1
|
Duan Z, Zhang F, Wang X, Li H, Zhou D, Chen Q, Tao Z, Chen Z, Yu G, Yu H. C-type lectin 12B/4E of black rockfish (Sebastes schlegelii) macrophages as pattern recognition receptors in the antibacterial mechanism of exploration. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109636. [PMID: 38762095 DOI: 10.1016/j.fsi.2024.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1β, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.
Collapse
Affiliation(s)
- Zhixiang Duan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Fan Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Hengshun Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Dianyang Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Qiannan Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Ze Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhentao Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Gan Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Adline FA, Shanthi R, Sivakumar MR, Roshni K, Sowmiya S. In vitro immune analysis of serum from the hemolymph of the anomuran crab Albunea symmysta (Linnaeus, 1758) displayed diversified reactions. J Invertebr Pathol 2024; 204:108098. [PMID: 38580075 DOI: 10.1016/j.jip.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The present investigation aims to substantiate that serum from the hemolymph of anomuran crab Albunea symmysta encompasses multiple immunological reactions in in vitro condition. The serum highly agglutinated human O erythrocytes in the presence of Ba2+. Distinct and unique sugar binding capacity of serum towards laminarin, N-acetyl sugars and higher binding specificity towards a glycoprotein, fetuin was inferred. In vitro enhancement of melanin synthesis due to enhanced oxidation of 3, 4-dihydroxy-dl-phenylalanine (dl-DOPA) by preincubation of nonself molecules with serum phenoloxidase (PO) was documented. Similarly, dl-DOPA oxidation by serum PO was reduced when preincubated with chemical inhibitors and copper chelators. Further, the crab serum lysed the vertebrate erythrocytes with maximum hemolysis against chicken and it unveiled dependency on divalent cation, serum concentration, ionic strength, pH, temperature and time interval. Occurrence of maximum hemolysis at a concentration of 30 µl, pH 8.0, temperature 37 °C and time interval of 60 min in the presence of Ba2+ were documented. Interestingly, serum hemolysis was reduced by different osmoprotectants suggesting a colloid-osmotic mechanism involving in hemolysis. It was observed that A. symmysta serum had antimicrobial activity against Gram-positive Staphylococcus aureus and fungal pathogen Candida albicans. The serum showed higher glycan content, potent lysozyme and free radical scavenging activity suggesting the existence of potential immune molecules of therapeutic use. These results clearly demonstrated the diversified immunogenicity of A. symmysta serum confirming a highly conserved non-specific immunity of crustaceans.
Collapse
Affiliation(s)
- Francis Abisha Adline
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Rangasamy Shanthi
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | | | - Kandasamy Roshni
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Sundararajan Sowmiya
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
3
|
Destoumieux-Garzón D, Montagnani C, Dantan L, Nicolas NDS, Travers MA, Duperret L, Charrière GM, Toulza E, Mitta G, Cosseau C, Escoubas JM. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster's life. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230065. [PMID: 38497271 PMCID: PMC10945412 DOI: 10.1098/rstb.2023.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 03/19/2024] Open
Abstract
The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Caroline Montagnani
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Luc Dantan
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Noémie de San Nicolas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Marie-Agnès Travers
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Léo Duperret
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume M. Charrière
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Guillaume Mitta
- Ifremer, IRD, ILM, Université de Polynésie Française, UMR EIO, Vairao 98179, French Polynesia
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia,34090 Montpellier, France
| |
Collapse
|
4
|
Feng J, Huang Y, Huang M, Luo J, Que L, Yang S, Jian J. A novel perlucin-like protein (PLP) protects Litopenaeus vannamei against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108932. [PMID: 37414305 DOI: 10.1016/j.fsi.2023.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
C-type lectins (CTLs), as pattern recognition receptors (PRRs), play an important role in the innate immunity of Litopenaeus vannamei. In this study, a novel CTL, named perlucin-like protein (PLP), was identified from L. vannamei, which shared homology sequences of PLP from Penaeus monodon. PLP from L. vannamei was expressed in the hepatopancreas, eyestalk, muscle and brain and could be activated in the tissues (hepatopancreas, muscle, gill and intestine) after infection with the pathogen Vibrio harveyi. Bacteria (Vibrio alginolyticus, V. parahaemolyticus, V. harveyi, Streptococcus agalactiae and Bacillus subtilis) could be bound and agglutinated by the PLP recombinant protein in a Ca2+-dependent manner. Moreover, PLP could stabilise the expression of the immune-related genes (ALF, SOD, HSP70, Toll4 and IMD) and apoptosis gene (Caspase2). The RNAi of PLP could remarkably affect the expression of antioxidant gene, antimicrobial peptide genes, other CTLs, apoptosis genes, Toll signaling pathways, and IMD signaling pathways. Moreover, PLP reduced the bacterial load in the hepatopancreas. These results suggested that PLP was involved in the innate immune response against V. harveyi infection by recognising bacterial pathogens and activating the expression of immune-related and apoptosis genes.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liwen Que
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Duan Y, Xing Y, Huang J, Nan Y, Li H, Dong H. Toxicological response of Pacific white shrimp Litopenaeus vannamei to a hazardous cyanotoxin nodularin exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120950. [PMID: 36574809 DOI: 10.1016/j.envpol.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Nodularin (NOD) is a harmful cyanotoxin that affects shrimp farming. The hepatopancreas and intestine of shrimp are the main target organs of cyanotoxins. In this study, we exposed Litopenaeus vannamei to NOD at 0.1 and 1 μg/L for 72 h, respectively, and changes in histology, oxidative stress, gene transcription, metabolism, and intestinal microbiota were investigated. After NOD exposure, the hepatopancreas and intestine showed obvious histopathological damage and elevated oxidative stress response. Transcription patterns of immune genes related to detoxification, prophenoloxidase and coagulation system were altered in the hepatopancreas. Furthermore, metabolic patterns, especially amino acid metabolism and arachidonic acid related metabolites, were also disturbed. The integration of differential genes and metabolites revealed that the functions of "alanine, aspartic acid and glutamate metabolism" and "aminoacyl-tRNA biosynthesis" were highly affected. Alternatively, NOD exposure induced the variation of the diversity and composition of intestinal microbiota, especially the abundance of potentially beneficial bacteria (Demequina, Phyllobacterium and Pseudoalteromonas) and pathogenic bacteria (Photobacterium and Vibrio). Several intestinal bacteria were correlated with the changes of host the metabolic function and immune factors. These results revealed the toxic effects of NOD on shrimp, and identified some biomarkers.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
6
|
Zhang Z, Niu J, Li Q, Huang Y, Jiang B, Li X, Jian J, Huang Y. A novel C-type lectin (CLEC12B) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:218-228. [PMID: 36198379 DOI: 10.1016/j.fsi.2022.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
