1
|
Hou T, Tang Z, Wang Z, Li C. Evaluation of the potential probiotic Bacillus subtilis isolated from darkbarbel catfish (Pelteobagrus fulvidraco) on growth performance, serum immunity, and disease resistance of Aeromonas hydrophila. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39269714 DOI: 10.1111/jfb.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024]
Abstract
This study aimed to identify potential probiotic strains of Bacillus subtilis from healthy fish gut microbiota for application in aquaculture. The effects of dietary B. subtilis administration on growth performance, serum enzyme activity, immune gene expression, and disease resistance in darkbarbel catfish (Pelteobagrus fulvidraco) were investigated. The isolate, identified through gene sequencing and biochemical tests, demonstrated resilience to pH 3.0% and 6.0% bile, and exhibited extracellular protease, cellulose, lipase, and amylase production. Darkbarbel catfish were fed diets with varying B. subtilis concentrations (0 CFU/kg [T0], 107 CFU/kg [T1], 108 CFU/kg [T2], and 109 CFU/kg [T3]). After 8 weeks, significant increases (p < 0.05) were observed in final body weight, weight gain rate, specific growth rate, serum lysozyme, serum superoxide dismutase, alkaline phosphatase, and total antioxidant capacity, whereas malondialdehyde levels significantly decreased. Feeding darkbarbel catfish with B. subtilis diets increased immunoglobulin M (IgM) and C3 gene expression (p < 0.05), indicating a positive impact on the fish's immune system. The strain upregulated interleukin 10 (IL-10) and transforming growth factor-β (TGF-β) expression and downregulated TNF-α and IL-1β, suggesting potential anti-inflammatory effects. Following a 7-day challenge with Aeromonas hydrophila, fish fed with B. subtilis exhibited lower mortality, with higher survival rates in the T2 and T3 groups. In conclusion, supplementing darkbarbel catfish diets with B. subtilis effectively enhances growth performance, immune response, and disease resistance.
Collapse
Affiliation(s)
- Tinglong Hou
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhengxian Tang
- College of Fisheries, Southwest University, Chongqing, China
| | - Zuobo Wang
- Guizhou Academy of Forestry, Guizhou, China
| | - Chuntao Li
- College of Biology and Agriculture, Zunyi Normal College, Zunyi, China
| |
Collapse
|
2
|
Marin E, Kornilov DA, Bukhdruker SS, Aleksenko VA, Manuvera VA, Zinovev EV, Kovalev KV, Shevtsov MB, Talyzina AA, Bobrovsky PA, Kuzmichev PK, Mishin AV, Gushchin IY, Lazarev VN, Borshchevskiy VI. Structural insights into thrombolytic activity of destabilase from medicinal leech. Sci Rep 2023; 13:6641. [PMID: 37095116 PMCID: PMC10126035 DOI: 10.1038/s41598-023-32459-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Destabilase from the medical leech Hirudo medicinalis belongs to the family of i-type lysozymes. It has two different enzymatic activities: microbial cell walls destruction (muramidase activity), and dissolution of the stabilized fibrin (isopeptidase activity). Both activities are known to be inhibited by sodium chloride at near physiological concentrations, but the structural basis remains unknown. Here we present two crystal structures of destabilase, including a 1.1 Å-resolution structure in complex with sodium ion. Our structures reveal the location of sodium ion between Glu34/Asp46 residues, which were previously recognized as a glycosidase active site. While sodium coordination with these amino acids may explain inhibition of the muramidase activity, its influence on previously suggested Ser49/Lys58 isopeptidase activity dyad is unclear. We revise the Ser49/Lys58 hypothesis and compare sequences of i-type lysozymes with confirmed destabilase activity. We suggest that the general base for the isopeptidase activity is His112 rather than Lys58. pKa calculations of these amino acids, assessed through the 1 μs molecular dynamics simulation, confirm the hypothesis. Our findings highlight the ambiguity of destabilase catalytic residues identification and build foundations for further research of structure-activity relationship of isopeptidase activity as well as structure-based protein design for potential anticoagulant drug development.
