conducted RNA-seq analysis between total and enriched phagocytic hemocytes. The data demonstrated functional difference between total and phagocytic hemocytes. In addition, a transcript homologous to integrin-alpha was highly expressed in phagocytic hemocytes, and named Mj-Intgα. Using anti-serum against Mj-Intgα revealed that around 60% of total hemocytes and more than 90% of phagocytic hemocytes showed positive for Mj-Intgα. This study presents Mj-Intgα as a candidate molecular marker for future functional characterization of hemocytes.
Collapse
Affiliation(s)
- Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
19
|
Zhu L, Chang Y, Xing J, Tang X, Sheng X, Zhan W. Comparative proteomic analysis between two haemocyte subpopulations in shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:325-333. [PMID: 28966142 DOI: 10.1016/j.fsi.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In our previous work, granulocytes and hyalinocytes were successfully separated by immunomagnetic bead (IMB) method using monoclonal antibodies (mAbs) against granulocytes of shrimp (Fenneropenaeus chinensis). In order to elucidate the proteomic differentiation between granulocytes and hyalinocytes, in this paper, the differentially expressed proteins were analyzed between non-fixed/un-permeabilized (NFP) haemocytes and fixed/permeabilized (FP) haemocytes using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS). Then the FP haemocytes were separated into two haemocyte subpopulations using IMB method, and the comparative proteome between granulocytes and hyalinocytes was investigated. The results showed that 10 differentially expressed protein spots were detected and identified as 4 proteins in the NFP haemocytes. Twenty one differentially expressed proteins were successfully identified between granulocytes and hyalinocytes, which include 4 unique expressed proteins in granulocytes, 4 significantly highly expressed proteins in granulocytes, and 13 significantly high expressed proteins in hyalinocytes. According to Gene Ontology annotation, the identified proteins between granulocytes and hyalinocytes were classified into six categories, including binding proteins, proteins involved in catalytic activity, enzyme regulator activity, structural molecule activity, translation regulator activity, and ungrouped proteins. Furthermore, quantitative PCR confirmed that the trend of transcription levels of three selected genes were consistent with the proteomic data from 2-DE. The results may lead to better understanding of the functions of haemocyte subpopulations.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Chang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
20
|
Xing J, Ma J, Tang X, Sheng X, Zhan W. Characterizations of CD4-1, CD4-2 and CD8β T cell subpopulations in peripheral blood leucocytes, spleen and head kidney of Japanese flounder (Paralichthys olivaceus). Mol Immunol 2017; 85:155-165. [PMID: 28260650 DOI: 10.1016/j.molimm.2017.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022]
Abstract
In the previous study, antibodies against CD3 molecule have been produced and were used in labeling T cells in Japanese flounder (Paralichthys olivaceus). In this paper, CD4+ and CD8+ lymphocytes subpopulations in peripheral blood leucocytes (PBL), spleen and head kidney of flounder were investigated. The flounder CD4-1, CD4-2 and CD8β recombinant proteins and their antibodies (Abs) were produced, then the cross-reactivity of the Abs to CD4-1, CD4-2 and CD8β was detected by Western blotting, respectively, and the reactions of Abs to PBL were analyzed by immunofluorescence staining (IFS) and flow cytometry (FCM). CD4-1+/CD3+, CD4-2+/CD3+, and CD8β+/CD3+ lymphocytes in PBL, spleen and head kidney were observed by double IFS, then their proportions were analyzed using two-color FCM, respectively. Further, CD4-1/CD8β, CD4-2/CD8β, or CD4-1/CD4-2 lymphocytes were analyzed using double-IFS and two-color FCM. Finally, CD4-1+, CD4-2+, and CD8β+ lymphocytes in spleen and head kidney were observed by immunohistochemistry. The results showed that the Abs were specific for CD4-1, CD4-2 and CD8β molecules, respectively. The proportions of CD4-1+/CD3+, CD4-2+/CD3+, and CD8β+/CD3+ lymphocytes were 6.7±2.0%, 8.6±2.8%, 2.1±1.3% in PBL; 13.6±3.6%, 15.6±5.2%, 2.8±1.4% in spleen; 20.0±4.6%, 20.5±4.6%, 3.2±1.5% in head kidney, respectively. Most CD4+ and CD8+ cell subpopulations belonged to CD3+ cells; there were no cross-reactivity between CD4+ and CD8+ cells. CD4-1+/CD4-2-, CD4-1-/CD4-2+, and CD4-1+/CD4-2+ cells presented different proportions in PBL, spleen and head kidney, among them, CD4-1+/CD4-2+ cell is the majority of CD4T cell subpopulation.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Junjie Ma
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals,KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, PR China.
| |
Collapse
|