1
|
Shi L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, Wang X, Huang H, Zhang J, Zhang J, Yan Q. Role of the Pseudomonas plecoglossicida fliL gene in immune response of infected hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2024; 15:1415744. [PMID: 39026675 PMCID: PMC11254626 DOI: 10.3389/fimmu.2024.1415744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomonas plecoglossicida, a gram-negative bacterium, is the main pathogen of visceral white-point disease in marine fish, responsible for substantial economic losses in the aquaculture industry. The FliL protein, involved in torque production of the bacterial flagella motor, is essential for the pathogenicity of a variety of bacteria. In the current study, the fliL gene deletion strain (ΔfliL), fliL gene complement strain (C-ΔfliL), and wild-type strain (NZBD9) were compared to explore the influence of the fliL gene on P. plecoglossicida pathogenicity and its role in host immune response. Results showed that fliL gene deletion increased the survival rate (50%) and reduced white spot disease progression in the hybrid groupers. Moreover, compared to the NZBD9 strain, the ΔfliL strain was consistently associated with lower bacterial loads in the grouper spleen, head kidney, liver, and intestine, coupled with reduced tissue damage. Transcriptomic analysis identified 2 238 differentially expressed genes (DEGs) in the spleens of fish infected with the ΔfliL strain compared to the NZBD9 strain. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were significantly enriched in seven immune system-associated pathways and three signaling molecule and interaction pathways. Upon infection with the ΔfliL strain, the toll-like receptor (TLR) signaling pathway was activated in the hybrid groupers, leading to the activation of transcription factors (NF-κB and AP1) and cytokines. The expression levels of proinflammatory cytokine-related genes IL-1β, IL-12B, and IL-6 and chemokine-related genes CXCL9, CXCL10, and CCL4 were significantly up-regulated. In conclusion, the fliL gene markedly influenced the pathogenicity of P. plecoglossicida infection in the hybrid groupers. Notably, deletion of fliL gene in P. plecoglossicida induced a robust immune response in the groupers, promoting defense against and elimination of pathogens via an inflammatory response involving multiple cytokines.
Collapse
Affiliation(s)
- Lian Shi
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
2
|
Anton BJ, Cornelius Ruhs E, White AM, Dehnert GK. Elucidating the effects of acute and chronic exposure to 2,4-Dichlorophenoxyacetic acid on fathead minnow (Pimephales promelas) innate immunity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106571. [PMID: 37207488 DOI: 10.1016/j.aquatox.2023.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Aquatic herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D) formulations, are commonly used for invasive species management throughout the United States. Ecologically relevant concentrations of 2,4-D can impair essential behaviors, reduce survival, and act as an endocrine disruptor; however, there is limited knowledge of its effects on the health of non-target organisms. Here, we investigate the acute and chronic exposure impacts of 2,4-D on adult male and female fathead minnow (Pimephales promelas) innate immune function. We exposed both adult male and female fathead minnows to three different ecologically relevant concentrations of 2,4-D (0.00, 0.40, and 4.00 mg/L) and took blood samples at three acute time points (6, 24, and 96 h) and one chronic time point (30 days). We found that male fatheads had higher total white blood cell concentrations when exposed to 2,4-D at the acute time points. For the females, only proportions of specific cell types were altered when exposed to 2,4-D at the acute time points. However, we did not observe any significant impacts of chronic exposure to 2,4-D on any innate immune responses for either males or females. Overall, this study is the first step in answering an important question for game fisheries and management agencies while providing insight to future studies that investigate the impacts of herbicide exposure to freshwater fish health and immunity.
