1
|
Incorporation of Fructooligosaccharides in Diets Influence Growth Performance, Digestive Enzyme Activity, and Expression of Intestinal Barrier Function Genes in Tropical Gar (Atractosteus tropicus) Larvae. FISHES 2022. [DOI: 10.3390/fishes7030137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was conducted to investigate the effects of dietary fructooligosaccharides (FOS) on the growth, survival rate, digestive enzyms activity, and the expression of intestinal barrier function genes in tropical gar (Atractosteus tropicus) larvae. A total of 960 larvae (0.030 ± 0.006 g) were fed three diets supplemented with increasing FOS concentrations (2.5, 5, and 7.5 g kg−1) and a control diet for 15 days. Results revealed that a 7.5 g kg−1 FOS supplementation improved weight gain, specific growth rate, and survival rate (p < 0.05). Furthermore, 5 g kg−1 FOS supplementation increased alkaline protease and amylase activities and induced an upregulation of the claudin-17 gene expression (p < 0.05). Meanwhile, the inclusion of 7.5 g kg−1 FOS induced the upregulation of mucin 2 (muc-2), and the tight junction genes zo-2 and claudin-3 (p < 0.05). In addition, 2.5, 5, and 7.5 g kg−1 FOS promoted the downregulation of the claudin-15 gene expression (p < 0.05). At the same time, FOS inclusion did not increase the pro-inflammatory cytokine il-8 expression. We can conclude that 7.5 g kg−1 FOS supplementation improves growth performance, survival rate, and digestive capacity, and could contribute to the reinforcement of the intestinal barrier function of Tropical gar larvae.
Collapse
|
2
|
Zheng X, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Zhou XQ. The regulatory effects of pyridoxine deficiency on the grass carp (Ctenopharyngodon idella) gill barriers immunity, apoptosis, antioxidant, and tight junction challenged with Flavobacterium columnar. FISH & SHELLFISH IMMUNOLOGY 2020; 105:209-223. [PMID: 32707298 DOI: 10.1016/j.fsi.2020.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The effects of dietary pyridoxine (PN) on the gill immunity, apoptosis, antioxidant and tight junction of grass cap (Ctenopharyngodon idella) were investigated in this study. Fish were fed semi-purified diets containing graded levels of PN for 10 weeks, and then challenged with Flavobacterium columnare by bath immersion exposure for 3 days. The results indicated that compared with the optimal PN level, PN deficiency resulted in a decline in the antimicrobial compound production of gill. In addition, PN deficiency up-regulated the pro-inflammatory cytokines and down-regulated the anti-inflammatory cytokines gene expression, which might be associated with the enhanced nuclear factor κB p65 and the inhibited target of rapamycin signalling pathways, respectively, suggesting that PN deficiency could impair gill immune barrier function. Furthermore, PN deficiency (1) induced cell apoptosis, which may be partly associated with the (apoptotic protease activating factor-1, Bcl-2 associated X protein)/caspase-9 and c-Rel/tumor necrosis factor α (rather than FasL)/caspase-8 mediated apoptosis pathway. (2) Inhibited Kelch-like ECH-associating protein 1a/NF-E2-related factor 2 mRNA expression, decreased the mRNA expression and activities of antioxidant enzymes, increased the levels of reactive oxygen species, protein carbonyl and malondialdehyde. (3) Increased the mRNA expression level of myosin light chain kinase, which may be result in the down-regulation of tight junction complexes such as zonula occludens 1, occludin and claudins (expect claudin-12 and claudin-15). These results suggest that PN deficiency could impair gill physical barrier function. In summary, dietary PN deficiency could cause the impairment of gill barrier function associated with immunity, apoptosis, antioxidant and tight junction, which may result in the increased the susceptibility of fish to pathogenic bacteria. Moreover, based on the gill rot morbidity, LZ activity and MDA content, the dietary PN requirements for grass cap were estimated to be 4.85, 4.78 and 4.77 mg kg-1 diet, respectively.
