1
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. PLoS Pathog 2024; 20:e1012673. [PMID: 39475961 DOI: 10.1371/journal.ppat.1012673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
Affiliation(s)
- Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Genetics, Development, and Disease Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Alvarez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stacey Crockett
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mahsa Sorouri
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617691. [PMID: 39416205 PMCID: PMC11482883 DOI: 10.1101/2024.10.10.617691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
|
3
|
Li H, Di X, Wang S, Li Q, Weng S, He J, Li C. Nucleic Acid Sensing by STING Induces an IFN-like Antiviral Response in a Marine Invertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1945-1957. [PMID: 38700419 DOI: 10.4049/jimmunol.2300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Xuanzheng Di
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Qinyao Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangzhou, China
| |
Collapse
|
4
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
5
|
Guo HY, He HX, Liu BS, Zhang N, Zhu KC, Zhang DC. The regulatory mechanisms of IRF7 mediated by the type I IFN signalling pathway against Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Int J Biol Macromol 2023; 247:125635. [PMID: 37399879 DOI: 10.1016/j.ijbiomac.2023.125635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Interferon regulatory factor 7 (IRF7) regulates type I interferon (IFN) genes via combining to the ISRE region in the immune response against bacteria. Streptococcus iniae is one of the dominant pathogenic bacteria of yellowfin seabream, Acanthopagrus latus. However, the regulatory mechanisms of A. latus IRF7 (AlIRF7) mediated by the type I IFN signalling pathway against S. iniae was ambiguously. In the present study, IRF7, and two IFNa3s (IFNa3 and IFNa3-like) were authenticated from A. latus. The total length of AlIRF7 cDNA is 2142 bp, containing a 1314 bp open reading frame (ORF) encoding an inferred 437 amino acids (aa). Three typical regions, a serine-rich domain (SRD), a DNA-binding domain (DBD), and an IRF association domain (IAD), are conserved in AlIRF7. Furthermore, AlIRF7 is fundamentally expressed in various kinds of organs, with high levels in the spleen and liver. Additionally, S. iniae challenge promoted AlIRF7 expression in the spleen, liver, kidney, and brain. AlIRF7 is confirmed to be located at the nucleus and cytoplasm by overexpression of AlIRF7. Moreover, truncation mutation analyses shows that the regions, -821 bp to +192 bp and -928 bp to +196 bp, were known as core promoters from AlIFNa3 and AlIFNa3-like, respectively. The point mutation analyses and electrophoretic mobile shift assay (EMSA) verified that AlIFNa3 and AlIFNa3-like transcriptions are depended on the M2/5 and M2/3/4 binding sites with AlIRF7 regulation, respectively. Additionally, an overexpression experiment showed that AlIRF7 can dramatically decrease the mRNA levels of two AlIFNa3s and interferon signalling molecules. These results suggest that two IFNa3s may mediate the regulation of AlIRF7 in the immune responses of A. latus against S. iniae infection.
Collapse
Affiliation(s)
- Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
6
|
Yang W, Sun H, Yan J, Kang C, Wu J, Yang B. Enterohemorrhagic Escherichia coli senses microbiota-derived nicotinamide to increase its virulence and colonization in the large intestine. Cell Rep 2023; 42:112638. [PMID: 37294635 DOI: 10.1016/j.celrep.2023.112638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen that specifically colonizes and infects the human large intestine. EHEC O157:H7 engages intricate regulatory pathways to detect host intestinal signals and regulate virulence-related gene expression during colonization and infection. However, the overall EHEC O157:H7 virulence regulatory network in the human large intestine remains incompletely understood. Here, we report a complete signal regulatory pathway where the EvgSA two-component system responds to high-nicotinamide levels produced by microbiota in the large intestine and directly activates loci of enterocyte effacement genes to promote EHEC O157:H7 adherence and colonization. This EvgSA-mediated nicotinamide signaling regulatory pathway is conserved and widespread among several other EHEC serotypes. Moreover, disruption of this virulence-regulating pathway by the deletion of evgS or evgA significantly decreased EHEC O157:H7 adherence and colonization in the mouse intestinal tract, indicating that these genes could be potential targets for the development of new therapeutics for EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Junli Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China.
