1
|
Ren X, Wang Y, Zhang K, Ding Y, Zhang W, Wu M, Xiao B, Gu P. Transmission of Microcystins in Natural Systems and Resource Processes: A Review of Potential Risks to Humans Health. Toxins (Basel) 2023; 15:448. [PMID: 37505717 PMCID: PMC10467081 DOI: 10.3390/toxins15070448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The rapid rise of microcystins (MCs) poses a serious threat to global freshwater ecosystems and has become an important issue of global public health. MCs have considerable stability and are the most widely distributed hepatotoxins. It cannot only accumulate in aquatic organisms and transfer to higher nutrients and levels, but also be degraded or transferred during the resource utilization of cyanobacteria. No matter which enrichment method, it will lead to the risk of human exposure. This review summarizes the research status of MCs, and introduces the distribution of MCs in different components of aquatic ecosystems. The distribution of MCs in different aquatic organisms was summarized, and the potential risks of MCs in the environment to human safety were summarized. MCs have polluted all areas of aquatic ecosystems. In order to protect human life from the health threats caused by MCs, this paper also proposes some future research directions to promote MCs control and reduce human exposure to MCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; (X.R.); (Y.W.); (K.Z.); (Y.D.); (W.Z.); (M.W.); (B.X.)
| |
Collapse
|
2
|
Fu X, Zheng M, Su J, Xi B, Wei D, Wang X. Spatiotemporal patterns and threshold of chlorophyll-a in Lake Taihu based on microcystins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49327-49338. [PMID: 36773259 DOI: 10.1007/s11356-023-25737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Chlorophyll-a (Chl-a) is considered as an indicator of phytoplankton biomass dynamically reflecting the growth of algae. Therefore, determination of Chl-a threshold is of vital importance to the health of aquatic ecosystems and drinking water security. This research is aimed to investigate the spatial and temporal distributions of Chl-a and microcystin (MC) concentrations using Geographic Information System (GIS) and identify the Chl-a threshold in Lake Taihu based on available guideline values of MCs. Nearly, the same characteristics of spatiotemporal variation of Chl-a and MCs were observed in Lake Taihu. Overall, the lakewide distributions of Chl-a and MCs were highly variable over time and space. The Chl-a concentration in the winter and spring was relatively low, and gradually increasing in summer and autumn, with the maximum concentration observed in August. But the maximum MCs concentration appeared in October, 2 months lagging behind the Chl-a. The highest annual average Chl-a and MCs concentrations were observed in Zhushan Bay, Meiliang Bay, and Gonghu Bay in northwest of Lake Taihu, following by West Zone and Center Zone. Dongtaihu Bay, East Zone, and South Zone always present good water quality. Referring to the guideline value of MCs, the Chl-a threshold was determined as 10-15 mg·m-3 based on the linear regression correlation between Chl-a and MCs. The establishment of Chl-a threshold is useful for eutrophication control, water quality management, and drinking water utilities in developing water safety plans.