Collapse
Affiliation(s)
- Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, China.
| |
Collapse
|
3
|
Wu P, Chen L, Cheng J, Pan Y, Guo X, Chu W, Zhang J, Liu X. MiRNAs-Modulation of Nrf2 Signaling Networks in Regulation Oxidative Stress of Chinese Perch Skeletal Muscle After Fasting Treatment. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:620-630. [PMID: 32839828 DOI: 10.1007/s10126-020-09982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Nrf2 is an important transcription factor involved in the antioxidant response and is widely expressed in animal tissues. The function of Nrf2 is regulated by its negative regulator Keap1 by inducing its cytoplasmic degradation. Recent studies have suggested that Nrf2 is also regulated post-transcriptionally via miRNAs. However, to date, how miRNAs regulate Nrf2 in fish skeletal muscles is unknown. In this study, the full-length cDNAs with 2398 bp of the Nrf2 was firstly cloned by SMART RACE amplification tools from Chinese perch. The Nrf2 gene structure and its 3'-UTR region for possible miRNA binding sites, as well as its spatial expression profile were assayed. Then, we employed TargetScan Fish tool MiRNAnome to predict putative sites for five miRNAs including miR-181a-5p, MiR-194a, MiR-216a, miR-459-5p, and miR-724. Using qRT-PCR assay, we found that Nrf2 mRNA levels have negative correlation with all five miRNAs expression in muscle of nutritionally deprived fish, and that ectopic expression of miR-181a-5p alone reduces Nrf2 mRNA levels. Luciferase reporter assay in a heterologous cell system revealed that each of the five miRNAs reduced Nrf2 expression, suggesting a direct regulatory mechanism. Moreover, the miR-181a-5p suppression using specific antagomir led to a significant increase in Nrf2 expression in vivo. At the same time, the expression levels of the antioxidant enzymes CAT, ZnSOD, GPx, GSTA, and GSTA genes increased significantly after injecting miR-181a-5p antagomir. Taken together, these findings provide evidence that miRNAs are involved in the Nrf2 signaling networks in regulation of oxidative stress in fish, at least in Chinese perch muscle.
Collapse
Affiliation(s)
- Ping Wu
- State Key laboratory of Chemo/Biosening and Chemomertrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Lin Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Xinhong Guo
- State Key laboratory of Chemo/Biosening and Chemomertrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jianshe Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China.
| | - Xuanming Liu
- State Key laboratory of Chemo/Biosening and Chemomertrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
4
|
Dietary magnesium deficiency impaired intestinal structural integrity in grass carp (Ctenopharyngodon idella). Sci Rep 2018; 8:12705. [PMID: 30139942 PMCID: PMC6107577 DOI: 10.1038/s41598-018-30485-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Grass carp (223.85–757.33 g) were fed diets supplemented with magnesium (73.54–1054.53 mg/kg) for 60 days to explore the impacts of magnesium deficiency on the growth and intestinal structural integrity of the fish. The results demonstrated that magnesium deficiency suppressed the growth and damaged the intestinal structural integrity of the fish. We first demonstrated that magnesium is partly involved in (1) attenuating antioxidant ability by suppressing Nrf2 signalling to decrease antioxidant enzyme mRNA levels and activities (except CuZnSOD mRNA levels and activities); (2) aggravating apoptosis by activating JNK (not p38MAPK) signalling to upregulate proapoptotic protein (Apaf-1, Bax and FasL) and caspase-2, -3, -7, -8 and -9 gene expression but downregulate antiapoptotic protein (Bcl-2, IAP and Mcl-1b) gene expression; (3) weakening the function of tight junctional complexes (TJs) by promoting myosin light chain kinase (MLCK) signalling to downregulate TJ gene expression [except claudin-7, ZO-2b and claudin-15 gene expression]. Additionally, based on percent weight gain (PWG), against reactive oxygen species (ROS), against caspase-9 and claudin-3c in grass carp, the optimal dietary magnesium levels were calculated to be 770.38, 839.86, 856.79 and 811.49 mg/kg, respectively.
Collapse
|