| |
Collapse
|
7
|
Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. eLife 2023; 12:e85120. [PMID: 37068011 PMCID: PMC10159624 DOI: 10.7554/elife.85120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis. Biochemical assays indicated ancient Dicer possessed ATPase function, that like extant invertebrate Dicers, is stimulated by dsRNA. Analyses revealed that dsRNA stimulates ATPase activity by increasing ATP affinity, reflected in Michaelis constants. Deuterostome Dicer-1 ancestor, while exhibiting lower dsRNA affinity, retained some ATPase activity; importantly, ATPase activity was undetectable in the vertebrate Dicer-1 ancestor, which had even lower dsRNA affinity. Reverting residues in the ATP hydrolysis pocket was insufficient to rescue hydrolysis, but additional substitutions distant from the pocket rescued vertebrate Dicer-1's ATPase function. Our work suggests Dicer lost ATPase function in the vertebrate ancestor due to loss of ATP affinity, involving motifs distant from the active site, important for coupling dsRNA binding to the active conformation. By competing with Dicer for viral dsRNA, RIG-I-like receptors important for interferon signaling may have allowed or actively caused loss of ATPase function.
Collapse
Affiliation(s)
| | | | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, University of FloridaGainesvilleUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
8
|
Qiao X, Wang S, Zong Y, Gu X, Jin Y, Li Y, Wei Z, Wang L, Song L. An IRF2BP member (CgIRF2BP) involved in negative regulation of CgIFNLP expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108576. [PMID: 36775182 DOI: 10.1016/j.fsi.2023.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The IRF2BP family of transcription regulators act as corepressor molecules by inhibiting both enhancer-activated and basal transcription involving in many biological contexts. In the present study, an IRF2BP homologue (CgIRF2BP) was identified from oyster C. gigas. Its open reading frame is of 1809 bp encoding a polypeptide of 602 amino acids, which contains an IRF-2BP1_2 domain and a RING domain. The mRNA transcripts of CgIRF2BP were detected in all tested tissues with highest level in haemocytes (28.99-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the expression level of CgIRF2BP was significantly down-regulated at 3 h (0.50-fold of that in control group, p < 0.001) and gradually increased from 6 h to 48 h (2.69-fold of that in control group, p < 0.01). The recombinant protein of CgIRF2BP (rCgIRF2BP) showed high affinity to both rCgIRF1 and rCgIRF8 with Kd value of 1.02 × 10-7 and 2.09 × 10-7, respectively. In CgIRF2BP-RNAi oysters, the mRNA expression of CgIFNLP, CgMx1, CgViperin and CgIFI44L were significantly increased after poly (I:C) stimulation, which were 2.88 (p < 0.01), 1.83 (p < 0.05), 2.47 (p < 0.05), and 1.99-fold (p < 0.01) of that in EGFP group, respectively. These findings suggested that CgIRF2BP negatively regulated CgIFNLP expression by binding with CgIRF1 and CgIRF8.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuorui Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
9
|
Sun Y, Cao Z, Zhang P, Wei C, Li J, Wu Y, Zhou Y. IFN regulatory factor 3 of golden pompano and its NLS domain are involved in antibacterial innate immunity and regulate the expression of type I interferon (IFNa3). Front Immunol 2023; 14:1128196. [PMID: 36817435 PMCID: PMC9933344 DOI: 10.3389/fimmu.2023.1128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The transcription factor interferon regulatory factor 3 (IRF3) plays an important role in host defence against viral infections. However, its role during bacterial infection in teleosts remains unclear. In the present study, we evaluated the antibacterial effects of Trachinotus ovatus IRF3 (TroIRF3) and how it regulates type I interferon (IFN). Methods Subcellular localisation experiments, overexpression, and quantitative real-time PCR (qRT-PCR) were performed to examine the nuclear localisation signal (NLS) of TroIRF3 and its role in the antibacterial regulatory function of TroIRF3. We assessed the binding activity of TroIRF3 to the IFNa3 promoter by luciferase reporter assay. Results and Discussion The results showed that TroIRF3 was constitutively expressed at high levels in the gill and liver. TroIRF3 was significantly upregulated and transferred from the cytoplasm to the nucleus after Vibrio harveyi infection. By overexpressing TroIRF3, the fish were able to inhibit the replication of V. harveyi, whereas knocking it down increased bacterial replication. Moreover, the overexpression of TroIRF3 increased type I interferon (IFNa3) production and the IFN signalling molecules. The NLS, which is from the 64-127 amino acids of TroIRF3, contains the basic amino acids KR74/75 and RK82/84. The results proved that NLS is required for the efficient nuclear import of TroIRF3 and that the NLS domain of TroIRF3 consists of the key amino acids KR74/75 and RK82/84. The findings also showed that NLS plays a key role in the antibacterial immunity and upregulation of TroIFNa3 induced by TroIRF3. Moreover, TroIRF3 induces TroIFNa3 promoter activity, whereas these effects are inhibited when the NLS domain is deficient. Overall, our results suggested that TroIRF3 is involved in the antibacterial immunity and regulation of type I IFN in T. ovatus and that the NLS of TroIRF3 is vital for IRF3-mediated antibacterial responses, which will aid in understanding the immune role of fish IRF3.