1
|
Zhu J, Li D, Xiao W, Yu J, Chen B, Zou Z, Yang H. Survival, serum biochemical parameters, hepatic antioxidant status, and gene expression of three Nile tilapia strains under pathogenic Streptococcus agalactiae challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110030. [PMID: 39561912 DOI: 10.1016/j.fsi.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Streptococcosis is the leading bacterial disease impacting Nile tilapia (Oreochromis niloticus) and causes substantial economic losses in China. This study assessed the resistance and tolerance of three Nile tilapia (88, 99, and NG) to Streptococcus agalactiae infection. Survival rates were monitored, and samples were collected from blood, liver, and spleen at 0, 1, 2, 5, 7, and 14 days post-infection. Serum biochemical parameters, hepatic antioxidant enzymes, and the expression of related antioxidant and immune genes were measured. Results showed that strain 88 had superior resistance, with the highest survival rate, reduced liver damage, and lower alanine aminotransferase and alkaline phosphatase levels at 1 and 5 days post-infection. This strain also had higher serum cholesterol and triglyceride levels between days 5 and 14. Antioxidant activities increased in all strains post-infection, with strain 88 showing significantly higher superoxide dismutase (SOD) activity and elevated catalase (CAT) and SOD gene expressions; this indicated enhanced control of reactive oxygen species and reduced tissue damage. Additionally, strain 88 exhibited lower levels of inflammatory markers (TNF-α, IL-1β, IL-10) with higher IgM levels and superior MHC-II expression during early infection, which demonstrated a strong immune response. These results indicate that strain 88 is a promising candidate for selective breeding to improve streptococcosis resistance in tilapia.
Collapse
Affiliation(s)
- Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China.
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wei Xiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China.
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China.
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
2
|
Zhang J, Geng M, Xiao J, Chen L, Cao Y, Li K, Yang J, Wei X. Comparative analysis of T-cell immunity between Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109967. [PMID: 39414096 DOI: 10.1016/j.fsi.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the important economic fish species cultured worldwide. However, Streptococcus agalactiae has emerged as a significant bacterial threat, severely impacting the economy of tilapia industry. The immune response underlying the resistance of tilapia to S. agalactiae are not well understood, hindering the reasonable evaluation of breeding and the formulation of effective strategies. In this study, we investigated the differences in T-cell immunity between S. agalactiae-resistant and -susceptible tilapia. Compared with susceptible tilapia, resistant tilapia exhibited a higher percentage of T cells and BrdU+ T cells during infection, indicating a superior proliferative capacity. Whether infected or not, T cells from resistant fish demonstrated a greater ability to resist apoptosis. Additionally, T cell effector genes, including interleukin (IL)-2, interferon (IFN)-γ, perforin A, and granzyme B were expressed at higher levels in resistant tilapia after infection. Along with these T-cell immune responses, resistant fish showed more effective clearance of infection. Our study elucidates the T-cell immune responses in resistant tilapia, which may contribute to the high resistance of tilapia to S. agalactiae, and provide valuable theoretical references for the selection and evaluation of disease-resistant fish strains in the future.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
| | - Liting Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
4
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
5
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
6
|
Huang AG, Su LJ, He WH, Zhang FL, Wei CS, Wang YH. Natural component plumbagin as a potential antibacterial agent against Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2022; 45:815-823. [PMID: 35315084 DOI: 10.1111/jfd.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), can infect humans, terrestrial animals and fish. The emergence of bacterial resistance of S. agalactiae to antibiotics leads to an urgent need of exploration of new antimicrobial agents. In the study, the antibacterial activity of natural component plumbagin (PLB) against S. agalactiae was investigated in vitro and in vivo. The results showed that the minimal inhibitory concentration (MIC) of PLB against S. agalactiae was 8 mg/L. The growth curve assay revealed that PLB could inhibit the growth of S. agalactiae. In addition, the time-killing curve showed that S. agalactiae was killed almost completely by 2-fold MIC of PLB within 12 h. Transmission electron microscopy results showed obvious severe morphological destruction and abnormal cells of S. agalactiae after treated with PLB. The pathogenicity of S. agalactiae to zebrafish was significantly decreased after preincubation with PLB for 2 h in vitro, further indicating the bactericidal activity of PLB. Interestingly, PLB could kill S. agalactiae without inducing resistance development. Furthermore, pretreatment and post-treatment assays suggested that PLB also exhibited the antibacterial activity against S. agalactiae infection in vivo by effectively reducing the bacterial load and improving the survival rate of S. agalactiae-infected zebrafish. In summary, PLB had potent antibacterial activity against S. agalactiae in vitro and in vivo, and it could be an excellent antimicrobial candidate to prevent and control S. agalactiae infection.