C-type lectin (CLEC) is a family of carbohydrate-binding protein that has high affinity for calcium and mediates multiple biological events including adhesion between cells, the turnover of serum glycoproteins, and the innate immune system's reaction to prospective invaders. However, it's ill-defined for how CLEC effects bony fish's innate immunity to bacterial infection. Therefore, CLEC12B, a member of the C-type lectin domain family, was found in Nile tilapia (Oreochromis niloticus) and its functions in bacterial infection were examined. The OnCLEC12B consist of a C-type lectin domain, a transmembrane domain, and a hypothetical protein of 308 amino acids that encoded by 927 bp basic group. Besides, the OnCLEC12B protein have a series of highly conserved amino acid sites with other CLEC12B proteins. Subcellular localization showed that OnCLEC12B located in cell membrane. Transcriptional levels investigation showed that OnCLEC12B was extensively expressed in all selected organs and has high expression in the liver. The transcriptional levels of OnCLEC12B were induced by Streptococcus agalactiae and Aeromonas hydrophila in the liver, spleen, head kidney, brain, and intestine. Afterward, invitro study revealed that several kinds of pathogens could be bound and agglutinated by recombinant protein of OnCLEC12B (rOnCLEC12B). Moreover, rOnCLEC12B could not only promote the proliferation of monocytes/macrophages but also encourage its phagocytosis on S.agalactiae and A.hydrophila, and its over-expression could significantly suppress the activation of the NF-κB pathway. Summarily, our results indicated that OnCLEC12B gets involved in fish immunization activities to pathogens infection.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
7
|
Zhang Y, Ni M, Zhang P, Bai Y, Zhou B, Zheng J, Cui Z. Identification and functional characterization of C-type lectins and crustins provide new insights into the immune response of Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2022; 129:170-181. [PMID: 36057429 DOI: 10.1016/j.fsi.2022.08.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
8
|
Chen J, Leng T, Jiang YM, Chen XB, Liu ZM. RNA-seq analysis of the differential response to low-temperature stress in two morphs of mud crabs (Scylla paramamosain). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101010. [PMID: 35752127 DOI: 10.1016/j.cbd.2022.101010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The mud crab (Scylla paramamosain) is an economically important crab species that is distributed along the southern coast of China. Previously we reported that various morphological types of mud crabs differentially adapt to temperature changes. This study investigates the effects of temperature on morphs with one or two spines (Sp1 and Sp2, respectively) on the outer margin of the carpus of cheliped at a low temperature (8 °C) and a control temperature (20 °C). The hepatopancreas were the transcriptome source, and a total of 81,853 unigenes were obtained by sequencing, with an average length of 420 bp, and an N50 of 1460 bp. Of these, 22.33 % were known genes. Under low-temperature stress, there were 361 differentially expressed genes (DEGs) between the two morphs; 96 and 265 were up- and down-regulated genes, respectively. There were no DEGs between the morphs at 20 °C. Functional enrichment analysis revealed that the DEGs encoded abundant metallocarboxypeptidase activity, extracellular space, proteolysis, and sequence-specific DNA binding, and were further enriched in signal pathway components, including ubiquinone and other terpenoid-quinone biosynthesis, phenylalanine metabolism, MAPK signaling pathway, apoptosis, and other signaling pathways. The gene expressions of acid phosphatase (ACP), chymotrypsin (CHY), serine carboxypeptidase (SCP), and trypsin (TRY) under low-temperature stress were detected. The expressions of ACP, CHY, and SCP gradually decreased with time. The ACP, CHY, SCP, and TRY gene expression of the Sp1 morph was lower than that of the Sp2 morph; however, the ACP gene expression of the Sp1 morph was higher than that of the Sp2 morph at several time points. In conclusion, adaptability differences between the morphs to low-temperature stress were confirmed, which will enable the selection of cold-tolerant, high-quality varieties of mud crabs for breeding.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ting Leng
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yi-Miao Jiang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Xu-Bo Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
9
|
Zhang Y, Ni M, Bai Y, Shi Q, Zheng J, Cui Z. Full-Length Transcriptome Analysis Provides New Insights Into the Diversity of Immune-Related Genes in Portunus trituberculatus. Front Immunol 2022; 13:843347. [PMID: 35464434 PMCID: PMC9021376 DOI: 10.3389/fimmu.2022.843347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Generally, invertebrates were thought to solely rely on their non-specific innate immune system to fight against invading microorganisms. However, increasing studies have implied that the innate immune response of invertebrates displayed diversity and specificity owing to the hyper-variable immune molecules in organisms. In order to get an insight into the diversity of immune-related genes in Portunus trituberculatus, a full-length transcriptome analysis of several immune-related tissues (hemocytes, hepatopancreas and gills) in P. trituberculatus was performed and the diversity of several immune-related genes was analyzed. The full-length transcriptome analysis of P. trituberculatus was conducted using a combination of SMRT long-read sequencing and Illumina short-read sequencing. A total of 17,433 nonredundant full-length transcripts with average length of 2,271 bp and N50 length of 2,841 bp were obtained, among which 13,978 (80.18%) transcripts were annotated. Moreover, numerous transcript variants of various immune-related genes were identified, including pattern recognition receptors, antimicrobial peptides, heat shock proteins (HSPs), antioxidant enzymes and vital molecules in prophenoloxidase (proPO)-activating system. Based on the full-length transcriptome analysis, open reading frames (ORFs) of four C-type lectins (CTLs) were cloned, and tissue distributions showed that the four CTLs were ubiquitously expressed in all the tested tissues, and mainly expressed in hepatopancreas and gills. The transcription of the four CTLs significantly increased in several immune-related tissues (hemocytes, hepatopancreas and gills) of P. trituberculatus challenged with Vibrio alginolyticus and displayed different profiles. Moreover, the four CTLs displayed distinct bacterial binding and antibacterial activities. The recombinant protein PtCTL-1 (rPtCTL-1) and rPtCTL-3 displayed bacterial binding and antibacterial activities against all tested bacteria. rPtCTL-2 only showed bacterial binding and antibacterial activities against V. alginolyticus. No obvious bacterial binding or antibacterial activities for PtCTL-4 was observed against the tested bacteria. This study enriches the transcriptomic information on P. trituberculatus and provides new insights into the innate immune system of crustaceans. Additionally, our study provided candidates of antibiotic agents for the prevention and treatment of bacteriosis.
Collapse
Affiliation(s)
- Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qiao Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
10
|
Xing K, Liu Y, Yan C, Zhou Y, Zhang R, Sun Y, Zhang J. Transcriptomic analysis of Neocaridina denticulate sinensis hepatopancreas indicates immune changes after copper exposure. FISH & SHELLFISH IMMUNOLOGY 2022; 121:23-30. [PMID: 34742901 DOI: 10.1016/j.fsi.2021.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Neocaridina denticulate sinensis is a promising crustacean model species due to its merits in raising and breeding. However, its molecular responses to copper remains largely unknown. In the present research, RNA-seq was used to mine the alteration in transcriptome of N. denticulate sinensis hepatopancreas under copper exposure. A total of 16,423 DEGs was identified between control and Cu2+ treatment groups. GO enrichment analysis of all DEGs suggested down-regulated genes exceeded up-regulated genes in all the significantly enriched terms, except for RNA polymerase III complex (GO:0005666). KEGG analysis showed Cu exposure only induced two significantly enriched pathways, including Phagosome (ko04145) and Pathogenic Escherichia coli infection (ko05130). Besides, pattern recognition receptors as Toll, lectin B, CTL1 and SRB, AMPs as crustin type I, lysozyme, and NOS were down-regulated after Cu2+ exposure, while hemocyanin, MT, HSP70 and HSP90 were significantly up-regulated, implying these molecules may play vital role in Cu2+ detoxification of N. denticulate sinensis. Our results here provide research direction of heavy metal detoxification of N. denticulate sinensis, simultaneously enriched its genomic information.