Collapse
Affiliation(s)
- Egor Marin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Valentin A Manuvera
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Egor V Zinovev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Anna A Talyzina
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Pavel A Bobrovsky
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alexey V Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Y Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vassili N Lazarev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valentin I Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
- Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
3
|
Dong ZR, Mu QJ, Kong WG, Qin DC, Zhou Y, Wang XY, Cheng GF, Luo YZ, Ai TS, Xu Z. Gut mucosal immune responses and protective efficacy of oral yeast Cyprinid herpesvirus 2 (CyHV-2) vaccine in Carassius auratus gibelio. Front Immunol 2022; 13:932722. [PMID: 35967417 PMCID: PMC9373009 DOI: 10.3389/fimmu.2022.932722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) causes herpesviral hematopoietic necrosis (HVHN) disease outbreaks in farmed Cyprinid fish, which leads to serious economic losses worldwide. Although oral vaccination is considered the most suitable strategy for preventing infectious diseases in farmed fish, so far there is no commercial oral vaccine available for controlling HVNN in gibel carp (C. auratus gibelio). In the present study, we developed for the first time an oral vaccine against CyHV-2 by using yeast cell surface display technology and then investigated the effect of this vaccine in gibel carp. Furthermore, the protective efficacy was evaluated by comparing the immune response of a single vaccination with that of a booster vaccination (booster-vaccinated once 2 weeks after the initial vaccination). Critically, the activities of immune-related enzymes and genes expression in vaccine group, especially in the booster vaccine group, were higher than those in the control group. Moreover, strong innate and adaptive immune responses could be elicited in both mucosal and systemic tissues after receipt of the oral yeast vaccine. To further understand the protective efficacy of this vaccine in gibel carp, we successfully developed the challenge model with CyHV-2. Our results showed the relative percent survival was 66.7% in the booster vaccine group, indicating this oral yeast vaccine is a promising vaccine for controlling CyHV-2 disease in gibel carp aquaculture.
Collapse
Affiliation(s)
- Zhao-Ran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing-Jiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei-Guang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Da-Cheng Qin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xin-You Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang-Zhi Luo
- Wuhan Chopper Fishery Bio-Tech Co., Ltd, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Tao-Shan Ai
- Wuhan Chopper Fishery Bio-Tech Co., Ltd, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhen Xu,
| |
Collapse
|
4
|
Li C, Xing X, Qi H, Liu Y, Jian F, Wang J. The arachidonic acid and its metabolism pathway play important roles for Apostichopus japonicus infected by Vibrio splendens. FISH & SHELLFISH IMMUNOLOGY 2022; 125:152-160. [PMID: 35561951 DOI: 10.1016/j.fsi.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Improving the immune ability and guiding healthy culture for sea cucumber by purposefully screening the significant differential metabolites when Apostichopus japonicus (A. japonicus) is infected by pathogens is important. In this study, 35 types of significant differential metabolites appeared when A. japonicus were infected by Vibrio splendens (VSI group) compared with the control A. japonicus group (CK group) by using liquid chromatography-mass spectrometry (LC-MS/MS)-based untargeted metabolomics. Based on that finding, the 10 types of key metabolic pathways were analyzed by MetPA. The "arachidonic acid (ARA) metabolism" pathway, which was screened by three elevated biomarkers: ARA, prostaglandin F2α and 2-arachidonoyl glycerol, had an important impact on immune stress in A. japonicus. Due to the similar changes in several metabolites in its metabolic pathway, the ARA metabolic pathway was selected for further study. The activities of ACP, AKP and lysozyme, which are important innate immune-related enzymes, the survival rates of A. japonicus infected with V. splendidus and the relative content of ARA in the body wall detected by GC-MS were all upregulated significantly by exogenous daily 0.60% and 1.09% ARA consumption over a short period of approximately 7 days. These results demonstrated that ARA and its metabolic pathway indeed played important roles in the immunity of A. japonicus infected by the pathogen. The findings also provide novel insights for the effects of metabolites in A. japonicum healthy culture.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China.