Collapse
Affiliation(s)
- Xuemei Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Daichun Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoli Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Falfushynska H, Kasianchuk N, Siemens E, Henao E, Rzymski P. A Review of Common Cyanotoxins and Their Effects on Fish. TOXICS 2023; 11:toxics11020118. [PMID: 36850993 PMCID: PMC9961407 DOI: 10.3390/toxics11020118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Global warming and human-induced eutrophication drive the occurrence of various cyanotoxins in aquatic environments. These metabolites reveal diversified mechanisms of action, encompassing cyto-, neuro-, hepato-, nephro-, and neurotoxicity, and pose a threat to aquatic biota and human health. In the present paper, we review data on the occurrence of the most studied cyanotoxins, microcystins, nodularins, cylindrospermopsin, anatoxins, and saxitoxins, in the aquatic environment, as well as their potential bioaccumulation and toxicity in fish. Microcystins are the most studied among all known cyanotoxins, although other toxic cyanobacterial metabolites are also commonly identified in aquatic environments and can reveal high toxicity in fish. Except for primary toxicity signs, cyanotoxins adversely affect the antioxidant system and anti-/pro-oxidant balance. Cyanotoxins also negatively impact the mitochondrial and endoplasmic reticulum by increasing intracellular reactive oxygen species. Furthermore, fish exposed to microcystins and cylindrospermopsin exhibit various immunomodulatory, inflammatory, and endocrine responses. Even though cyanotoxins exert a complex pressure on fish, numerous aspects are yet to be the subject of in-depth investigation. Metabolites other than microcystins should be studied more thoroughly to understand the long-term effects in fish and provide a robust background for monitoring and management actions.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznan, Poland
| | - Eduard Siemens
- Faculty of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, 06366 Köthen, Germany
| | - Eliana Henao
- Research Group Integrated Management of Ecosystems and Biodiversity XIUÂ, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61701 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 61701 Poznań, Poland
| |
Collapse
|
4
|
Zhang W, Liu J, Xiao Y, Zhang Y, Yu Y, Zheng Z, Liu Y, Li Q. The Impact of Cyanobacteria Blooms on the Aquatic Environment and Human Health. Toxins (Basel) 2022; 14:toxins14100658. [PMID: 36287927 PMCID: PMC9611879 DOI: 10.3390/toxins14100658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria blooms are a global aquatic environment problem. In recent years, due to global warming and water eutrophication, the surface cyanobacteria accumulate in a certain area to form cyanobacteria blooms driven by wind. Cyanobacteria blooms change the physical and chemical properties of water and cause pollution. Moreover, cyanobacteria release organic matter, N (nitrogen) and P (phosphorus) into the water during their apoptosis, accelerating the eutrophication of the water, threatening aquatic flora and fauna, and affecting the community structure and abundance of microorganisms in the water. Simultaneously, toxins and carcinogens released from cyanobacteria can be enriched through the food chain/web, endangering human health. This study summarized and analyzed the research of the influence of cyanobacteria blooms on the aquatic environment and human health, which is helpful to understand further the harm of cyanobacteria blooms and provide some reference for a related research of cyanobacteria blooms.
Collapse
Affiliation(s)
- Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jing Liu
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yunxing Xiao
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yumiao Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yangjinzhi Yu
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yafeng Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Correspondence: (Y.L.); (Q.L.)
| | - Qi Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
- Correspondence: (Y.L.); (Q.L.)
| |
Collapse
|
5
|
Guo H, Kuang Y, Ouyang K, Zhang C, Yang H, Chen S, Tang R, Zhang X, Li D, Li L. Ammonia in the presence of nano titanium dioxide (nano-TiO 2) induces greater oxidative damage in the gill and liver of female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113458. [PMID: 35367888 DOI: 10.1016/j.ecoenv.2022.113458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Water pollution caused by a highly hazardous chemical ammonia and a widespread application nanomaterials-nano titanium dioxide (n-TiO2) in nature water has attracted extensive concern of the world. However, the potential joint effects of the two factors are unknown. Aim to investigate the potential interactive effects of ammonia and n-TiO2 and the behind mechanisms, adult female zebrafish (Danio rerio) were co-exposed for 8 weeks by total ammonia nitrogen (TAN; 0, 3, 30 mg/L) and n-TiO2 (0, 0.1, 1 mg/L) in different combination conditions based on a full-factorial design. The analysis of absorption kinetics confirmed that n-TiO2 could absorb free ammonia (NH3) in aqueous solution and the loss rate of free NH3 increased with the rise of n-TiO2 concentration. Consistent with this, free NH3 concentrations in the gill and liver were higher in the presence of n-TiO2 compared to TAN exposure alone. The increases of MDA and PC concentrations in the gill and liver of fish indicated that TAN and n-TiO2 alone or in combination caused oxidative stress. Simultaneously, the activity and transcription of antioxidant enzymes (T-SOD, CuZn-SOD, Mn-SOD, CAT, GPx and GST) as well as antioxidant GSH contents were extensively inhibited by TAN and n-TiO2 via Nrf2-Keap1 signaling. The significant interactive effects of TAN and n-TiO2 were detected on levels of GSH, GST and gstr1 mRNA in the gill, and on levels of GSH, T-SOD, Mn-SOD, CAT levels as well as gpx1a and keap1 mRNAs in the liver, implying synergistic toxic risk of TAN and n-TiO2. The more severe histopathological alterations and higher IBR analysis in co-treatment groups further proved that the existence of n-TiO2 excavated ammonia-induced toxicity in the gill and liver, especially in liver. In conclusion, ammonia and n-TiO2 have a synergistic toxic risk of fish health because ammonia and n-TiO2 cause oxidative-antioxidative imbalance by inducing ROS overproduction.