Collapse
Affiliation(s)
- Ai-Guo Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lin-Jun Su
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Wei-Hao He
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Fa-Li Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Chao-Shuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Verma DK, Peruzza L, Trusch F, Yadav MK, Ravindra, Shubin SV, Morgan KL, Mohindra V, Hauton C, van West P, Pradhan PK, Sood N. Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans. Genomics 2020; 113:944-956. [PMID: 33127583 DOI: 10.1016/j.ygeno.2020.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete.
Collapse
Affiliation(s)
- Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Luca Peruzza
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom; Present address: Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Franziska Trusch
- International Centre for Aquaculture Research and Development, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom; Present address: University of Dundee, School of Life Sciences, Department of Plant Sciences (@ James Hutton Institute), Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | - Manoj Kumar Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Ravindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Sergei V Shubin
- College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Kenton L Morgan
- The Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, Liverpool, United Kingdom
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Pieter van West
- International Centre for Aquaculture Research and Development, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - P K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226 002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Wang Q, Fu T, Li X, Luo Q, Huang J, Sun Y, Wang X. Cross-immunity in Nile tilapia vaccinated with Streptococcus agalactiae and Streptococcus iniae vaccines. FISH & SHELLFISH IMMUNOLOGY 2020; 97:382-389. [PMID: 31841691 DOI: 10.1016/j.fsi.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae and Streptococcus iniae are major bacterial pathogens of tilapia that can cause high mortality concomitant with large economic losses to aquaculture. Although development of vaccines using formalin-killed bacteria to control these diseases has been attempted, the mechanism of immunity against streptococcal infections and the cross-protective ability of these two bacteria remains unclear. To explore the immunological role of these vaccines, we compared the immune responses of tilapia after immunization with both vaccines and compared the relative percent survival (RPS) and cross-immunization protection of tilapia after separate infection with S. agalactiae and S. iniae. All results revealed that vaccinated fish had significantly higher (P < 0.05) levels of specific antibodies than control fish 14 days post secondary vaccination (PSV) and 7 days post challenge. In vaccinated fish, the mRNA expression of interleukin-8 (IL-8), interleukin-12 (IL-12), caspase-3 (C-3), tumour necrosis factor (TNF), and interferon (IFN) was significantly up regulated (P < 0.05) in the head kidney after immunized; similar results were found for IL-8, TNF and IFN in the posterior kidney, meanwhile the expression levels of C-3 and IFN were significantly increased (P < 0.05) in the spleen of vaccinated fish. Additionally, the levels of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in vaccinated fish were improved at different degree when compared to the control fish. These results showed that vaccination with formalin-killed cells (FKCs) of either S. agalactiae or S. iniae conferred protection against infection by the corresponding pathogen in Nile tilapia, resulting in RPS values of 92.3% and 91.7%, respectively. Furthermore, cross-protection was observed, as the S. agalactiae FKC vaccine protected fish from S. iniae infection, and vice versa. These results suggested that the S. agalactiae and S. iniae FKC vaccines can induce immune responses and generate excellent protective effects in Nile tilapia.