Collapse
Affiliation(s)
- Kefan Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Congcong Yan
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yongzhao Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Ruirui Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Thaimuangphol W, Sanoamuang L, Wangkahart E. The immune response of fairy shrimp Streptocephalus sirindhornae against bacterial black disease by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:108-115. [PMID: 34983002 DOI: 10.1016/j.fsi.2021.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
To enhance genomic resources and to understand the molecular immune mechanisms underlying the response of fairy shrimp (Streptocephalus sirindhornae) to pathogens, we first performed a comparative gene transcription analysis from Aeromonas hydrophila-immunized shrimp and from a control group through RNA sequencing. Meanwhile, the differentially expressed genes (DEGs) were investigated, and a total of 46,958,894 clean reads were obtained and then assembled into 73,297 unigenes with an average length of 993 bp and an N50 of 1,458 bp. Unigenes were annotated by comparison with the NR/NT/KO/SwissProt/PFAM/GO and KOG databases, and 28,198 unigenes (38.47%) were annotated in at least one database. After a bacterial challenge, 143 and 287 genes were identified as markedly up- or downregulated, respectively, and 345 were associated with 142 pathways, including the classic immune-related apoptosis, toll-like receptor and MAPK signaling pathways. Moreover, ten differently expressed immune-related genes were confirmed by using quantitative real-time PCR. This study characterized a gene expression pattern for normal and Aeromonas hydrophila-immunized S. sirindhornae for the first time and shed new light on its molecular mechanisms, thus enabling the future efforts of disease control programs for this valuable aquaculture species.
Collapse
Affiliation(s)
- Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Laorsri Sanoamuang
- Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Laboratory of Biodiversity and Environmental Management, International College, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
12
|
Zhao X, Qiao J, Zhang P, Zhang Z, Aweya JJ, Chen X, Zhao Y, Zhang Y. Protein Diversity and Immune Specificity of Hemocyanin From Shrimp Litopenaeus vannamei. Front Immunol 2021; 12:772091. [PMID: 34950141 PMCID: PMC8688539 DOI: 10.3389/fimmu.2021.772091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Hemocyanin is an important non-specific innate immune defense molecule with phenoloxidase, antiviral, antibacterial, hemolytic, and antitumor activities. To better understand the mechanism of functional diversity, proteomics approach was applied to characterize hemocyanin (HMC) expression profiles from Litopenaeus vannamei. At first, hemocyanin was purified by Sephadex G-100 and DEAE-cellulose (DE-52) columns from shrimp serum, and 34 protein spots were identified as HMC on the 2-DE gels. Furthermore, we found that 9 HMC spots about 75 or 77 kDa were regulated by Streptococcus agalactiae and Vibrio parahaemolyticus infection at 6, 12, and 24 h. In addition, 6 different pathogen-binding HMC fractions, viz., HMC-Mix, HMC-Vp, HMC-Va, HMC-Vf, HMC-Ec, and HMC-Sa, showed different agglutinative and antibacterial activities. Moreover, lectin-blotting analysis showed significant differences in glycosylation level among HMC isomers and bacteria-binding HMC fractions. Particularly, the agglutinative activities of the HMC fractions were almost completely abolished when HMC was deglycosylated by O-glycosidase, which suggest that O-linked sugar chains of HMC played important roles in the innate immune recognition. Our findings demonstrated for the first time that L. vannamei HMC had molecular diversity in protein level, which is closely associated with its ability to recognize diverse pathogens, whereas glycan modification probably contributed to HMC’s diversity and multiple immune activities.
Collapse
Affiliation(s)
- Xianliang Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,College of Fisheries, Henan Normal University, Xinxiang, China
| | - Jie Qiao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Pei Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zehui Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
13
|
Liu Y, Su Y, Zhang A, Cui Z. A C-Type Lectin Highly Expressed in Portunus trituberculatus Intestine Functions in AMP Regulation and Prophenoloxidase Activation. Antibiotics (Basel) 2021; 10:antibiotics10050541. [PMID: 34066980 PMCID: PMC8151143 DOI: 10.3390/antibiotics10050541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
A C-type lectin (PtCLec2) from Portunus trituberculatus was identified for characterization of its role in defense and innate immunity. PtCLec2 contains a single carbohydrate-recognition domain (CRD) with a conserved QPD motif, which was predicted to have galactose specificity. The mRNA expression of PtCLec2 was predominantly detected in intestine and increased rapidly and significantly upon pathogen challenge. The recombinant PtCLec2 (rPtCLec2) could bind various microorganisms and PAMPs with weak binding ability to yeast and PGN. It agglutinated the tested Gram-negative bacteria (Vibrio alginolyticus and Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), and rabbit erythrocytes in the presence of exogenous Ca2+, and these agglutination activities were suppressed by LPS, d-galactose, and d-mannose. Further, rPtCLec2 enhanced phagocytosis and clearance of V. alginolyticus, and displayed inhibitory activities against the tested bacteria. Knockdown of PtCLec2 decreased the transcription of two phagocytosis genes (PtArp and PtMyosin), three prophenoloxidase (proPO) system-related genes (PtPPAF, PtcSP1, and PtproPO), six antimicrobial peptides (AMPs) (PtALF4-7, PtCrustin1, and PtCrustin3), and PtRelish but upregulated the expression levels of PtJNK, PtPelle, and PtTLR. These results collectively indicate that PtCLec2 might perform its immune recognition function via binding and agglutination, and mediate pathogen elimination via regulating hemocyte phagocytosis, AMP synthesis, and proPO activation.
Collapse
Affiliation(s)
- Yuan Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-8289-8637
| | - Yue Su
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (A.Z.)