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| |
Collapse
|
10
|
Li H, Li Q, Wang S, He J, Li C. Stimulator of interferon genes defends against bacterial infection via IKKβ-mediated Relish activation in shrimp. Front Immunol 2022; 13:977327. [PMID: 36059529 PMCID: PMC9438028 DOI: 10.3389/fimmu.2022.977327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulator of interferon genes (STING) is crucial for the innate immune to defend against pathogenic infections. Our previous study showed that a STING homolog from Litopenaeus vannamei (LvSTING) was involved in antibacterial response via regulating antimicrobial peptides (AMPs). Nevertheless, how LvSTING induces AMPs expression to inhibit bacterial infection remains unknown. Herein, we revealed that the existence of a STING–IKKβ–Relish–AMPs axis in shrimp that was essential for opposing to Vibrio parahaemolyticus invasion. We observed that LvRelish was essential for host defense against V. parahaemolyticus infection via inducing several AMPs, such as LvALF1, LvCRU1, LvLYZ1 and LvPEN4. Knockdown of LvSTING or LvIKKβ in vivo led to the attenuated phosphorylation and diminished nuclear translocation of LvRelish, as well as the impaired expression levels of LvRelish-regulated AMPs. Accordingly, shrimps with knockdown of LvSTING or LvIKKβ or both were vulnerable to V. parahaemolyticus infection. Finally, LvSTING could recruit LvRelish and LvIKKβ to form a complex, which synergistically induced the promoter activity of several AMPs in vitro. Taken together, our results demonstrated that the shrimp STING–IKKβ–Relish–AMPs axis played a critical role in the defense against bacterial infection, and provided some insights into the development of disease prevention strategies in shrimp culture.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Zhuhai, China
| | - Qinyao Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Zhuhai, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Zhuhai, China
- *Correspondence: Jianguo He, ; Chaozheng Li,
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Zhuhai, China
- *Correspondence: Jianguo He, ; Chaozheng Li,
| |
Collapse
|
11
|
Lewandowska M, Sharoni T, Admoni Y, Aharoni R, Moran Y. Functional characterization of the cnidarian antiviral immune response reveals ancestral complexity. Mol Biol Evol 2021; 38:4546-4561. [PMID: 34180999 PMCID: PMC8476169 DOI: 10.1093/molbev/msab197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animals evolved a broad repertoire of innate immune sensors and downstream effector cascades for defense against RNA viruses. Yet, this system varies greatly among different bilaterian animals, masking its ancestral state. In this study, we aimed to characterize the antiviral immune response of the cnidarian Nematostella vectensis and decipher the function of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) known to detect viral double-stranded RNA (dsRNA) in bilaterians but activate different antiviral pathways in vertebrates and nematodes. We show that polyinosinic:polycytidylic acid (poly(I:C)), a mimic of long viral dsRNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), triggers a complex antiviral immune response bearing features distinctive for both vertebrate and invertebrate systems. Importantly, a well-characterized agonist of the vertebrate RIG-I receptor does not induce a significant transcriptomic response that bears signature of the antiviral immune response, which experimentally supports the results of a phylogenetic analysis indicating clustering of the two N. vectensis RLR paralogs (NveRLRa and NveRLRb) with MDA5. Furthermore, the results of affinity assays reveal that NveRLRb binds poly(I:C) and long dsRNA and its knockdown impairs the expression of putative downstream effector genes including RNA interference components. Our study provides for the first time the functional evidence for the conserved role of RLRs in initiating immune response to dsRNA that originated before the cnidarian–bilaterian split and lay a strong foundation for future research on the evolution of the immune responses to RNA viruses.