| | - Xuan Xing
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Hongqing Qi
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Ying Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Fanjie Jian
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Jihui Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| |
Collapse
|
5
|
Jiang L, Li Y, Wang L, Guo J, Liu W, Meng G, Zhang L, Li M, Cong L, Sun M. Recent Insights Into the Prognostic and Therapeutic Applications of Lysozymes. Front Pharmacol 2021; 12:767642. [PMID: 34925025 PMCID: PMC8678502 DOI: 10.3389/fphar.2021.767642] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lysozymes are naturally occurring enzymes present in a variety of biological organisms, such as bacteria, fungi, and animal bodily secretions and tissues. It is also the main ingredient of many ethnomedicines. It is well known that lysozymes and lysozyme-like enzymes can be used as anti-bacterial agents by degrading bacterial cell wall peptidoglycan that leads to cell death, and can also inhibit fungi, yeasts, and viruses. In addition to its direct antimicrobial activity, lysozyme is also an important component of the innate immune system in most mammals. Increasing evidence has shown the immune-modulatory effects of lysozymes against infection and inflammation. More recently, studies have revealed the anti-cancer activities of lysozyme in multiple types of tumors, potentially through its immune-modulatory activities. In this review, we summarized the major functions and underlying mechanisms of lysozymes derived from animal and plant sources. We highlighted the therapeutic applications and recent advances of lysozymes in cancers, hypertension, and viral diseases, aiming toseeking alternative therapies for standard medical treatment bypassing side effects. We also evaluated the role of lysozyme as a promising cancer marker for prognosis to indicate the outcomes recurrence for patients.
Collapse
Affiliation(s)
- Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yunhe Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Jian Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lei Zhang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lina Cong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
6
|
Angela C, Wang W, Lyu H, Zhou Y, Huang X. The effect of dietary supplementation of Astragalus membranaceus and Bupleurum chinense on the growth performance, immune-related enzyme activities and genes expression in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 107:379-384. [PMID: 33059009 DOI: 10.1016/j.fsi.2020.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
A 56-day feeding trial was conducted to investigate the effects of dietary supplementation of Astragalus membranaceus or/and Bupleurum chinense on the growth performance, immune enzymes, and related gene expression of Pacific white shrimp (Litopenaeus vanammei). Six experimental diets were formulated and supplemented with two levels (0.25% and 0.5%) of each herb and their combination. At the end of the trial, the specific growth rate and feed conversion ratio of shrimp were significantly (P < 0.05) improved by herbal diets. Besides, the activities of immune-related enzymes such as superoxide dismutase (SOD), alkaline phosphatase (AKP), and lysozyme in serum and hepatopancreas were significantly (P < 0.05) elevated in shrimp fed A. membranaceus or/and B. chinense. The high expression levels of immune deficiency (IMD), lysozyme, and Toll-like receptor mRNA directly or indirectly reflected the activation effect of innate immune in shrimp by dietary A. membranaceus or/and B. chinense. However, no significant difference (P > 0.05) among the herbal incorporated treatments was detected on the growth performance and immune response. In conclusion, the results suggest that A. membranaceus and B. chinense could be used as a beneficial feed additives and alternatives to antibiotics for white shrimp aquaculture.
Collapse
Affiliation(s)
- Cornel Angela
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Weilong Wang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Hongyu Lyu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Yue Zhou
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China.