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Siqi Chen
- Hubei Aquaculture Technology Extension Center (Hubei Aquatic Breeds Introduction and Breeding Center), Wuhan 430060, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Ling X, Zuo J, Pan M, Nie H, Shen J, Yang Q, Hung TC, Li G. The presence of polystyrene nanoplastics enhances the MCLR uptake in zebrafish leading to the exacerbation of oxidative liver damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151749. [PMID: 34843796 DOI: 10.1016/j.scitotenv.2021.151749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The accumulation of diminutive plastic waste in the environment, including microplastics and nanoplastics, has threatened the health of multiple species. Nanoplastics can adsorb the pollutants from the immediate environment, and may be used as carriers for pollutants to enter organisms and bring serious ecological risk. To evaluate the toxic effects of microcystin-LR (MCLR) on the liver of adult zebrafish (Danio rerio) in the presence of 70 nm polystyrene nanoplastics (PSNPs), zebrafish were exposed to MCLR alone (0, 0.9, 4.5 and 22.5 μg/L) and a mixture of MCLR + PSNPs (100 μg/L) for three months. The results indicated that groups with combined exposure to MCLR and PSNPs further enhanced the accumulation of MCLR in the liver when compared to groups only exposed to MCLR. Cellular swelling, fat vacuolation, and cytoarchitectonic damage were observed in zebrafish livers after exposure to MCLR, and the presence of PSNPs exacerbated these adverse effects. The results of biochemical tests showed the combined effect of MCLR + PSNPs enhanced MCLR-induced hepatotoxicity, which could be attributed to the altered levels of reactive oxygen species, malondialdehyde and glutathione, and activities of catalase. The expression of genes related to antioxidant responses (p38a, p38b, ERK2, ERK3, Nrf2, HO-1, cat1, sod1, gax, JINK1, and gstr1) was further performed to study the mechanisms of MCLR combined with PSNPs aggravated oxidative stress of zebrafish. The results showed that PSNPs could improve the bioavailability of MCLR in the zebrafish liver by acting as a carrier and accelerate MCLR-induced oxidative stress by regulating the levels of corresponding enzymes and genes.
Collapse
Affiliation(s)
- Xiaodong Ling
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
7
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
8
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
9
|
Zhang L, Zheng XC, Huang YY, Ge YP, Sun M, Chen WL, Liu WB, Li XF. Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109003. [PMID: 33617998 DOI: 10.1016/j.cbpc.2021.109003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Carbonylcyanide-3-chlorophenylhydrazone (CCCP) is a protonophore, which causes uncoupling of proton gradient in the inner mitochondrial membrane, thus inhibiting the rate of ATP synthesis. However, this information is manly derived from mammals, while its effects on the mitochondrial homeostasis of aquatic animals are largely unknown. In this study, the mitochondrial homeostasis of a carp fish Megalobrama amblycephala was investigated systematically in a time-course manner by using CCCP. Fish was injected intraperitoneally with CCCP (1.8 mg/kg per body weight) and DMSO (control), respectively. The results showed that CCCP treatment induced hepatic mitochondrial oxidative stress, as was evidenced by the significantly increased MDA and PC contents coupled with the decreased SOD and MnSOD activities. Meanwhile, mitochondrial fission was up-regulated remarkably characterized by the increased transcriptions of Drp-1, Fis-1 and Mff. However, the opposite was true for mitochondrial fusion, as was indicative of the decreased transcriptions of Mfn-1, Mfn-2 and Opa-1. This consequently triggered mitophagy, as was supported by the accumulated mitochondrial autophagosomes and the increased protein levels of PINK1, Parkin, LC3-II and P62 accompanied by the increased LC3-II/LC3-I ratio. Mitochondrial biogenesis and function both decreased significantly addressed by the decreased activities of CS, SDH and complex I, IV and V, as well as the protein levels of PGC-1β coupled with the decreased transcriptions of TFAM, COX-1, COX-2 and ATP-6. Unlikely, DMSO treatment exerted little influence. Overall, CCCP treatment resulted in the imbalance of mitochondrial homeostasis in Megalobrama amblycephala by promoting mitochondrial oxidative stress, fission and mitophagy, but depressing mitochondrial fusion, biogenesis and function.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiao-Chuan Zheng
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Ya-Ping Ge
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Miao Sun
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, People's Republic of China.