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
14
|
Wang H, Pan L, Si L, Ji R, Cao Y. Effects of Nrf2-Keap1 signaling pathway on antioxidant defense system and oxidative damage in the clams Ruditapes philippinarum exposure to PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12906-w. [PMID: 33638075 DOI: 10.1007/s11356-021-12906-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant defense system which can maintain the oxidation balance in the cell. In our previous study, we first cloned the Nrf2 gene in clams and preliminarily explored the role of the Nrf2 at the transcription level. In this study, RNA interference (RNAi) technology was used to interfere with the expression of Nrf2 after being exposed to benzo(a)pyrene (BaP) for 5 days to verify the role of Nrf2 in the antioxidant defense system. Besides, we examined the mRNA expression and enzyme activities of antioxidases and the oxidative damage. The positive correlations between the Nrf2 with the mRNA expression and the enzyme activities of antioxidases indicated that Nrf2 was required for the induction of these antioxidant genes. Additionally, the mRNA expression and the enzyme activities of the glutathione peroxidase (GPx) in the Nrf2-dsRNA group were significantly higher than those in the control groups on the fifth day, indicating that the GPx is more sensitive to oxidative stress. Moreover, the oxidative damage in the RpNrf2-dsRNA group was markedly increased than control groups, indicating that Nrf2 transcriptional regulation may play an essential role in defending against oxidative damage. This study provides a foundation for further research on the mechanism of detoxification and antioxidation of polycyclic aromatic hydrocarbons (PAHs) in the clams at the transcription level and the protein level.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rongwang Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yunhao Cao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
15
|
Oangkhana P, Amparyup P, Tassanakajon A, Preetham E, Wongpanya R. Characterization and functional analysis of fibrinogen-related protein (FreP) in the black tiger shrimp, Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2021; 109:87-96. [PMID: 33359206 DOI: 10.1016/j.fsi.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Ficolin is classified as an immune related protein containing collagen-like and fibrinogen-related domain (FreD). In invertebrates, the functions of fibrinogen-related proteins (FrePs) are of importance to innate immunity. In this study, a FreP in the black tiger shrimp Penaeus monodon was identified and characterized. The PmFreP cDNA is 1,007 bp long with a 921 bp-open reading frame that encodes for 306 amino acids. The deduced PmFreP sequence consists of a signal peptide, an unknown region and the FreD. Phylogenetic analysis showed that PmFreP was clustered with fibrinogen-like proteins in crustaceans which was separated from vertebrate ficolin-like proteins. The deduced fibrinogen-like domain contains four conserved cysteine residues (Cys96, Cys127, Cys249, and Cys262) that are responsible for the formation of disulfide bridges. Gene expression analysis shows that Pmfrep is mainly expressed in the intestine and the expression is significantly upregulated after Vibrio harveyi and white spot syndrome virus (WSSV) challenge. Recombinant PmFreP (rPmFreP) were successfully expressed and purified, and forms a trimeric structure as judged by native-PAGE. Bacterial binding assay showed that the rPmFreD can bind and agglutinate Gram-negative and Gram-positive bacteria in the presence of calcium (Ca2+) ions. Moreover, the rPmFreP facilitates the clearance of V. harveyi in vivo. Overall, our results suggested that the PmFreP may serve as pattern recognition receptors implicated in shrimp innate immunity.
Collapse
Affiliation(s)
- Prawit Oangkhana
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10903, Thailand.
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Elumalai Preetham
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India.
| | - Ratree Wongpanya
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10903, Thailand; Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand.
| |
Collapse
|
16
|
Huang Z, Aweya JJ, Zhu C, Tran NT, Hong Y, Li S, Yao D, Zhang Y. Modulation of Crustacean Innate Immune Response by Amino Acids and Their Metabolites: Inferences From Other Species. Front Immunol 2020; 11:574721. [PMID: 33224140 PMCID: PMC7674553 DOI: 10.3389/fimmu.2020.574721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Aquaculture production of crustaceans (mainly shrimp and crabs) has expanded globally, but disease outbreaks and pathogenic infections have hampered production in the last two decades. As invertebrates, crustaceans lack an adaptive immune system and mainly defend and protect themselves using their innate immune system. The immune system derives energy and metabolites from nutrients, with amino acids constituting one such source. A growing number of studies have shown that amino acids and their metabolites are involved in the activation, synthesis, proliferation, and differentiation of immune cells, as well as in the activation of immune related signaling pathways, reduction of inflammatory response and regulation of oxidative stress. Key enzymes in amino acid metabolism have also been implicated in the regulation of the immune system. Here, we reviewed the role played by amino acids and their metabolites in immune-modulation in crustaceans. Information is inferred from mammals and fish where none exists for crustaceans. Research themes are identified and the relevant research gaps highlighted for further studies.
Collapse
Affiliation(s)
- Zishu Huang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yujian Hong
- Guangdong Yuequn Marine Biological Research and Development Co., Ltd., Jieyang, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu (STU-UMT) Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
17
|
Identification and functional characterization of a novel C-type lectin from the kuruma shrimp, Marsupenaeus japonicus. Biochem Biophys Res Commun 2020; 530:547-553. [PMID: 32747089 DOI: 10.1016/j.bbrc.2020.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 01/19/2023]
Abstract
C-type lectins (CTLs) are immune molecules that are crucial to the invertebrate innate immune system with the primary function of recognizing invading pathogens. In the present study, a novel CTL was cloned from Marsupenaeus japonicus (MjCTL), and its tissue distribution and expression patterns over time in response to white spot syndrome virus (WSSV) and Vibrio parahaemolyticus were further investigated. The open reading frame (ORF) of MjCTL was 513 bp and encoded a polypeptide of 170 amino acids, which contained a signal peptide and a carbohydrate recognition domain (CRD) that are typical for CTLs. MjCTL was primarily expressed in the hepatopancreas and weakly expressed in hemocytes, gill, stomach, intestine, heart, muscle and eyestalk. The expression level of MjCTL in the hepatopancreas was dramatically increased at 48 h post-injection with WSSV at a dosage of 1 × 105 virions. Glutathione-S-transferase (GST) pull-down assays showed that MjCTL could directly bind to several WSSV envelope proteins, including VP19, VP24, VP26 and VP28. Moreover, MjCTL displayed antibacterial activity against V. parahaemolyticus. Our results indicated that MjCTL exhibited multiple functions in innate immune response against pathogens.
Collapse
|
18
|
Zhuo X, Qin Y, He P, Wei P, Zhang B, Chen X, Peng J. Transcriptomic analysis of Litopenaeus vannamei hepatopancreas under cold stress in cold-tolerant and cold-sensitive cultivars. Gene 2020; 764:145090. [PMID: 32861880 DOI: 10.1016/j.gene.2020.145090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023]
Abstract
Litopenaeus vannamei (L. vannamei) is one of the most widely cultured shrimp species in the world. The species often suffers from cold stress. To understand the molecular mechanism of cold tolerance, we performed transcriptomic analysis on two contrasting cultivars of L. vannamei, namely, cold-tolerant Guihai 2 (GH2) and cold-sensitive Guihai1 (GH1), under a control temperature (28 °C), cold stress (16 °C), and recovery to 28 °C. A total of 84.5 Gb of sequences were generated from 12 L. vannamei hepatopancreas libraries. The de-novo assembly generated a total of 143,029 unigenes with a mean size of 1,052 bp and an N50 of 2,604 bp, of which 34.08% were annotated in the Nr database. We analyzed the differentially expressed genes (DEGs) between nine comparison groups and detected a total of 21,026 DEGs. KEGG pathways, including lysosome, sphingolipid metabolism and nitrogen metabolism, were significantly enriched by DEGs between different temperatures in GH2. Furthermore, eight of the most significantly DEGs under cold stress from the transcriptomic analysis were selected for quantitative real-time PCR (qPCR) validation. Overall, we compared gene expression changes under cold stress in cold-tolerant and cold-sensitive L. vannamei for the first time. The results may further extend our understanding of the cold stress-response mechanism in L. vannamei.
