1
|
Chang X, Wang WX. Differential cellular uptake and trafficking of nanoplastics in two hemocyte subpopulations of mussels Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134388. [PMID: 38669925 DOI: 10.1016/j.jhazmat.2024.134388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Sun Y, Liang M, Zhao F, Su L. Research Progress on Biological Accumulation, Detection and Inactivation Technologies of Norovirus in Oysters. Foods 2023; 12:3891. [PMID: 37959010 PMCID: PMC10649127 DOI: 10.3390/foods12213891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Noroviruses (NoVs) are major foodborne pathogens that cause acute gastroenteritis. Oysters are significant carriers of this pathogen, and disease transmission from the consumption of NoVs-infected oysters occurs worldwide. The review discusses the mechanism of NoVs bioaccumulation in oysters, particularly the binding of histo-blood group antigen-like (HBGA-like) molecules to NoVs in oysters. The review explores the factors that influence NoVs bioaccumulation in oysters, including temperature, precipitation and water contamination. The review also discusses the detection methods of NoVs in live oysters and analyzes the inactivation effects of high hydrostatic pressure, irradiation treatment and plasma treatment on NoVs. These non-thermal processing treatments can remove NoVs efficiently while retaining the original flavor of oysters. However, further research is needed to reduce the cost of these technologies to achieve large-scale commercial applications. The review aims to provide novel insights to reduce the bioaccumulation of NoVs in oysters and serve as a reference for the development of new, rapid and effective methods for detecting and inactivating NoVs in live oysters.
Collapse
Affiliation(s)
- Yiqiang Sun
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Meina Liang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.S.); (M.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Tame A, Maruyama T, Yoshida T. Phagocytosis of exogenous bacteria by gill epithelial cells in the deep-sea symbiotic mussel Bathymodiolus japonicus. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211384. [PMID: 35619999 PMCID: PMC9115016 DOI: 10.1098/rsos.211384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Animals that live in nutrient-poor environments, such as the deep sea, often establish intracellular symbiosis with beneficial bacteria that provide the host with nutrients that are usually inaccessible to them. The deep-sea mussel Bathymodiolus japonicus relies on nutrients from the methane-oxidizing bacteria harboured in epithelial gill cells called bacteriocytes. These symbionts are specific to the host and transmitted horizontally, being acquired from the environment by each generation. Morphological studies in mussels have reported that the host gill cells acquire the symbionts via phagocytosis, a process that facilitates the engulfment and digestion of exogenous microorganisms. However, gill cell phagocytosis has not been well studied, and whether mussels discriminate between the symbionts and other bacteria in the phagocytic process remains unknown. Herein, we aimed to investigate the phagocytic ability of gill cells involved in the acquisition of symbionts by exposing the mussel to several types of bacteria. The gill cells engulfed exogenous bacteria from the environment indiscriminately. These bacteria were preferentially eliminated through intracellular digestion using enzymes; however, most symbionts were retained in the bacteriocytes without digestion. Our findings suggest that regulation of the phagocytic process after engulfment is a key mechanism for the selection of symbionts for establishing intracellular symbiosis.
Collapse
Affiliation(s)
- Akihiro Tame
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- Department of Technical Services, Marine Works Japan Ltd. Oppama Higashi-cho, Yokosuka-shi, Kanagawa 237-0063, Japan
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Takao Yoshida
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
5
|
de la Ballina NR, Maresca F, Cao A, Villalba A. Bivalve Haemocyte Subpopulations: A Review. Front Immunol 2022; 13:826255. [PMID: 35464425 PMCID: PMC9024128 DOI: 10.3389/fimmu.2022.826255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Bivalve molluscs stand out for their ecological success and their key role in the functioning of aquatic ecosystems, while also constituting a very valuable commercial resource. Both ecological success and production of bivalves depend on their effective immune defence function, in which haemocytes play a central role acting as both the undertaker of the cellular immunity and supplier of the humoral immunity. Bivalves have different types of haemocytes, which perform different functions. Hence, identification of cell subpopulations and their functional characterisation in immune responses is essential to fully understand the immune system in bivalves. Nowadays, there is not a unified nomenclature that applies to all bivalves. Characterisation of bivalve haemocyte subpopulations is often combined with 1) other multiple parameter assays to determine differences between cell types in immune-related physiological activities, such as phagocytosis, oxidative stress and apoptosis; and 2) immune response to different stressors such as pathogens, temperature, acidification and pollution. This review summarises the major and most recent findings in classification and functional characterisation of the main haemocyte types of bivalve molluscs.
Collapse
Affiliation(s)
- Nuria R. de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Francesco Maresca
- MARE - Marine and Environmental Sciences Centre, Laboratório de Ciências do Mar, Universidade de Évora, Sines, Portugal
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, Plentziako Itsas Estazioa (PIE), University of the Basque Country (UPV/EHU), Plentzia, Spain
- *Correspondence: Antonio Villalba,
| |
Collapse
|
6
|
Microscopic anatomy of gonadal area in the deep-sea clam Calyptogena pacifica (Bivalvia: Vesicomyidae) with emphasis on somatic cells. Tissue Cell 2022; 75:101743. [DOI: 10.1016/j.tice.2022.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/23/2022]
|
7
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Abstract
Oxya chinensis is one of the most widespread grasshopper species found in China and one of the most common pests against rice. In view of the importance of haemocytes in insect immunity in general, and the lack of information on the haemocytes of O. chinensis, we examined the haemocytes of this species in detail. We challenged the cellular response of this grasshopper with the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis Haemocyte morphology was observed using light, scanning electron and transmission electron microscopy, which revealed distinct morphological varieties of haemocytes. Granulocytes and plasmatocytes responded to the bacterial challenge by phagocytosis. Histochemical staining indicated the presence of acid phosphatase in plasmatocytes and granulocytes. We also observed non-phagocytic prohemocytes and vermicytes, but their functions in the circulation are unclear. Insect haemocytes play a crucial role in cellular immunity, and further research is needed for a comprehensive understanding.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Keshi Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|