Collapse
Affiliation(s)
- Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Admoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Qiao X, Zong Y, Liu Z, Wu Z, Li Y, Wang L, Song L. The cGAS/STING-TBK1-IRF Regulatory Axis Orchestrates a Primitive Interferon-Like Antiviral Mechanism in Oyster. Front Immunol 2021; 12:689783. [PMID: 34168656 PMCID: PMC8218723 DOI: 10.3389/fimmu.2021.689783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022] Open
Abstract
Interferon (IFN) system is considered as the first defense line against viral infection, and it has been extensively studied in vertebrates from fish to mammals. In invertebrates, Vagos from arthropod and IFN-like protein (CgIFNLP) from Crassostrea gigas appeared to function as IFN-like antiviral cytokines. In the present study, the CgIFNLP protein in hemocytes was observed to increase after Poly (I:C) stimulation. After CgIFNLP was knocked down by RNAi, the mRNA expression of IFN-stimulated genes (CgISGs) was significantly inhibited. Both cyclic GMP-AMP synthase (CgcGAS) and stimulator of interferon gene (CgSTING) identified from oyster were able to recognize the double-stranded nucleic acid [Poly (I:C) and dsDNA] and expressed at high level after Poly (I:C) stimulation. The expression of CgIFNLP and interferon regulatory factors (CgIRF1/8) and the nuclear translocation of CgIRF8 were all suppressed in CgcGAS-RNAi or CgSTING-RNAi oysters after Poly (I:C) stimulation. The expression level of CgSTING and TANK binding kinase1 (CgTBK1) did not decrease in CgcGAS-RNAi oysters. After CgSTING was knocked down, the high expression of CgTBK1 induced by Poly (I:C) was prevented significantly. These results indicated that there was a primitive IFN-like antiviral mechanism dependent on the cGAS/STING–TBK1–IRFs regulatory axis in mollusks, which was different from the classic cGAS–STING–TBK1 signal pathway in mammals.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yuanmei Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
13
|
Qiao X, Wang L, Song L. The primitive interferon-like system and its antiviral function in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103997. [PMID: 33444647 DOI: 10.1016/j.dci.2021.103997] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The phylum mollusca is a very important group in the animal kingdom for the large number and diversified species. Recently, interest in molluscan immunity has increased due to their phylogenetic position and importance in worldwide aquaculture and aquatic environment. As the main aquaculture animal, most molluscs live in the water environment and they have to cope with many pathogen challenges, in which virus is one of the primary causes for the mass mortality. In vertebrates, interferon (IFN) system is generally recognized as the first line of defence against viral infection, while the antiviral mechanisms in molluscs remain to be clearly illuminated. Recently, some IFN-like proteins and IFN-related components have been characterized from molluscs, such as pattern recognition receptors (PRRs), interferon regulatory factors (IRFs), IFN-like receptors, JAK/STAT and IFN-stimulated genes (ISGs), which reinforce the existence of IFN-like system in molluscs. This system can be activated by virus or poly (I:C) challenges and further regulate the antiviral response of haemocytes in molluscs. This review summarizes the research progresses of IFN-like system in molluscs with the emphases on the uniformity and heterogeneity of IFN-like system of molluscs compared to that of other animals, which will be helpful for elucidating the antiviral modulation in molluscs and understanding the origin and evolution of IFN system.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