Collapse
Affiliation(s)
- Xiaofei Zhuo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yibin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| |
Collapse
|
19
|
Wang XW, Vasta GR, Wang JX. The functional relevance of shrimp C-type lectins in host-pathogen interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103708. [PMID: 32305304 DOI: 10.1016/j.dci.2020.103708] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins (CTLs) are key recognition proteins in shrimp immunity. A few years ago we reviewed sequence information, ligand specificity, expression profiles and specific functions of the shrimp CTLs. Since then, multiple integrated studies that implemented biochemical approaches using both the native and recombinant proteins, functional genetic approaches using RNA interference, and mechanistic studies by analyzing protein-protein interactions were carried out. Results from these rigorous studies revealed the functions and mechanisms of action of selected members of the shrimp CTL family. This review focuses on this new knowledge, that includes unique structural aspects, functions, and mechanisms in host-pathogen interactions, the functional relevance of regions other than the C-type lectin domain, and the regulation of transcription of shrimp CTLs. Thus, this review aims to provide a detailed update of recent studies that have contributed to our better understanding of the shrimp immune events that involve CTL functions.
Collapse
Affiliation(s)
- Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, State Key Laboratory of Microbial Technology, Shandong University, Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, State Key Laboratory of Microbial Technology, Shandong University, Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
20
|
Bi J, Ning M, Xie X, Fan W, Huang Y, Gu W, Wang W, Wang L, Meng Q. A typical C-type lectin, perlucin-like protein, is involved in the innate immune defense of whiteleg shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 103:293-301. [PMID: 32442499 DOI: 10.1016/j.fsi.2020.05.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins are a large group of the pattern-recognition proteins, and have been reported to be involved in invertebrate innate immunity, such as cell adhesion, bacterial clearance, phagocytosis, prophenoloxidase activation and encapsulation. Here, a perlucin-like protein (PLP), a typical C-type lectin, was identified from the cDNA library of the shrimp, Litopenaeus vannamei. LvPLP contains a 540 bp open reading frame, encoding a protein of 179 amino acids that includes a single carbohydrate-recognition domain. Phylogenetic analysis showed that LvPLP was clustered into a single group together with other perlucins from molluscs. Quantitative real-time PCR revealed that LvPLP was expressed mainly in the hemocytes, hemolymph, heart and gills. The transcription of LvPLP was significantly induced at 9 h by both Gram- bacteria Vibrio parahaemolyticus and Vibrio anguillarum. Meanwhile, recombinant LvPLP (rLvPLP) bound directly to lipopolysaccharide and peptidoglycan with different affinity. rLvPLP showed a strong ability to bind to Gram+ (Staphylococcus aureus and Bacillus subtilis) and Gram- bacteria (V. parahaemolyticus and V. anguillarum), and could induce agglutination of V. parahaemolyticus and V. anguillarum, but not S. aureus and B. subtilis in the presence Ca2+. Further study showed that when LvPLP was knocked down by RNAi, three phagocytosis-related genes (peroxinectin, mas-like protein and dynamin) and four antimicrobial peptide (AMP) genes (crustin, ALF1, ALF2 and ALF3) were significantly decreased. Altogether, these results demonstrated that LvPLP played a vital role in L. vannamei immune response towards bacterial challenge by binding and agglutinating bacteria and influencing phagocytosis and AMP expression.
Collapse
Affiliation(s)
- Jingxiu Bi
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Mingxiao Ning
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Xiaojun Xie
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Weifeng Fan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Yanlan Huang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
21
|
Gao X, Jiang Z, Zhang S, Chen Q, Tong S, Liu X, Jiang Q, Yang H, Wei W, Zhang X. Transcriptome analysis and immune-related genes expression reveals the immune responses of Macrobrachium rosenbergii infected by Enterobacter cloacae. FISH & SHELLFISH IMMUNOLOGY 2020; 101:66-77. [PMID: 32213315 DOI: 10.1016/j.fsi.2020.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Macrobrachium rosenbergii is an important cultural species in China and other Southeast Asian countries. However, Enterobacter cloacae infection has caused a great economic loss in M. rosenbergii culture industry. The immune responses of M. rosenbergii to the E. cloacae infection is not fully characterized. To investigate the immune response of M. rosenbergii against E. cloacae, we performed transcriptome analysis of the M. rosenbergii hepatopancreas with and without E. cloacae infection using RNA-seq. After assembly and annotation, 29,731 high quality unigenes were obtained from RNA-seq data. Differential expression analysis revealed the existence of 2498 significantly differently expressed genes (DEGs) at 12 h post infection, with 1365 up-regulated and 1133 down-regulated genes. Among these DEGs, some well-known immune-related genes were up-regulated significantly, including C-type lectin 1, lectin 3, anti-lipopolysaccharide factor 2, Cu/Zn superoxide dismutase and heat shock protein 70. GO analysis demonstrated 24 biological process subcategories, 14 cellular component subcategories, and 12 molecular function subcategories that were enriched among these DEGs, and some DEGs were clustered into immune related subcategories such as immune system process, response to stimulus, biological adhesion, and antioxidant activity. These DEGs were enriched into 216 KEGG pathways including a core set of immune correlated pathways notably in phagosome and lysosome. In addition, 5 up-regulated and 5 down-regulated immune-related DEGs were selected for further validation by quantitative real-time PCR and the results showed consistence with the RNA-seq data. Additionally, the expression level of six selected immune-related genes (ALF2, CLEC1, LEC3, hemocyanin1, HSP70 and SOD) based on the transcriptomic data were monitored at different point of time in hepatopancreas, gill, hemolymph and intestine. Results revealed these immune-related genes were significantly up-regulated in different tissues from 6 to 24 h after E. cloacae infection. Overall, these results provided valuable information for further studying the immune response of M. rosenbergii against E. cloacae infection.
Collapse
Affiliation(s)
- Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuaiqi Tong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Zhu Y, Yu X, Cheng G. Insect C-Type Lectins in Microbial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:129-140. [PMID: 32152945 DOI: 10.1007/978-981-15-1580-4_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
C-type lectins (CTLs) are a family of carbohydrate-recognition domain (CRD)-containing proteins that bind to ligands in a calcium-dependent manner. CTLs act as important components of insect innate immune responses, such as pattern recognition, agglutination, encapsulation, melanization, phagocytosis and prophenoloxidase activation, as well as gut microbiome homeostasis maintenance, to defend against pathogens. Besides, some insect CTLs can facilitate pathogen infection and colonization. In this review, we describe the properties of insect CTLs and focus on explaining their role in viral, bacterial, parasitic and fungal infections.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
23
|
Wei C, Pan L, Zhang X, Xu L, Si L, Tong R, Wang H. Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine. FISH & SHELLFISH IMMUNOLOGY 2019; 94:497-509. [PMID: 31541775 DOI: 10.1016/j.fsi.2019.09.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
As a crucial neuroendocrine-immune factor, dopamine (DA) could regulate the immune system of Litopenaeus vannamei. To understand the immune mechanisms and regulatory pathways of DA in L. vannamei, the transcriptome analysis of hemocytes of L. vannamei with injection of DA (10-6 mol/shrimp) at 3 and 12 h were performed in this study. Moreover, quantitative real-time PCR (qPCR) method was applied to validate the accuracy of transcriptome sequencing and analyze the expression pattern of candidate differentially expressed genes (DEGs) at different time points (0, 3, 6, 12, and 24 h) after DA injection. The results showed that a total of 51382 unigenes with a N50 length of 2341 bp were generated. And 1397 and 457 DEGs were obtained by comparative transcriptome at 3 and 12h respectively. Moreover, the results of functional annotation and enriched pathway showed that the DEGs were involved in phagosome (ko04145), lysosome (ko04142), Endocytosis (ko04144), and NOD-like receptor signaling pathway (ko04621). Besides, the Pearson's correlation coefficient (R) between transcriptome sequencing and qPCR was 0.845, which confirmed the reliability of the transcriptome sequencing results and the accuracy of assembly. Furthermore, the expression pattern of 15 candidate DEGs, containing 9 up-regulated and 6 down-regulated DEGs at 3 h, indicated the regulation of DA in physiological functions especially in the immune system. Therefore, these results revealed that DA induced the expressions of membrane receptors or proteins, activated intracellular signaling pathways, regulated cellular and humoral immune systems, controlled antioxidation and apoptosis, and was involved in the regulation of neuroendocrine system. These findings are helpful to promote the understanding on the effects of biogenic amines on physiological functions and regulatory networks of crustacean, and offer a substantial material and foundation for researching the immune response of crustacean.