| |
Collapse
|
10
|
Gao XQ, Fei F, Huang B, Meng XS, Zhang T, Zhao KF, Chen HB, Xing R, Liu BL. Alterations in hematological and biochemical parameters, oxidative stress, and immune response in Takifugu rubripes under acute ammonia exposure. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108978. [PMID: 33493666 DOI: 10.1016/j.cbpc.2021.108978] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/26/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Ammonia is a major pollutant in aquatic environments and poses a considerable threat to the survival of fish. In this study, we investigated the toxic effects of ammonia on the hematological and biochemical parameters, oxidative stress, and immune responses in Takifugu rubripes. Juvenile T. rubripes (average weight 246.17 ± 3.54 g) were exposed to different concentrations of ammonia (0, 5, 50, 100, and 150 mg/L) for 96 h. The results showed that the hematological parameters (hemoglobin, hematocrit, red blood cell, and white blood cell count) were significantly reduced in response to ammonia exposure. Of the plasma components, such as serum total protein, albumin, glucose, glutamic-oxalacetic transaminase, and glutamic-pyruvic transaminase, were significantly altered in response to ammonia exposure. Additionally, the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) were increased after exposure to low concentration ammonia exposure. However, when fish were exposed to a high concentration of ammonia, these parameters showed the opposite trend, suggesting that an increase in antioxidant enzymes during the early stages of ammonia exposure may contribute to the removal of the induced reactive oxygen species (ROS) and protect the cells from oxidative damage. However, as the ammonia concentration and exposure time increased, the overproduction of ROS accelerated the depletion of antioxidant enzymes. Ammonia exposure significantly increased the expression of heat shock proteins (HSP70 and HSP90). Ammonia poisoning elevated gene expressions of TLR-3, TNF-α, IL-6, IL-12, and IL-1β in the gills, causing an inflammatory response. Our findings provide new insights into the mechanisms involved in ammonia-induced aquatic toxicology in marine fish, which may aid in their captive management.
Collapse
Affiliation(s)
- Xiao-Qiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Fan Fei
- Aquacultural Engineering R&D Team, Dalian Ocean University, Dalian 116023, Liongning Province, People's Republic of China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Xue Song Meng
- Dalian Tianzheng Industrial Co. Ltd., Dalian 116000, People's Republic of China
| | - Tao Zhang
- Dalian Tianzheng Industrial Co. Ltd., Dalian 116000, People's Republic of China
| | - Kui-Feng Zhao
- Yuhai Hongqi Ocean Engineering Co. Ltd, Rizhao 276800, People's Republic of China
| | - Hai-Bin Chen
- Yuhai Hongqi Ocean Engineering Co. Ltd, Rizhao 276800, People's Republic of China
| | - Rui Xing
- Yuhai Hongqi Ocean Engineering Co. Ltd, Rizhao 276800, People's Republic of China
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
11
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
12
|
Gu P, Li Q, Zhang W, Gao Y, Sun K, Zhou L, Zheng Z. Biological toxicity of fresh and rotten algae on freshwater fish: LC 50, organ damage and antioxidant response. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124620. [PMID: 33338807 DOI: 10.1016/j.jhazmat.2020.124620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In recent decades, harmful algal blooms (HABs) induced by eutrophication have caused organisms in freshwater ecosystems to become surrounded by toxic cells and dissolved toxins. In this study, the toxic effects of fresh algae solution (FAS) and rotten algae solution (RAS) were investigated. The results showed that the composition of RAS was predominantly organic acids, ketones, polypeptides, esters, phenols, amino acids and intermediate metabolic products. The safety concentrations (SCs) of FAS to Carassius auratus, Ctenopharyngodon idellus and Hypophthalmichthys molitrix were 1.92 × 1010 cells/L, 1.58 × 1011 cells/L and 1.30 × 1011 cells/L, respectively. The SCs of the RAS were significantly lower than those of the FAS (p < 0.05), with the values of 1.25 × 109 cells/L, 8.8 × 109 cells/L and 9.7 × 109 cells/L, for each species, respectively. The toxic algae solutions caused congestion inside the gills, intestinal lesions and high infection rates in the tested fish. FAS and RAS exposure also activated the antioxidant defense system and changed the intestinal microbial structure, resulting in the damage to the microbial balance in the body, and eventually the death of the fish. By studying the acute toxicity to fish, the harm of HABs to aquatic organisms can be predicted.