14
|
Lv X, Wang W, Zhao Q, Qiao X, Wang L, Yan Y, Han S, Liu Z, Wang L, Song L. A truncated intracellular Dicer-like molecule involves in antiviral immune recognition of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103931. [PMID: 33220355 DOI: 10.1016/j.dci.2020.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
The enzyme Dicer is best known for its role as an endoribonuclease in the small RNA pathway, playing a crucial role in recognizing viral double-stranded RNA (dsRNA) and inducing down-stream cascades to mediate anti-virus immunity. In the present study, a truncated Dicer-like gene was identified from oyster Crassostrea gigas, and its open reading frame (ORF) encoded a polypeptide (designed as CgDCL) of 530 amino acids. The CgDCL contained one N-terminal DEAD domain and a C-terminal helicase domain, but lack the conserved PAZ domain, ribonuclease domain (RIBOc) and dsRNA binding domain. The mRNA transcripts of CgDCL were detected in all the examined tissues with high expression levels in lip, gills and haemocytes, which were 62.06-fold, 48.91-fold and 47.13-fold (p < 0.05) of that in mantle, respectively. In the primarily cultured oyster haemocytes, the mRNA transcripts of CgDCL were significantly induced at 12 h after poly(I:C) stimulation, which were 4.04-fold (p < 0.05) of that in control group. The expression level of CgDCL mRNA in haemocytes was up-regulated significantly after dsRNA and recombinant interferon-like protein (rCgIFNLP) injection, which was 12.87-fold (p < 0.01) and 3.22-fold (p < 0.05) of that in control group, respectively. CgDCL proteins were mainly distributed in the cytoplasm of haemocytes. The recombinant CgDCL protein displayed binding activity to dsRNA and poly(I:C), but no obvious dsRNA cleavage activity. These results collectively suggest that truncated CgDCL from C. gigas was able to be activated by poly(I:C), dsRNA and CgIFNLP, and functioned as an intracellular recognition molecule to bind nucleic acid of virus, indicating a potential mutual cooperation between RNAi and IFN-like system in anti-virus immunity of oysters.
Collapse
Affiliation(s)
- Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yunchen Yan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shuo Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong,Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
15
|
Feng H, Zhang YB, Gui JF, Lemon SM, Yamane D. Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses. PLoS Pathog 2021; 17:e1009220. [PMID: 33476326 PMCID: PMC7819612 DOI: 10.1371/journal.ppat.1009220] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eponymous member of the interferon regulatory factor (IRF) family, IRF1, was originally identified as a nuclear factor that binds and activates the promoters of type I interferon genes. However, subsequent studies using genetic knockouts or RNAi-mediated depletion of IRF1 provide a much broader view, linking IRF1 to a wide range of functions in protection against invading pathogens. Conserved throughout vertebrate evolution, IRF1 has been shown in recent years to mediate constitutive as well as inducible host defenses against a variety of viruses. Fine-tuning of these ancient IRF1-mediated host defenses, and countering strategies by pathogens to disarm IRF1, play crucial roles in pathogenesis and determining the outcome of infection.