Collapse
Affiliation(s)
- Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lijun Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
24
|
Huang Y, Zhang R, Gao T, Xu H, Wu T, Ren Q. 2-Transmembrane C-type lectin from oriental river prawn Macrobrachium nipponense participates in antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 91:58-67. [PMID: 31096059 DOI: 10.1016/j.fsi.2019.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
As a type of pattern-recognition proteins (PRRs), C-type lectins (CTLs) perform important functions in non-self recognition and clearance of pathogens in innate immunity. In this study, a unique 2-transmembrane CTL (designated as Mn-2TM-cLec) with a single carbohydrate recognition domain (CRD) was isolated from Macrobrachium nipponense. The full-length cDNA of Mn-2TM-cLec consisted of 3265 bp with an 837 bp open reading frame encoding a protein with 278 amino acids. Mn-2TM-cLec was ubiquitously distributed in various tissues of normal prawn, particularly in the hemocytes, hepatopancreas, and gills. The expression of Mn-2TM-cLec was significantly up-regulated in the gills and hepatopancreas after the prawns were challenged with Staphylococcus aureus and Vibrio parahaemolyticus. RNA interference knock-down of Mn-2TM-cLec gene decreased the transcription levels of three antimicrobial peptides (anti-lipopolysaccharide factor (ALF) 1, ALF2, and Crustin (Crus) 1) after V. parahaemolyticus infection. The recombinant CRD of Mn-2TM-cLec could bind lipopolysaccharide, peptidoglycans, and diverse bacterial strains and agglutinate S. aureus and V. parahaemolyticus in a Ca2+-dependent manner. In addition, the rCRD enhanced the clearance of V. parahaemolyticus injected in prawns. In summary, Mn-2TM-cLec might act as a PRR to participate in the prawn immune defense against pathogens through its antimicrobial activity.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Ruidong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Hui Xu
- Nanjing Hydraulic Research Institute, Nanjing, 210024, China
| | - Ting Wu
- Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
25
|
Qin Y, Jiang S, Huang J, Zhou F, Yang Q, Jiang S, Yang L. C-type lectin response to bacterial infection and ammonia nitrogen stress in tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2019; 90:188-198. [PMID: 31028898 DOI: 10.1016/j.fsi.2019.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
C-type lectins (CTLs) are pattern recognition receptors (PRRs) that are important in invertebrate innate immunity for the recognition and elimination of pathogens. Although they were reported in many shrimp, C-type lectins subfamily contain a large number of members with different functions that need to research in deep. In this present study, a new type of CTL, PmCL1 with 861 bp long full-length cDNA, that encodes a protein with 164-amino acid from a 495-bp open reading frame, was isolated and characterized from tiger shrimp (Penaeus monodon). The mRNA transcript of PmCL1 showed the highest expression in the hepatopancreas, whereas it was barely detected in the ovary. After the shrimp were stimulated by Vibrio harveyi and Vibrio anguillarum, PmCL1 expression in the hepatopancreas and gill was significantly upregulated. A carbohydrate-binding assay revealed the specificity of PmCL1 for pathogen-associated molecular patterns (PAMPs) that included peptidoglycan (PGN) and lipopolysaccharide (LPS), and saccharides that included d-glucose, galactosamine, α-lactose, treholose, and d-mannose. Recombinant PmCL1 agglutinated gram-positive (Staphylococcus aureus) and gram-negative bacteria (V. harveyi, V. anguillarum, Vibrio alginolyticus, Vibrio parahemolyticus, Vibrio vulnificus, and Aeromonas hydrophila) in the presence of calcium ions and enhanced the efficiency of clearing the invading bacteria. Collectively, our results suggested that PmCL1 might play an important role as a pattern recognition receptor (PRR) in the immune response towards pathogen infections, as well as the response towards ammonia nitrogen stress.
Collapse
Affiliation(s)
- Yukai Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China.
| |
Collapse
|
26
|
Zhang X, Pan L, Yu J, Huang H. One recombinant C-type lectin (LvLec) from white shrimp Litopenaeus vannamei affected the haemocyte immune response in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 89:35-42. [PMID: 30890430 DOI: 10.1016/j.fsi.2019.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
C-type lectin has received widespread attention in animal immunomodulation functions since it was discovered, but it is still limited in crustaceans. The present study is to explore effects of one recombinant C-type lectin (LvLec protein) on haemocyte immune response in Litopenaeus vannamei (L. vannamei). The methods of keeping haemocyte immune activity were optimised by the Key Laboratory of Mariculture. The experiment was divided into four groups: control group, recombinant protein group (LvLec protein, 1.0 mg mL-1), Lipopolysaccharide group (LPS, 1.0 mg mL-1), and LPS combine with LvLec protein group (LPS + LvLec protein, 1.0 mg mL-1 + 1.0 mg mL-1), while each group processes 0, 3, 6, 9, 12, and 24 h respectively. The results showed that the haemocyte count reduced, while the exocytosis PO activity, hemagglutinating activity and phagocytic activity promoted, and the concentration of cGMP and PKA increased after LvLec protein treatment. However, the levels of antibacterial activity and bacteriolytic activity as well as the concentrations of cAMP and PKG did not change significantly after treating with LvLec protein, LPS or LPS + LvLec protein. Therefore, these results suggest that LvLec protein can stimulate the exocytosis PO activity through cGMP-PKA pathway to affect the phagocytic activity and hemagglutinating activity of L. vannamei haemocytes in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Jinhong Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Hui Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
27
|
Meng X, Dong L, Shi X, Li X, Sui J, Luo K, Luan S, Chen B, Cao B, Cao J, Kong J. Screening of the candidate genes related to low-temperature tolerance of Fenneropenaeus chinensis based on high-throughput transcriptome sequencing. PLoS One 2019; 14:e0211182. [PMID: 30958828 PMCID: PMC6453463 DOI: 10.1371/journal.pone.0211182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
In order to screen the candidate genes of Fenneropenaeus chinensis related to low-temperature tolerance, this research takes juvenile prawns of F. chinensis (P40) in low temperature stress group (4°C) and normal temperature group (18°C) as experimental materials. The results showed that a total of 127,939 Unigenes with average length of 1,190 bp were obtained by assembly, of which 46% were annotated in the Nr database. A total of 1,698 differentially expressed genes were screened by differential gene expression analysis, of which 920 genes showed up-regulated expression and 778 genes showed down-regulated expression. Both GO and KEGG enrichment analysis revealed that differentially expressed genes were enriched in spliceosomes, ribosomes, bile secretion, ABC transport pathways, and cellular nitrogen compound synthesis. A further in-depth analysis obtained 8 genes that may be associated with low-temperature traits of F. chinensis. Five of them displayed up-regulated expression, including ATP-binding cassette protein C, acid ceramidase, glutathione transferase, C-type lectin and heat shock protein HSP70. The remaining three genes, γ-butyl betaine hydroxylase, β-hexosaminidase A and long chain fatty acid-CoA ligase displayed down-regulated expression. Eight differentially expressed genes were randomly selected and the real time RT-PCR verification showed that their expression levels were consistent with the sequencing results, demonstrating the accuracy of the sequencing results. The results of this study provide basic data for revealing the molecular mechanisms of F. chinensis in response to low temperature stress and the molecular assisted breeding of F. chinensis in low temperature.