Collapse
Affiliation(s)
- Brian J Anton
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI 53706, United States
| | - Emily Cornelius Ruhs
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, United States; Grainger Bioinformatics Center, The Field Museum of Natural History, Chicago, IL, United States
| | - Amber M White
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI 53706, United States
| | - Gavin K Dehnert
- Aquatic Science Center, Wisconsin Sea Grant, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Pan C, Zhu Y, Cao K, Li J, Wang S, Zhu J, Zeng X, Zhang H, Qin Z. Transcriptome, intestinal microbiome and histomorphology profiling of differences in the response of Chinese sea bass ( Lateolabrax maculatus) to Aeromonas hydrophila infection. Front Microbiol 2023; 14:1103412. [PMID: 36910190 PMCID: PMC9998533 DOI: 10.3389/fmicb.2023.1103412] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
The Chinese sea bass (Lateolabrax maculatus) is an important aquaculture fish, but diseases caused by Aeromonas hydrophila have led to severe economic losses to the aquaculture industry in recent years. To date, only a few studies have focused on the relationship between the intestinal immune response and changes in intestinal microbes by A. hydrophila infection. Here, we report the transcriptome and intestinal changes in infected sea bass. Histopathological results showed that severe steatosis and vacuolation occurred in the liver and that the intestinal villi and mesentery were seriously affected after infection. By extracting total RNA from intestinal tissue and studying the transcriptome profile, 1,678 genes (1,013 upregulated and 665 downregulated) were identified as significantly differentially expressed genes (DEGs). These genes are involved in many immune-related signalling pathways, such as the NOD-like receptor, C-type lectin receptor, and Toll-like receptor signalling pathways. Moreover, the intestinal microbes of sea bass changed significantly after infection. Interestingly, at the genus level, there was an increase in Serratia, Candida arthromitus and Faecalibacterium as well as a decrease in Akkermansia and Parabacteroides after infection. The results also indicated that some of the DEGs involved in the immune response were related to the genus level of intestinal microbiota. Finally, there was a relationship between gene expression patterns and the bacterial structure in the host intestine. Our study provides a reference for the study of the immune response and particular functions of intestinal microbes of sea bass after pathogen infection.
Collapse
Affiliation(s)
- Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Kaixin Cao
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Juexian Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Siyu Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Jiahua Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Xiaoman Zeng
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.,College of Education for the Future, Beijing Normal University, Zhuhai, Guangdong, China.,Faculty of Art and Science, Beijing Normal University, Zhuhai, Guangdong, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| |
Collapse
|
4
|
Jayathilaka EHTT, Edirisinghe SL, Lee J, Nikapitiya C, De Zoysa M. Isolation and characterization of plasma-derived exosomes from olive flounder (Paralichthys olivaceus) and their wound healing and regeneration activities. FISH & SHELLFISH IMMUNOLOGY 2022; 128:196-205. [PMID: 35932983 DOI: 10.1016/j.fsi.2022.07.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Exosomes have garnered enormous interest for their role in physiological and pathological processes and their potential for therapeutic and diagnostic applications. In this study, exosomes were isolated from plasma of olive flounder (Paralichthys olivaceus) and their physiochemical and morphological characteristics, as well as wound healing and regeneration activities were determined. Isolated exosomes had typical characteristics, including average particle diameter (151.82 ± 9.17 nm), concentration (6.31 × 1010 particles/mL) with a membrane-bound, cup-shaped morphology. Exosome marker proteins, tetraspanins (CD63, CD9, and CD81), and acetylcholinesterase were detected, indicating the presence of exosomes in olive flounder plasma. Exosomes exhibited no toxicity in in vitro and in vivo studies, even at the highest treatment concentrations (100 and 400 μg/mL, respectively), confirming their suitability for further functional studies. Following exosome treatment (50 and 100 μg/mL), substantial cell migration with rapid closure of the open wound area in in vitro scratch wound healing assay and faster zebrafish larvae fin regeneration rate was observed compared to that of the vehicle. Moreover, exosomes exhibited immunomodulatory properties associated with wound healing, based on mRNA expression patterns in fathead minnow (FHM) cells. In conclusion, exosomes isolated from olive flounder plasma using ultracentrifugation exhibited minimal toxicity and enhanced wound healing and tissue regeneration activities. Identification and in-depth investigation of olive flounder plasma-derived exosome constituents will support the development of exosomes as an efficient therapeutic carrier system for fish medicine in the future.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Shan Lakmal Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Developmental thyroid disruption causes long-term impacts on immune cell function and transcriptional responses to pathogen in a small fish model. Sci Rep 2021; 11:14496. [PMID: 34262125 PMCID: PMC8280131 DOI: 10.1038/s41598-021-93929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