| |
Collapse
|
7
|
El Euony OI, Elblehi SS, Abdel-Latif HM, Abdel-Daim MM, El-Sayed YS. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23108-23128. [PMID: 32333347 DOI: 10.1007/s11356-020-08588-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Thiamethoxam (TMX) is a widely used neonicotinoid insecticide for its effective potential for controlling insects from the agricultural field, which might induce toxicity to the aquatic biota. In this study, the role of the probiotic Bacillus subtilis (BS) and a phytogenic oil extract of Thymus vulgaris essential oil (TVEO) in the modulation of thiamethoxam (TMX)-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus) has been evaluated. Fish were subjected to TMX (5 mg L-1) and fed with a diet either supplemented with BS (1000 ppm) or TVEO (500 ppm). The experiment lasted for 1 month. By the end of the experiment, blood was sampled for biochemical analysis and fish organs and tissues were collected for histopathological and immunohistochemical examinations. Results showed a substantial increase of serum markers of hepatorenal damage such as the activities of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) and levels of blood urea nitrogen (BUN) and creatinine with an obvious decrease of serum protein levels in the TMX-intoxicated group. Also, there was a considerable increase in malondialdehyde (MDA) levels and glutathione-S-transferase (GST) activity. TMX remarkably suppressed serum lysozyme activity, respiratory burst activity, and phagocytosis with a conspicuous elevation of the levels of interleukins (interleukin-1 beta (IL-1β) and interleukin-6 IL-6). The histopathological findings showed that TMX induced degenerative changes and necrosis in the gills, liver, head kidneys, and spleen of the intoxicated fish. Significant alterations of frequency, size, and area percentage of melanomacrophage centers (MMCs), decreased splenocyte proliferation, and increased number of caspase-3 immunopositive cells were also observed. Contrariwise, the concurrent supplementation of either BS or TVEO in the diets of catfish partially mitigated both the histopathological and histomorphometric lesions of the examined tissues. Correspondingly, they improved the counts of proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive splenocytes. In conclusion, the co-administration of either BS or TVEO in catfish diets partially diminished the toxic impacts of TMX. Nonetheless, the inclusion of TVEO in the diets of catfish elicited better protection than BS against TMX-induced toxicity in response to its potential anti-inflammatory, antioxidant, anti-apoptotic, and immune-stimulant effects.
Collapse
Affiliation(s)
- Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Hany M Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
8
|
Ren Y, Zhang J, Wang Y, Chen J, Liang C, Li R, Li Q. Non-specific immune factors differences in coelomic fluid from polian vesicle and coelom of Apostichopus japonicus, and their early response after evisceration. FISH & SHELLFISH IMMUNOLOGY 2020; 98:160-166. [PMID: 31901421 DOI: 10.1016/j.fsi.2019.12.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Coelomic fluid contains a population of coelomocytes, enzymes, nutrients and kinds of molecules that could be essential for Apostichopus japonicus live. The coelom and polian vesicle are the main tissues that hold the most coelomic fluid in the animal, but whether there exists any immunological difference of the coelomic fluid from the two tissues remains unknown. In this study, we first extracted the coelomic fluid both from the coelom and polian vesicle, and compared their non-specific immune factors. It was found that the ACP and AKP activities in the polian vesicle were significantly higher than those in the coelom, but it was contrary for the SOD and CAT. Meanwhile, the expression levels of several immune-related genes including AjC3-2, AjMKK3/6, AjTLR3 and AjToll in the polian vesicle were significantly lower than those in the coelom. Besides, the early changes of non-specific immune factors were further monitored after eviscerated. During 7 days post evisceration, the immunoenzymes activities of ACP, AKP, SOD and CAT were decreased first and then recovered gradually in the coelomic fluid from the coelom. In the polian vesicle, the ACP and AKP activities showed a similar trend with the coelom, while the SOD and CAT activities showed a transitory increase during 2 h post evisceration (hpe) to 12 hpe. Moreover, the expression profiles of the immune-related genes in the coelom reached the peak at 3 days post evisceration (dpe), while their expression levels in the polian vesicle reached the peak at 7 dpe. All the results suggested that the immunocompetence of coelomic fluid differed in the coelom and polian vesicle, and thus may exert their respective immunological functions. It was likely that the respond speed in the coelom would be faster than that in the polian vesicle after evisceration. Our data will provide a basis for better understanding of the immune defense mechanism of A. japonicus.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Jialin Zhang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yinan Wang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Chen