Collapse
Affiliation(s)
- Xianhong Meng
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lijun Dong
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Shanghai Ocean University, Shanghai, China
| | - Xiaoli Shi
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xupeng Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Juan Sui
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Kun Luo
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Sheng Luan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Baolong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Baoxiang Cao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jiawang Cao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Kong
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
28
|
Li Y, Zhou F, Huang J, Yang L, Jiang S, Yang Q, He J, Jiang S. Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia-stress response of the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2018; 83:162-170. [PMID: 30205201 DOI: 10.1016/j.fsi.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Ammonia is a major aquatic environmental pollutant that negatively impacts shrimp health and commercial productivity. However, we currently do not fully understand the underlying molecular mechanisms of ammonia stress in shrimp. We therefore performed transcriptomic analysis of hepatopancreas from black tiger shrimp (Penaeus monodon) treated with ammonia-stress. We obtained 146,410,174 and 115,241,048 clean reads for the control and treatment groups, respectively. A total of 64,475 unigenes with an average length of 1275 bp and a N50 value of 2158 bp were assembled. A comparative transcriptome analysis identified 3462 differentially expressed genes, 177 of which are highly homologous with known proteins in aquatic species. Most of these genes showing the expression changes were related to immune function. Some significantly down-regulated genes are involved in purine metabolism and other metabolic pathways, which suggests that purineolytic capacity is an ammonia detoxification process in P. monodon, and metabolic depression is a strategy to reduce shrimp exposure to ammonia. Additionally, ammonia stress altered the expression patterns of key apoptosis genes (Bcl-xL, PERK, caspase 7, and caspase 10), confirmed that ammonia-stress induce oxidative stress and eventually even apoptosis. We also found evidence for the involvement of antioxidant defense in response to oxidative imbalance, given the regulation of peroxiredoxin 1, SOD, and CAT under ammonia stress. In conclusion, our study clarifies shrimp defensive response to ammonia toxicity and should benefit efforts to breed more ammonia-tolerant varieties.
Collapse
Affiliation(s)
- Yundong Li
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguo He
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Shigui Jiang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
29
|
Runsaeng P, Kwankaew P, Utarabhand P. FmLC6: An ultimate dual-CRD C-type lectin from Fenneropenaeus merguiensis mediated its roles in shrimp defense immunity towards bacteria and virus. FISH & SHELLFISH IMMUNOLOGY 2018; 80:200-213. [PMID: 29842930 DOI: 10.1016/j.fsi.2018.05.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
C-type lectins are a member of pattern recognition receptors (PRRs) that can interact with pathogen-associated molecular patterns of invading microorganisms by using their conserved motifs in carbohydrate recognition domain (CRD). The binding can trigger various immune responses in both direct and indirect mechanisms. Hereby, an ultimate C-type lectin with dual CRDs each of which containing a different motif was identified from hepatopancreas of Fenneropenaeus merguiensis (mentioned as FmLC6). The full-length cDNA of FmLC6 consisted of 1148 bp comprising one 1005 bp open reading frame (ORF) encoding a signal peptide and a mature protein of 317 residues. FmLC6 was composed of two CRDs with a highly conserved QPD (Gln-Pro-Asp) motif and one variant EPQ (Glu-Pro-Gln) motif for illustrating the carbohydrate binding affinity. The transcription of FmLC6 was detected only in hepatopancreas of normal shrimp. After injection with pathogens or immunostimulants, the expression of FmLC6 was significantly up-regulated and reached the highest level at 12 h post-injection except with lipoteichoic acid challenge. The FmLC6 expression was severely suppressed by knockdown based-silencing. This gene silencing with co-injection by Vibrio parahaemolyticus caused increasing in cumulative mortality and reduction of the median lethal time. Purified recombinant proteins of an entire ORF and two individual CRDs of FmLC6 produced in Escherichia coli could induce a broad spectrum of microbial agglutination with calcium dependence. The agglutination induced by rFmLC6, rCRD1 and rCRD2 was suppressed by galactose plus mannose, galactose and mannose, respectively which this event was confirmed by the inhibition of hemagglutination. All three recombinant proteins possessed ability to inhibit the bacterial growth with a dose-response. Purified rFmLC6 could bind directly to white spot syndrome virus particles and also its recombinant proteins including VP15, VP39A and VP28 with different affinity. Altogether, these results indicate that FmLC6 acts as a PRR to recognize invading microorganisms and leads to mediating the immune response to cooperation in pathogenic elimination via the binding, agglutination and antimicrobial activity.
Collapse
Affiliation(s)
- Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Pattamaporn Kwankaew
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
30
|
Qin Z, Babu VS, Li N, Fu T, Li J, Yi L, Zhao L, Li J, Zhou Y, Lin L. Protective effects of chicken egg yolk immunoglobulins (IgY) against experimental Aeromonas hydrophila infection in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2018; 78:26-34. [PMID: 29621635 DOI: 10.1016/j.fsi.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
The emergence of multi antibiotic resistance by the pathogens and toxic impacts on host metabolism has opened new perspectives to rational novel vaccine techniques. Outbreaks of Aeromonas hydrophila in aquaculture caused high mortality throughout the world and resulted in the extensive economic loss in the aquaculture industry. In this study, we report the efficacy of anti-A. hydrophila IgY antibodies by passive vaccination and its prophylactic or therapeutic effects against A. hydrophila in blunt snout bream. Inactivated A. hydrophila immunized hens produced effective IgY antibodies that were stable at temperatures less than 60 °C or the pH value was >4. The specific IgY can be bound directly to A. hydrophila that efficiently agglutinated and inhibited the bacterial growth in a dose-dependent manner. The specific IgY had significantly enhanced the phagocytosis activity of macrophages and resulted in rapid bacterial clearance. Anti-A. hydrophila IgY antibodies significantly increased macrophage mediated respiratory burst, including nitric oxide and superoxide anion production and subsequently killed the pathogen. Histopathological studies of intestine and spleen from vaccinated blunt-snout bream challenged with A. hydrophila showed the structural integrity of the organs was maintained intact from the bacterial injury. In addition, the prophylactic and therapeutic immunization, protected the blunt snout bream and the survival is approximately about 60% and 50%, respectively. These data suggest that specific IgY has the potential for protecting blunt snout bream against A. hydrophila infection and show promise for the future development of harmless vaccines.