Current evidence suggests thyroid hormones (THs) impact development of the immune system, but few studies have explored the connection between the thyroid and immune systems, especially in fish. This is important as some environmental contaminants disrupt TH homeostasis and may thus have negative impacts on the immune system. To determine the long-term consequences of early life stage (ELS) hypothyroidism on immune function, fathead minnows were exposed to the model thyroid hormone suppressant propylthiouracil (PTU) from < 1 to 30 days post hatch. Fish were transferred to clean water and raised to adulthood (5-7 months post hatch) at which time, several aspects of immune function were evaluated. Ex vivo assessment of immune cell function revealed significant decreases (1.2-fold) in the phagocytic cell activity of PTU-treated fish relative to the controls. Fish were also injected with Yersinia ruckeri to evaluate their in vivo immune responses across a suite of endpoints (i.e., transcriptomic analysis, leukocyte counts, spleen index, hematocrit, bacterial load and pathogen resistance). The transcriptomic response to infection was significantly different between control and PTU-treated fish, though no differences in bacterial load or pathogen resistance were noted. Overall, these results suggest that early life stage TH suppression causes long-term impacts on immune function at the molecular and cellular levels suggesting a key role for TH signaling in normal immune system development. This study lays the foundation for further exploration into thyroid-immune crosstalk in fish. This is noteworthy as disruption of the thyroid system during development, which can occur in response to chemicals present in the environment, may have lasting effects on immune function in adulthood.
Collapse
|
6
|
Ikert H, Lynch MDJ, Doxey AC, Giesy JP, Servos MR, Katzenback BA, Craig PM. High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress. Front Physiol 2021; 11:588313. [PMID: 33519501 PMCID: PMC7838646 DOI: 10.3389/fphys.2020.588313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs; however, external miRNAs have never been measured in fish. The objective of this study was to identify the altered plasma miRNAs in response to acute stress in rainbow trout (Oncorhynchus mykiss), as well as altered miRNAs in fish epidermal mucus and the surrounding ambient water. Small RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout pre- and 1 h-post a 3-min air stressor. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression 1-h post air stress. The expressed miRNA profiles in mucus and water were different from the altered plasma miRNA profile, which indicated that the plasma miRNA response was not associated with or immediately reflected in external samples, which was further validated through qPCR. This research expands understanding of the role of plasma miRNA in the acute stress response of fish and is the first report of successful isolation and profiling of miRNA from fish mucus or samples of ambient water. Measurements of miRNA from plasma, mucus, or water can be further studied and have potential to be applied as non-lethal indicators of acute stress in fish.
Collapse
Affiliation(s)
- Heather Ikert
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Paul M. Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Elizalde-Velázquez A, Crago J, Zhao X, Green MJ, Cañas-Carrell JE. In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139461. [PMID: 32470671 DOI: 10.1016/j.scitotenv.2020.139461] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastics (1-100 nm) are potentially the most hazardous litter in the environment. Recent scientific studies have documented their toxic effects at the cellular and molecular levels, but knowledge underlying mechanisms of their toxicity is still scarce. Nanoplastics are known for their ability to induce immune and inflammatory responses as well as generating reactive oxygen species. While some studies have addressed the immunotoxicity of nanoplastics in vitro and on in vivo in fish after intraperitoneal injection, no information is available on adult fish after ingestion of a contaminated prey. The present study is the first to attempt to address the immunotoxicity of nanoplastics in adult fish after trophic transfer. Pimephales promelas is a well-established bioindicator species to study the immunotoxicity of nanoparticles and the innate immune responses of fish. This study aims to assess the in vivo innate immune response of adult P. promelas following exposure to polystyrene nanoplastics by measuring the gene expression of ncf, nox2, mst1 and c3; these genes are related with the immune function of neutrophils, macrophages and complement in fish. Two target organs (liver and head kidney) and two routes of exposure (IP- injection and ingestion) were analyzed. After 48 h of exposure, polystyrene nanoplastics were encountered in the liver and kidney of both IP-injection and ingestion exposed fish, and significantly affected the innate immune system of P. promelas by downregulating the gene expression ncf, mst1, and c3 in liver and kidney. Significant difference between treatments was only observed for the gene expression of nfc in liver. Results of this study indicate that polystyrene nanoplastics can exhibit immunotoxicity in fish through an environmentally relevant route of exposure, interfering with the synthesis and function of neutrophils, macrophages, and complement of P. promelas in their principal hematopoietic tissues, which may potentially compromise its ability to survive in nature.