- Liaoning Agricultural Tural Development & Service Center, Dalian, 116013, China
| | - Chunlei Liang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Ruijun Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
9
|
Yan M, Wang W, Huang X, Wang X, Wang Y. Interactive effects of dietary cholesterol and phospholipids on the growth performance, expression of immune-related genes and resistance against Vibrio alginolyticus in white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2020; 97:100-107. [PMID: 31756453 DOI: 10.1016/j.fsi.2019.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
A 56-day feeding trial was done to investigate the interactive effects of cholesterol (CHO) and phospholipids (PL) on the growth performance, immune response, expression of immune-related genes, and resistance against Vibrio alginolyticus of freshwater cultured white shrimp (Litopenaeus vannamei). A 3 × 3 experimental design was conducted with nine experimental diets containing three levels of CHO (0, 0.2%, and 0.4%) and three levels of PL (0, 2%, and 4%). The results indicated that the growth performance significantly (P < 0.05) increased with the increase in dietary CHO levels. Interactive effects between dietary CHO and PL on the growth parameters were not observed. Superoxide dismutase (SOD) and lysozyme activities were also significantly affected by dietary CHO levels. Furthermore, the interaction between these two additives was only detected in SOD activity. Shrimp fed experimental diet with CHO and PL supplementation showed better tolerance against Vibrio alginolyticus compared to the control, interactive effects (P < 0.05) were also detected on these two factors. The expression of immune deficiency (IMD) and lysozyme mRNA was up-regulated in shrimp fed diets with CHO and PL. The expression level of Toll-like receptor mRNA directly reflected the dietary CHO levels, which was not affected by dietary PL. The interaction between dietary CHO and PL was shown as the significant factor (P < 0.05) both in the expression of IMD and lysozyme mRNA, which indicated that different dietary levels of CHO and PL could strongly affect expression levels of some immune-relevant genes of the juvenile freshwater cultured L. vannamei.
Collapse
Affiliation(s)
- Minglei Yan
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Weilong Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Lingang New City, Shanghai, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, China; Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Lingang New City, Shanghai, China.
| | - Xinlei Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yi Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Di J, Chu Z, Zhang S, Huang J, Du H, Wei Q. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:711-719. [PMID: 31419532 DOI: 10.1016/j.fsi.2019.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we aimed to screen the potential probiotic Bacillus subtilis isolated from the gut of healthy fish using in vitro assays and to evaluate its effect on Dabry's sturgeon (Acipenser dabryanus) using in vivo feeding experiments. Among the isolates, B. subtilis BSth-5 and BSth-19 exhibited antimicrobial effect against four sturgeon-pathogenic bacteria, including Aeromonas hydrophila, A. veronii, A. media, and Streptococcus iniae. The cell number of B. subtilis BSth-5 and BSth-19 changed little after 2 h of exposure to pH 3.0 or fresh Dabry's sturgeon bile at 2.5% and 5.0%. Meanwhile, B. subtilis BSth-5 and BSth-19 produced extracellular protease, cellulose, and lipase. And it was proved that B. subtilis BSth-5 and BSth-19 were harmless after injection of Dabry's sturgeon. One group of Dabry's sturgeon was fed a control diet and two groups were fed experimental diets containing 2.0 × 108 CFU/g BSth-5 (T1 group) or BSth-19 (T2 group) for 8 weeks. No significant differences in final weight, weight gain rate, and special growth rate were observed in the T1 and T2 groups compared to the control group (P > 0.05), but a significant improvement in survival rate was detected after 4 and 8 weeks of feeding (P < 0.05). After 8 weeks, serum total antioxidant capacity, total superoxide dismutase activity, and IgM levels were significantly higher in the T1 and T2 groups compared to the control group (P < 0.05). Moreover, serum lysozyme activity was significantly higher in the T1 group relative to the control group during the whole experiment period (P < 0.05); however, the differences were not significant between the T2 and control groups (P > 0.05). Serum malondialdehyde levels in the T1 and T2 groups were significantly lower than those in the control group after 4 weeks (P < 0.05). Sturgeons in the T1 and T2 groups showed a higher survival rate after Aeromonas hydrophila infection. To summarize, dietary supplementation with BSth-5 and BSth-19 could enhance the survival rate, antioxidant activity, serum immunity, and disease resistance in A. dabryanus.