Collapse
Affiliation(s)
- Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SML); (DY)
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- * E-mail: (SML); (DY)
| |
Collapse
|
16
|
Zhang Z, Wei J, Ren R, Zhang X. Anti-virus effects of interferon regulatory factors (IRFs) identified in ascidian Ciona savignyi. FISH & SHELLFISH IMMUNOLOGY 2020; 106:273-282. [PMID: 32750546 DOI: 10.1016/j.fsi.2020.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Interferon regulatory factors (IRFs) are key transcription factors that function in the immune system via the interferon (IFN) pathway. In the current study, we identified and characterized three IRFs (CsIRFL1, CsIRFL2, and CsIRFL3) from ascidian Ciona savignyi. Phylogenetic analysis showed that CsIRFL1 was clustered with two IRFs from Ciona robusta and shrimp IRF apart from the vertebrate IRFs, whereas CsIRFL2 and CsIRFL3 were grouped with an unnamed protein from Oikopleura dioica into a sub-branch highly identifying with the vertebrate IRF4, IRF8, and IRF9. Gene expression analysis revealed that CsIRFL1 and CsIRFL2 expressed in all the examined adult tissues (stomach, intestines, eggs, hemocytes, gonad, heart, and pharynx) and predominantly in hemocytes. However, the expression of CsIRFL3 was undetectable in the tested adult tissues. Furthermore, in situ hybridization showed that CsIRFL1 and CsIRFL2 mainly expressed in immunocytes within hemolymph, including phagocytes, macrophage-like cells, morula cells, and amoebocytes, suggesting CsIRFL1 and CsIRFL2 were involved in ascidian immune responses. We then performed LPS and poly(I:C) challenge assay and found that CsIRFL1 highly expressed in the cultured hemocytes following LPS infection for 24 h. After viral analogue poly(I:C) stimulation, the expression of CsIRFL2 was dramatically upregulated from 12 to 24 h. Meanwhile, two critical components of the IFN signaling pathways, STAT and TBK1, showed the increased expression as well after poly(I:C) induction, indicating that CsIRFL2 and IFN pathways genes were activated under the infection of viral analogue. Thus, our findings suggested that CsIRFL2 was a potential transcriptional regulatory factor that participated in regulating the ascidian anti-virus immune response.
Collapse
Affiliation(s)
- Zhaoxuan Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruimei Ren
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
17
|
MicroRNA-132-3p suppresses type I IFN response through targeting IRF1 to facilitate H1N1 influenza A virus infection. Biosci Rep 2020; 39:221188. [PMID: 31746331 PMCID: PMC6904772 DOI: 10.1042/bsr20192769] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.
Collapse
|
18
|
Functional Analysis of IRF1 Reveals its Role in the Activation of the Type I IFN Pathway in Golden Pompano, Trachinotus ovatus (Linnaeus 1758). Int J Mol Sci 2020; 21:ijms21072652. [PMID: 32290244 PMCID: PMC7177527 DOI: 10.3390/ijms21072652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Interferon (IFN) regulatory factor 1 (IRF1), a transcription factor with a novel helix–turn–helix DNA-binding domain, plays a crucial role in innate immunity by regulating the type I IFN signaling pathway. However, the regulatory mechanism through which IRF1 regulates type I IFN in fish is not yet elucidated. In the present study, IRF1 was characterized from golden pompano, Trachinotus ovatus (designated ToIRF1), and its immune function was identified to elucidate the transcriptional regulatory mechanism of ToIFNa3. The full-length complementary DNA (cDNA) of IRF1 is 1763 bp, including a 900-bp open reading frame (ORF) encoding a 299-amino-acid polypeptide. The putative protein sequence has 42.7–71.7% identity to fish IRF1 and possesses a representative conserved domain (a DNA-binding domain (DBD) at the N-terminus). The genomic DNA sequence of ToIRF1 consists of eight exons and seven introns. Moreover, ToIRF1 is constitutively expressed in all examined tissues, with higher levels being observed in immune-relevant tissues (whole blood, gill, and skin). Additionally, Cryptocaryon irritans challenge in vivo increases ToIRF1 expression in the skin as determined by Western blotting (WB); however, protein levels of ToIRF1 in the gill did not change significantly. The subcellular localization indicates that ToIRF1 is localized in the nucleus and cytoplasm with or without polyinosinic/polycytidylic acid (poly (I:C)) induction. Furthermore, overexpression of ToIRF1 or ToIFNa3 shows that ToIRF1 can notably activate ToIFNa3 and interferon signaling molecule expression. Promoter sequence analysis finds that several interferon stimulating response element (ISRE) binding sites are present in the promoter of ToIFNa3. Additionally, truncation, point mutation, and electrophoretic mobile shift (EMSA) assays confirmed that ToIRF1 M5 ISRE binding sites are functionally important for ToIFNa3 transcription. These results may help to illuminate the roles of teleost IRF1 in the transcriptional mechanisms of type I IFN in the immune process.