Collapse
Affiliation(s)
- Armando Elizalde-Velázquez
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Jordan Crago
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Xiaofei Zhao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
8
|
Wang D, Wang S, Bai L, Nasir MS, Li S, Yan W. Mathematical Modeling Approaches for Assessing the Joint Toxicity of Chemical Mixtures Based on Luminescent Bacteria: A Systematic Review. Front Microbiol 2020; 11:1651. [PMID: 32849340 PMCID: PMC7412757 DOI: 10.3389/fmicb.2020.01651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
Developments in industrial applications inevitably accelerate the discharge of enormous substances into the environment, whereas multi-component mixtures commonly cause joint toxicity which is distinct from the simple sum of independent effect. Thus, ecotoxicological assessment, by luminescent bioassays has recently brought increasing attention to overcome the environmental risks. Based on the above viewpoint, this review included a brief introduction to the occurrence and characteristics of toxic bioassay based on the luminescent bacteria. In order to assess the environmental risk of mixtures, a series of models for the prediction of the joint effect of multi-component mixtures have been summarized and discussed in-depth. Among them, Quantitative Structure-Activity Relationship (QSAR) method which was widely applied in silico has been described in detail. Furthermore, the reported potential mechanisms of joint toxicity on the luminescent bacteria were also overviewed, including the Trojan-horse type mechanism, funnel hypothesis, and fishing hypothesis. The future perspectives toward the development and application of toxicity assessment based on luminescent bacteria were proposed.
Collapse
Affiliation(s)
- Dan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Shan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Linming Bai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China.,Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
9
|
Li J, Xue L, Cao M, Zhang Y, Wang Y, Xu S, Zheng B, Lou Z. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1255-1277. [PMID: 32162151 DOI: 10.1007/s10695-020-00786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12 ppt as low salinity, 22 ppt as control salinity, and 32 ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with the control group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.
Collapse
Affiliation(s)
- Juan Li
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yu Zhang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Baoxiao Zheng
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Zhengjia Lou
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Thornton Hampton LM, Martyniuk CJ, Venables BJ, Sellin Jeffries MK. Advancing the fathead minnow (Pimephales promelas) as a model for immunotoxicity testing: Characterization of the renal transcriptome following Yersinia ruckeri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 103:472-480. [PMID: 32439514 DOI: 10.1016/j.fsi.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have utilized the fathead minnow (Pimephales promelas) to explore the immunotoxic effects associated with a variety of environmental contaminants in the absence of immunological stimuli. Though this approach allows for alterations in the resting immune system to be detected, previous evidence suggests that many immunotoxic effects may only manifest in the activated immune system. However, basic immune responses to pathogens have not been well described in this species. To expand the utility of the fathead minnow as a model for immunotoxicity testing, a more comprehensive understanding of the activated immune system is required. As such, the main goal of this study was to characterize the transcriptomic response to pathogen infection in the fathead minnow using RNA sequencing. To achieve this goal, female fathead minnows were intraperitoneally injected with either Hank's Balanced Salt Solution (sham-injected) or Yersinia ruckeri (pathogen-injected). Eight hours following injection, fish were sacrificed for the assessment of general morphological (i.e., mass, length, condition factor, hepatic index) and immunological (i.e., leukocyte counts, spleen index) endpoints. To assess the molecular immune response to Y. ruckeri, kidney tissue was collected for transcriptomic analysis. A comparison of sham- and pathogen-injected fish revealed that >1800 genes and >500 gene networks were differentially expressed.Gene networks associated with inflammation, innate immunity, complement, hemorrhaging and iron absorption are highlighted and their utility within the context of immunotoxicity is discussed. These data reveal pathogen-related molecular endpoints to improve data interpretation of future studies utilizing the fathead minnow as a model for immunotoxicity.