Collapse
Affiliation(s)
- Jun Di
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education of China, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhipeng Chu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shuhuan Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jun Huang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education of China, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
11
|
Xie JW, Cheng CH, Ma HL, Feng J, Su YL, Deng YQ, Guo ZX. Molecular characterization, expression and antimicrobial activities of a c-type lysozyme from the mud crab, Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:54-64. [PMID: 30986432 DOI: 10.1016/j.dci.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Lysozyme is an important immune protein involved in the first line of defense for crustaceans. In the present study, a c-type lysozyme gene (SpLyzC) was cloned and characterized from the mud crab, Scylla paramamosain. The full-length cDNA was 849 bp with an open reading frame of 669 bp, and encoded a polypeptide of 223 amino acids with a calculated molecular mass of 23.7 kDa and an isoelectric point of 8.90. SpLyzC shared conserved active sites with c-type lysozymes from other species, detected in all tested tissues and had higher expression levels in hepatopancreas and gill tissues. The expression of SpLyzC was up-regulated in hepatopancreas and gill after infection with Vibrio parahaemolyticus and Staphylococcus aureus. The density of bacteria in the hemolymph and the mortality of crabs increased following infection with V. parahaemolyticus after SpLyzC expression was silenced by injecting double-strand RNA of SpLyzC. The recombinant protein of the S. paramamosain c-type lysozyme (rSpLyzC) exhibited antibacterial activities against Micrococcus lysodeikticus, S. aureus, Vibrio harveyi and V. parahaemolyticus. These results indicate that SpLyzC could help eliminate bacteria in S. paramamosain and may play an important role in resistance to bacterial infection.
Collapse
Affiliation(s)
- Jia-Wei Xie
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China; Shanghai Ocean University, Shanghai, 201206, PR China
| | - Chang-Hong Cheng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Hong-Ling Ma
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - You-Lu Su
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Yi-Qin Deng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Zhi-Xun Guo
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China; Shanghai Ocean University, Shanghai, 201206, PR China.
| |
Collapse
|
12
|
Wang J, Song J, Li Y, Zhou X, Zhang X, Liu T, Liu B, Wang L, Li L, Li C. The distribution, expression of the Cu/Zn superoxide dismutase in Apostichopus japonicus and its function for sea cucumber immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 89:745-752. [PMID: 30978445 DOI: 10.1016/j.fsi.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Cu/Zn superoxide dismutases (SODs) are antioxidative metalloenzymes that exist ubiquitously in different species and are distributed widely in various tissues and cell types. In this study, the distribution and biological function of the Cu/Zn superoxide dismutase in Apostichopus japonicus (AjSOD1) is first characterized. The AjSOD1 cDNA is 1219 bp in length and contains an open reading frame (ORF) of 459 bp that encodes a protein of 152 amino acids with a deduced molecular weight of 15.47 kDa and a predicted isoelectric point of 5.65. The Cu2+/Zn2+ binding domain and conserved residues were found in the AjSOD1 amino acid sequence. A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the expression of AjSOD1 in different tissues. Spatial distribution analysis showed that AjSOD1 was constitutively expressed in all tested tissues, with strong expression in the intestine and weak expression in the respiratory tree. mRNA Expression of AjSOD1 was significantly upregulated when challenged with the pathogen Vibrio splendidus. Functional investigation revealed that recombinant AjSOD1 displayed good antioxidant activity. More importantly, the addition of AjSOD1 resulted in a significant decrease in coelomocyte apoptosis by LPS/H2O2 challenge in vitro. The results indicate that sea cucumber SOD1 may play critical roles not only in the defense against oxidative stress but also in the innate immune defense against bacterial infections.
Collapse
Affiliation(s)
- Jihui Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China; Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Jixue Song
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Yan Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Xue Zhou
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Xiaotian Zhang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Tingting Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Bingnan Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Liang Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China.
| |
Collapse
|