Collapse
|
19
|
Ma Z, Chen X, Yang R, Hu J, Zhou S, Yang Q. Identification and characterization of interferon regulatory factor 1 from Lateolabrax japonicus involved in antiviral immune response against grouper nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 97:403-410. [PMID: 31874299 DOI: 10.1016/j.fsi.2019.12.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factors (IRFs) play a key role in mediating the host response against pathogen infection and other important biological processes. In the present study, an interferon regulation factor 1 gene was identified from Lateolabrax japonicus (designated LjIRF-1), the cDNA sequence of LjIRF-1 was 1394 bp long, and with an open reading frame (ORF) of 945 bp that encodes a peptide of 314 amino acids. Bioinformatics data showed that LjIRF-1 possesses a DNA-binding domain (DBD) and two low complexity regions, which shared 56-81% identity to other fish IRF-1s. The LjIRF-1 transcripts were detectable in all examined tissues of healthy L. japonicus, with higher levels in the blood, head-kidney, intestine, gill and spleen. When challenged with grouper nervous necrosis virus (GNNV) and poly (I:C) infection, both the mRNA expression levels of LjIRF-1 and L. japonicus interferon-1 gene (designated LjIFN-1) were significantly up-regulated. Furthermore, like with poly (I:C), the active purified recombinant protein (rLjIRF-1) was also capable of increasing the expression level of LjIFN-1; controlling the copy number of GNNV under lethiferous titer (1011-1012 copies/μL) and promoting the survival rate of GNNV infected L. japonicas. Combine all the results, we deduced that LjIRF-1 is involved in defending GNNV infection by simulating LjIFN-1 signal pathway in L. japonicas.
Collapse
Affiliation(s)
- Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, China.
| | - Xu Chen
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Shengjie Zhou
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Qibing Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| |
Collapse
|
20
|
Yang W, Liu C, Xu Q, Qu C, Lv X, Li H, Wu Z, Li M, Yi Q, Wang L, Song L. A novel nuclear factor Akirin regulating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103451. [PMID: 31306698 DOI: 10.1016/j.dci.2019.103451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Akirin, a recently discovered nuclear factor, participates in regulating various processes, including cell proliferation and differentiation, embryonic development, and immunity. In the present study, a novel Akirin was identified from Chinese mitten crab Eriocheir sinensis (designated as EsAkirin), and its primary functions in regulating antimicrobial peptides were explored. The open reading frame of EsAkirin was of 615 bp, encoding a polypeptide of 204 amino acid residues. The deduced amino acid sequence of EsAkirin shared high similarities ranging from 44.1% to 89.2% with other Akirins. In the phylogenetic tree, EsAkirin was firstly clustered with Akirins from shrimp and then assigned into the invertebrate branch. The mRNA transcripts of EsAkirin were constitutively expressed in all the tested tissues, with the highest expression level (5.07-fold compared to the stomach, p < 0.01) in hepatopancreas. The mRNA expression of EsAkirin in hemocytes was significantly increased at 6 h, and reached the maximum level at 24 h post stimulations with either lipopolysaccharide (LPS) (5.04-fold, p < 0.01) or Aeromonas hydrophila (3.10-fold, p < 0.01). After the injection of EsAkirin-dsRNA, the mRNA expressions of EsALF2, EsLYZ, EsCrus2 and EsDWD1 were significantly decreased (p < 0.01) upon LPS stimulation. EsAkirin protein was prominently distributed in the nucleus of E. sinensis hemocytes after LPS and A. hydrophila stimulations. The relative luciferase reporter system analysis revealed that the activity of nuclear factor-κB was significantly up-regulated (2.64-fold, p < 0.01) in human embryonic kidney (HEK293T) cells after the over-expression of EsAkirin. Collectively, these results suggested that EsAkirin might play an important role in the immune responses of E. sinensis by regulating the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Huan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
21
|