Collapse
Affiliation(s)
- Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weizhen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yang Gao
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, China
| | - Ke Sun
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, China
| | - Liang Zhou
- Nanjing Perennial root flowers Botanical garden, 210017, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Xu S, Yi X, Liu W, Zhang C, Massey IY, Yang F, Tian L. A Review of Nephrotoxicity of Microcystins. Toxins (Basel) 2020; 12:toxins12110693. [PMID: 33142924 PMCID: PMC7693154 DOI: 10.3390/toxins12110693] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial blooms triggered by eutrophication and climate change have become a global public health issue. The toxic metabolites microcystins (MCs) generated by cyanobacteria can accumulate in food chain and contaminate water, thus posing a potential threat to human and animals health. Studies have suggested that aside liver, the kidney may be another target organ of MCs intoxication. Therefore, this review provides various evidences on the nephrotoxicity of MCs. The review concludes that nephrotoxicity of MCs may be related to inhibition of protein phosphatases and excessive production of reactive oxygen species, cytoskeleton disruption, endoplasmic reticulum stress, DNA damage and cell apoptosis. To protect human from MCs toxic consequences, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Xiping Yi
- School of Public Health, Xiangnan University, Chenzhou 423000, China;
- Chenzhou Center for Disease Control and Prevention, Chenzhou 423000, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Chengcheng Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
- Correspondence: (F.Y.); (L.T.); Tel./Fax: +86-731-84805460 (F.Y.)
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
- Correspondence: (F.Y.); (L.T.); Tel./Fax: +86-731-84805460 (F.Y.)
| |
Collapse
|
14
|
Zhong JR, Wu P, Feng L, Jiang WD, Liu Y, Kuang SY, Tang L, Zhou XQ. Dietary phytic acid weakened the antimicrobial activity and aggravated the inflammatory status of head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 103:256-265. [PMID: 32439508 DOI: 10.1016/j.fsi.2020.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to explore the effects of phytic acid (PA) on the antimicrobial activity and inflammatory response in three immune organs (head kidney, spleen and skin) of on-growing grass carp (Ctenopharyngodon idella). To achieve this goal, we first conducted a 60-day growth trial by feeding fish with graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then, the fish were challenged with Aeromonas hydrophila for 6 days. Compared with the control group, the following results were obtained regarding supplementation with certain levels of PA in the diet. (1) There was an increase in skin haemorrhage and lesion morbidity in fish. (2) There was a decrease in activities or contents of immune factors, including lysozyme (LZ), complement 3 (C3), C4 and immunoglobulin M (IgM), and there was downregulation of gene expression levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and β-defensin-1 in immune organs. (3) There was upregulation in the gene expression of the following pro-inflammatory cytokines: tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) (except in the spleen), interferon γ2 (IFN-γ2), IL-6 (except in the spleen), IL-8, IL-12p40, IL-15 and IL-17D. These changes were partly related to the nuclear factor kappa B (NF-κB) signalling pathway, but downregulation of mRNA levels of anti-inflammatory cytokines (transforming growth factor β1 (TGF-β1), TGF-β2, IL-413/A, IL-413/B, IL-10 (except in the skin) and IL-11) occurred in a manner partially related to the target of rapamycin (TOR) signalling pathway. Finally, based on the broken-line analysis of skin haemorrhage and lesion morbidity and IgM content in the head kidney, the maximum tolerance levels of PA for on-growing grass carp (120.56-452.00 g) were estimated to be 1.79 and 1.31% of the diet, respectively.