Collapse
Affiliation(s)
- Qishuo Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Tianzeng Fu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Qian Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinjing Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Yongcan Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 272000, PR China.
| |
Collapse
|
9
|
Wu XM, Cao L, Hu YW, Chang MX. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2019; 94:355-372. [PMID: 31533079 DOI: 10.1016/j.fsi.2019.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a major aquaculture pathogen infecting various saltwater and freshwater fish. To better understand the mechanism of the immune responses to S. agalactiae in wildtype zebrafish, the transcriptomic profiles of two organs containing mucosal-associated lymphoid tissues from S. agalactiae-infected and non-infected groups were obtained using RNA-seq techniques. In the intestines, 6735 and 12908 differently expressed genes (DEGs) were identified at 24 hpi and 48 hpi, respectively. Among 66 and 116 significantly enriched pathways, 15 and 21 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. A number of genes involved in Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Antigen processing and presentation, NF-kappa B signaling pathway and PI3K-Akt signaling pathway were significantly downregulated. In the skins, 3113 and 4467 DEGs were identified at 24 hpi and 48 hpi, respectively. Among 24 and 56 significantly enriched pathways, 4 and 13 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. More immune-related signaling pathways including Leukocyte transendothelial migration, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, TNF signaling pathway, Complement and coagulation cascades, Hematopoietic cell lineage and Jak-STAT signaling pathway were differently enriched for upregulated DEGs at 48 hpi, which were completely different from that in the intestines. Furthmore, comparative transcriptome analysis revealed that the downregulated 1618 genes and upregulated 1622 genes existed both at 24 hpi and 48 hpi for the intestine samples. In the skins, the downregulated 672 genes and upregulated 428 genes existed both at 24 hpi and 48 hpi. Three pathways related to immune processes were significantly enriched for downregulated DEGs both in the intestines and skins collected at 24 hpi and 48 hpi, which included Antigen processing and presentation, Intestinal immune network for IgA production and Hematopoietic cell lineage. Interaction network analysis of DEGs identified the main DEGs in the sub-network of complement and coagulation cascades both in the intestines and skins. Twenty of DEGs involved in complement and coagulation cascades were further validated by Real-time quantitative PCR. Altogether, the results obtained in this study will provide insight into the immune response of zebrafish against S. agalactiae XQ-1 infection in fatal conditions, and reveal the discrepant expression pattern of complement and coagulation cascades in the intestines and skins.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Peng H, Yang B, Li B, Cai Z, Cui Q, Chen M, Liu X, Yang X, Jiang C. Comparative transcriptomic analysis reveals the gene expression profiles in the liver and spleen of Japanese pufferfish (Takifugu rubripes) in response to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2019; 90:308-316. [PMID: 31059812 DOI: 10.1016/j.fsi.2019.04.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Japanese pufferfish (Takifugu rubripes) is one of the main marine aquatic fish species cultured in Asia due to its high nutritional value. In recent years, disease caused by Vibrio harveyi infections have led to serious mortality in Japanese pufferfish industry. To understand the complex molecular mechanisms between V. harveyi and Japanese pufferfish, we performed a transcriptome analysis of liver and spleen samples from Japanese pufferfish at 1 and 2 day post-infection. Between-group comparisons revealed 922 genes that were significantly differentially expressed. The altered genes emphasized the function in several immune related pathways including MAPK signaling pathway, JAK-STAT signaling pathway, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and lysosomal pathway. The data generated in this study provided insight into the responses of Japanese pufferfish against V. harveyi at the transcriptome level, promoting our comprehensive understanding of immune responses for aquatic animal against V. harveyi.