Han Z, Wang W, Lv X, Zong Y, Liu S, Liu Z, Wang L, Song L. ATG10 (autophagy-related 10) regulates the formation of autophagosome in the anti-virus immune response of pacific oyster (Crassostrea gigas). FISH & SHELLFISH IMMUNOLOGY 2019; 91:325-332. [PMID: 31128297 DOI: 10.1016/j.fsi.2019.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Autophagy, a highly conserved intracellular degradation system, is involved in numerous processes in vertebrate and invertebrate, such as cell survival, ageing, and immune responses. However, the detailed molecular mechanism of autophagy and its immune regulatory role in bivalves are still not well understood. In the present study, an autophagy-related protein ATG10 (designated as CgATG10) was identified from Pacific oyster Crassostrea gigas. The open reading frame of CgATG10 cDNA was of 621 bp, encoding a polypeptide of 206 amino acid residues with an Autophagy_act_C domain (from 96 to 123 amino acid), which shared high homology with that from C. virginica and Octopus bimaculoides. The mRNA transcripts of CgATG10 were widely expressed in all the tested tissues including mantle, gonad, gills, hemocytes and hepatopancreas, with the highest expression level in mantle. After the stimulation with poly (I:C), the mRNA expression level of CgATG10 in the mantle of oysters was significantly up-regulated (4.92-fold of that in Blank group, p < 0.05), and the LC3-conversion from LC3-I to LC3-II (LC3-II/LC3-I) also increased. After an additional injection of dsRNA to knock-down the expression of CgATG10 (0.33-fold and 0.10-fold compared respectively with Blank group and dsGFP group, p < 0.05), the downstream conversion of CgLC3 was inhibited significantly compared with that of the control dsGFP group, while the expression level of autophagy-initiator CgBeclin1 did not change significantly. In addition, the mRNA transcripts of interferon regulatory factor CgIRF-1 increased significantly in CgATG10-knockdown oysters at 12 h post poly (I:C) stimulation. All the results indicated that CgATG10 might participate in the immune response against poly (I:C) by regulating autophagosome formation and interferon system in oysters.
Collapse
Affiliation(s)
- Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shujing Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
Wang M, Liu C, Wang W, Dong M, Zhang P, Liu Y, Wang L, Song L. A SPRY domain-containing SOCS box protein 3 (SPSB3) involved in the regulation of cytokine production in granulocytes of Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:28-37. [PMID: 30711451 DOI: 10.1016/j.dci.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The sp1A/ryanodine receptor (SPRY) family members have been reported to involve in important biological pathways, including innate immune signaling, cytokine signaling suppression, development, cell growth, and retroviral restriction. In the present study, a SPRY domain-containing SOCS box protein (named as CgSPSB3) was identified and characterized from oyster Crassostrea gigas. The open reading frame of CgSPSB3 gene was of 699 bp, encoding a polypeptide of 232 amino acid residues with a central SPRY domain and a C-terminal SOCS box motif. CgSPSB3 mRNA transcripts could be detected in all the examined tissues with the highest level in hemocytes, which was about 82.72-fold (p < 0.05) of that in gonad. Furthermore, the expression level of CgSPSB3 mRNA in granulocytes was significantly higher than that in semi-granulocytes and agranulocytes, which was about 2.04-fold (p < 0.05) of the average level of hemocytes. Immunofluorescence assay further revealed that CgSPSB3 protein was mainly distributed in the cytoplasm of granulocytes. The mRNA expression of CgSPSB3 in hemocytes was up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The mRNA expression of CgIFNLP, CgIL17-5 and CgTNF-1 decreased significantly (p < 0.05) at 24 h after the CgSPSB3 mRNA was knocked down by RNAi. These results collectively indicated that CgSPSB3 might play an important role in regulating cytokines production in granulocytes of C. gigas.
Collapse
Affiliation(s)
- Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
23
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Green TJ, Speck P. Antiviral Defense and Innate Immune Memory in the Oyster. Viruses 2018; 10:v10030133. [PMID: 29547519 PMCID: PMC5869526 DOI: 10.3390/v10030133] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.
Collapse
Affiliation(s)
- Timothy J Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada.
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Peter Speck
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| |
Collapse
|