Collapse
Affiliation(s)
- Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Ningqiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology Guangdong Province, Guangzhou, Guangdong, 510380, China
| | - Tairan Fu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lizhu Yi
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
31
|
Tian Y, Chen T, Huang W, Luo P, Huo D, Yun L, Hu C, Cai Y. A new L-type lectin (LvLTLC1) from the shrimp Litopenaeus vannamei facilitates the clearance of Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2018; 73:185-191. [PMID: 29246810 DOI: 10.1016/j.fsi.2017.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
According to structures and functions of lectins found in shrimp, they are classified into seven types, namely, L-type, C-type, P-type, M-type, galectins, fibrinogen-like domain lectins, and calnexin/calreticulin. Until now, the researches of shrimp lectins are mainly focused on C-type lectins. In this study, we identified a new L-type lectin, designated as LvLTLC1, from the shrimp Litopenaeus vannamei. The cDNA of LvLTLC1 is 1184 bp with an open reading frame of 990 bp encoding a protein of 329 amino acids. The LvLTLC1 protein contained a putative signal peptide, an L-type lectin-like domain, and a transmembrane helix region. Phylogenetic analysis showed that LvLTLC1 belonged to VIP36-like family. LvLTLC1 was expressed in all examined tissues but had higher expression level in gills and hepatopancreas than other tissues. LvLTLC1 expression was up-regulated after immune challenge by Vibrio harveyi and lipopolysaccharide. The recombinant LvLTLC1 agglutinated Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (V. harveyi, V. parahaemolyticus, V. alginolyticus, V. cholerae, V. vulnificus, Pseudomonas aeruginosa, P. fluorescens) in a calcium-independent manner. Recombinant LvLTLC1 exerted the ability of enhancing the clearance of V. harveyi injected in shrimp. Our results indicated that LvLTLC1 functions in anti-pathogen innate immunity of shrimp.
Collapse
Affiliation(s)
- Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China.
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Yiming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| |
Collapse
|
32
|
Anjugam M, Vaseeharan B, Iswarya A, Amala M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. A study on β-glucan binding protein (β-GBP) and its involvement in phenoloxidase cascade in Indian white shrimp Fenneropenaeus indicus. Mol Immunol 2017; 92:1-11. [DOI: 10.1016/j.molimm.2017.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022]
|
33
|
Qi C, Wang L, Liu M, Jiang K, Wang M, Zhao W, Wang B. Transcriptomic and morphological analyses of Litopenaeus vannamei intestinal barrier in response to Vibrio paraheamolyticus infection reveals immune response signatures and structural disruption. FISH & SHELLFISH IMMUNOLOGY 2017; 70:437-450. [PMID: 28889014 DOI: 10.1016/j.fsi.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The white shrimp Litopenaeus vannamei has been greatly impacted by Vibrio infection. In this study, we investigated the intestinal barrier response of L vannamei following challenge with Vibrio parahaemolyticus E1, by examining morphological changes and transcriptome expression levels. A total of 16,4420 unigenes were obtained from RNAseq data after quality control and assembly, and 4646 differentially expressed genes (DEGs) were identified following Vibrio challenge, of which 2469 unigenes were significantly up-regulated and 2177 were significantly down-regulated. DEGs were determined to be involved in various physical, chemical and immunological intestinal barrier functions, including peritrophin, cytoskeleton and cell junction, pattern recognition receptors, antimicrobial peptide and immune signaling pathways, serine protease/protease inhibitor and prophenoloxidase system, apoptosis and phagocytosis, and antioxidant systems. Fifteen DEGs were randomly selected for validation by real-time quantitative PCR (RT-qPCR) and showed results consistent with the RNA-seq data. Intestinal epithelial cell morphology was also affected by Vibrio challenge, showing epithelial detachment, nuclear pyknosis, and destruction of cell junctions. These results improve our current understanding of the intestinal barrier function in the shrimp response to bacterial infection.
Collapse
Affiliation(s)
- Cancan Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Mei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Keyong Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wei Zhao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Baojie Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
34
|
Tetreau G, Pinaud S, Portet A, Galinier R, Gourbal B, Duval D. Specific Pathogen Recognition by Multiple Innate Immune Sensors in an Invertebrate. Front Immunol 2017; 8:1249. [PMID: 29051762 PMCID: PMC5633686 DOI: 10.3389/fimmu.2017.01249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Detection of pathogens by all living organisms is the primary step needed to implement a coherent and efficient immune response. This implies a mediation by different soluble and/or membrane-anchored proteins related to innate immune receptors called PRRs (pattern-recognition receptors) to trigger immune signaling pathways. In most invertebrates, their roles have been inferred by analogy to those already characterized in vertebrate homologs. Despite the induction of their gene expression upon challenge and the presence of structural domains associated with the detection of pathogen-associated molecular patterns in their sequence, their exact role in the induction of immune response and their binding capacity still remain to be demonstrated. To this purpose, we developed a fast interactome approach, usable on any host–pathogen couple, to identify soluble proteins capable of directly or indirectly detecting the presence of pathogens. To investigate the molecular basis of immune recognition specificity, different pathogens (Gram-positive bacterium, Micrococcus luteus; Gram-negative, Escherichia coli; yeast, Saccharomyces cerevisiae; and metazoan parasites, Echinostoma caproni or Schistosoma mansoni) were exposed to hemocyte-free hemolymph from the gastropod Biomphalaria glabrata. Twenty-three different proteins bound to pathogens were identified and grouped into three different categories based on their primary function. Each pathogen was recognized by a specific but overlapping set of circulating proteins in mollusk’s hemolymph. While known PRRs such as C-type lectins were identified, other proteins not known to be primarily involved in pathogen recognition were found, including actin, tubulin, collagen, and hemoglobin. Confocal microscopy and specific fluorescent labeling revealed that extracellular actin present in snail hemolymph was able to bind to yeasts and induce their clotting, a preliminary step for their elimination by the snail immune system. Aerolysin-like proteins (named biomphalysins) were the only ones involved in the recognition of all the five pathogens tested, suggesting a sentinel role of these horizontally acquired toxins. These findings highlight the diversity and complexity of a highly specific innate immune sensing system. It paves the way for the use of such approach on a wide range of host–pathogen systems to provide new insights into the specificity and diversity of immune recognition by innate immune systems.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Silvain Pinaud
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
35
|
Lai AG, Aboobaker AA. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 2017; 18:389. [PMID: 28521727 PMCID: PMC5437397 DOI: 10.1186/s12864-017-3769-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. RESULTS Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. CONCLUSION Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|