Collapse
Affiliation(s)
- Leah M Thornton Hampton
- Department of Biology, Texas Christian University, Fort Worth, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
11
|
Hampton LMT, Jeffries MKS, Venables BJ. A practical guide for assessing respiratory burst and phagocytic cell activity in the fathead minnow, an emerging model for immunotoxicity. MethodsX 2020; 7:100992. [PMID: 32714851 PMCID: PMC7369328 DOI: 10.1016/j.mex.2020.100992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Measures of respiratory burst and phagocytic cell activity are frequently utilized to assess cellular immune function in teleosts. Respiratory burst predominately occurs in neutrophils and causes the release of reactive oxygen species to kill pathogens. Phagocytosis is the process by which pathogens are engulfed and destroyed by various immune cells. Though a variety of approaches have been utilized to measure respiratory burst and phagocytic cell activity, assays that rely only on common laboratory equipment (e.g., plate reader) may offer advantages over those that rely on more specialized equipment (e.g., flow cytometer). The goal of the current study was to optimize and validate the use of a colorimetric plate-based respiratory burst and fluorometric plate-based phagocytic cell activity assays for use with kidney cells from the fathead minnow (Pimephales promelas), an emerging immunotoxicity model. In addition, a protocol for the dissection of kidney tissue followed by the extraction of kidney cells, as well as recommendations and resources for future experiments utilizing each of these assays, are provided.All methods are optimized for use with the fathead minnow or similar teleost species. Respiratory burst and phagocytic cell activity are measured using a standard plate reader.
Collapse
Affiliation(s)
- Leah M Thornton Hampton
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.,Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | | | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
12
|
Thornton LM, Path EM, Nystrom GS, Venables BJ, Sellin Jeffries MK. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas). FISH & SHELLFISH IMMUNOLOGY 2018; 80:80-87. [PMID: 29859315 DOI: 10.1016/j.fsi.2018.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Exposures to polybrominated diphenyl ethers (PBDEs) have been shown to alter immune function in adult organisms across a variety of taxa. However, few if any studies have investigated the long-term consequences of early life stage PBDE exposures on immune function in fish. This study sought to determine the effects of early life stage BDE-47 exposure on pathogen resistance in the fathead minnow (Pimephales promelas) following an extended depuration period (≥180 d). Minnows were exposed to BDE-47 via a combination of maternal transfer and diet through 34 days post fertilization (dpf), raised to adulthood (>215 dpf) on a clean diet, then subjected to pathogen resistance trials. Early life stage exposures to BDE-47 did not affect the ability of females to survive from Yersinia ruckeri infection. However, the survival of BDE-47 exposed males was significantly reduced relative to controls, indicating that developmental exposures to BDE-47 altered male immunity. Because BDE-47 is a known thyroid hormone disruptor and thyroid hormone disruptors have the potential to adversely impact immune development and function, metrics indicative of thyroid disruption were evaluated, as were immune parameters known to be altered in response to thyroid disruption. BDE-47 exposed minnows exhibited signs of thyroid disruption (i.e., reduced growth); however, no alterations were observed in immune parameters known to be influenced by thyroid hormones (i.e., thymus size, expression of genes associated with lymphoid development) suggesting that the observed alterations in immunocompetence may occur through alternative mechanisms. Regardless of the mechanisms responsible, the results of this study demonstrate the potential for early life stage PBDE exposures to adversely impact immunity and illustrate that the immunological consequences of PBDE exposures are sex dependent.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elise M Path
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Gunnar S Nystrom
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|