Collapse
Affiliation(s)
- Hongyu Peng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boxue Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boyan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Zhonglu Cai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Qianjin Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Mingkang Chen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xia Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xu Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Chen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
11
|
Gao C, Fu Q, Yang N, Song L, Tan F, Zhu J, Li C. Identification and expression profiling analysis of microRNAs in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:333-345. [PMID: 30648624 DOI: 10.1016/j.fsi.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) play vital regulatory roles in various biological processes, including in immune responses. Nile tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify immune-related miRNAs of O. niloticus, 4 libraries from liver during S. agalactiae infection (0 h, 5 h, 50 h, and 7 d) were sequenced by high-throughput sequencing technology in tilapia. We obtained 10,703,531, 11,507,163, 11,180,179 and 13,408,414 clean reads per library, respectively. In our results, a total of 482 miRNAs were identified through bioinformatic analysis, including 220 conserved miRNAs and 262 putative novel miRNAs. Moreover, 21 (4.36%), 50 (10.37%), and 46 (9.54%) miRNAs were significantly differentially expressed at 5 h, 50 h and 7 d, respectively. In addition, 6939 target genes regulated by these differentially expressed miRNAs were predicted, and their functional annotations were predicted by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, which revealed that a majority of differentially expressed miRNAs were involved in apoptotic process, metabolic process, and immune responses. Finally, Real-time quantitative PCR experiments were performed for 7 miRNAs by stem-loop RT-PCR, and a general agreement was confirmed between the sequencing and RT-qPCR data. To our understanding, this is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in liver related to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions, and genetic resources for molecular assistant selection for disease resistant breeding program.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi, 530021, China.
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
12
|
Wang Q, Wang X, Wang X, Feng R, Luo Q, Huang J. Generation of a novel Streptococcus agalactiae ghost vaccine and examination of its immunogenicity against virulent challenge in tilapia. FISH & SHELLFISH IMMUNOLOGY 2018; 81:49-56. [PMID: 29969706 DOI: 10.1016/j.fsi.2018.06.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus agalactiae (S. agalactiae) is a gram-positive pathogen that causes a wide range of infections in fish and other animals including humans. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and are well represented as novel vaccine candidates. In this study, we examined the immunogenicity and protective efficacy of S. agalactiae ghosts (SAG) against a virulent challenge in tilapia. Nonliving SAG was generated by a culture with Penicillin and Streptolysin, and then treated with the MIC of sodium hydroxide. The formation of a transmembrane lysis tunnel structure in SAG was visualized by electron microscopy. To investigate the SAG as a vaccine candidate, fish were divided into three groups, A (SAG immunized), B [Formalin-inactivated S. agalactiae (FSA) immunized] and C (phosphate-buffered saline, PBS-immunized control). The IgM antibody responses were significantly stronger in the SAG-immunized group than in FSA-immunized group, which was higher than in the non-immunized control group (P < 0.05). Moreover, phagocytic activity (percent phagocytes, PP) was significantly higher (p < 0.05) in the SAG-immunized group than in FSA-immunized group, which was higher than in the non-immunized control group (P < 0.05). In addition, non-specific immune immunity, such as lysozyme and superoxide dismutase activities, in the SAG-immunized fish showed significantly higher activities than FSA-immunized fish and the control group fish (P < 0.05). Also, fish immunized with SAG and FSA showed significantly higher (p < 0.05) gene expression of IL-1β, TNF-α, IFN-γ and TGF-β in the head kidney and spleen than fish treated with PBS during the whole observed period. In addition, fish immunized with SAG showed significantly higher gene expression of L-1β, TNF-α, and TGF-β in the spleen than in the FSA-immunized fish. Although there was no significant (P > 0.05) difference of survival rate (SR) or relative percent survival (RPS) between SAG and FSA immunized groups, they were all significantly more protected against the S. agalactiae challenge (SR: 86.67%, RPS: 76.395) and (SR: 80.00%, RPS: 67.50%) respectively, compared to the PBS-treated group (SR: 33.33%). These results suggest that immunization with SAG induces immune responses and provides protection against a virulent S. agalactiae challenge.
Collapse
Affiliation(s)
- Qishuo Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Huaian research center, Institute of Hydrobiology, Chinese Academy of Sciences, Huaian 223000, PR China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 272000, PR China.
| | - Xuemei Wang
- Shandong Yisheng Livestock Veterinary Science Institute, 264000, Yantai, PR China
| | - Ruijuan Feng
- Jiangsu Tianshen Co., Ltd., 223000, Huai'an, PR China
| | - Qian Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Jinjing Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| |
Collapse
|