Collapse
Affiliation(s)
- Jing-Ren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
15
|
Lin W, Guo H, Wang L, Zhang D, Wu X, Li L, Qiu Y, Yang L, Li D, Tang R. Parental Transfer of Microcystin-LR-Induced Innate Immune Dysfunction of Zebrafish: A Cross-Generational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1014-1023. [PMID: 31859493 DOI: 10.1021/acs.est.9b04953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transgenerational effects of microcystin-LR (MC-LR) released by cyanobacterial blooms have become a hot topic. In the present study, adult zebrafish pairs were exposed to 0, 0.4, 2, and 10 μg/L MC-LR for 60 days and the embryos (F1 generation) were hatched without or with continued MC-LR exposures at the same concentrations until 5 days postfertilization (dpf). The results showed the existence of MC-LR both in F0 gonads and in F1 embryos and indicated that MC-LR could be transferred directly from the F0 adult fish to F1 offspring. The adverse effects on sex hormone levels, sexual development, and fecundity in F0 generation along with abnormal development in F1 offspring were observed. Furthermore, downregulation of antioxidant genes (cat, mn-sod, gpx1a) and upregulation of innate immune-related genes (tlr4a, myd88, tnfα, il1β) as well as increased proinflammation cytokine contents (TNF-α, IL-1β, IL-6) were noticed in F1 offspring without/with continued MC-LR exposures. In addition, significant differences between the two F1 embryo treatments demonstrated that continuous MC-LR exposure could result in a higher degree of inflammatory response compared to those without MC-LR exposure. Our findings revealed that MC-LR could exert cross-generational effects of immunotoxicity by inhibiting the antioxidant system and activating an inflammatory response.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Honghui Guo
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Lingkai Wang
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Dandan Zhang
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Xueyang Wu
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Li Li
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture , Wuhan 430070 , P. R. China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University) , Wuhan 430070 , P. R. China
| | - Yuming Qiu
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Liping Yang
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Dapeng Li
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture , Wuhan 430070 , P. R. China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University) , Wuhan 430070 , P. R. China
| | - Rong Tang
- College of Fisheries , Huazhong Agricultural University , Wuhan 430070 , P. R. China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture , Wuhan 430070 , P. R. China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University) , Wuhan 430070 , P. R. China
| |
Collapse
|
16
|
Xiao J, Li QY, Tu JP, Chen XL, Chen XH, Liu QY, Liu H, Zhou XY, Zhao YZ, Wang HL. Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:491-500. [PMID: 31121556 DOI: 10.1016/j.ecoenv.2019.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Ammonia, one of the major limiting environment factors in aquaculture, may pose a threat to the shrimp growth, reproduction and survival. In this study, to understand molecular differences of transcriptomic and metabolomic responses and investigate the tolerance mechanisms underlying ammonia stress in Litopenaeus vannamei, ammonia-tolerant family (LV-AT) and ammonia-sensitive family (LV-AS) of these two extreme families were exposed to high-concentration (NH4Cl, 46 mg/L) ammonia for 24 h. The comparative transcriptome analysis between ammonia-treated and control (LV-C) groups revealed involvement of immune defense, cytoskeleton remodeling, antioxidative system and metabolic pathway in ammonia-stress response of L. vannamei. Likewise, metabolomics analysis showed that ammonia exposure could disturb amino acid metabolism, nucleotide metabolism and lipid metabolism, with metabolism related-genes changed according to RNA-seq analysis. The comparison of metabolite and transcript profiles between LV-AT and LV-AS indicated that LV-AT used the enhanced glycolysis and tricarboxylic acid (TCA) cycle strategies for energy supply and ammonia excretion to adapt high-concentration ammonia. Furthermore, some of genes involved in the detoxification and ammonia excretion were highly expressed in LV-AT. We speculate that the higher ability of ammonia excretion and detoxification and the accelerated energy metabolism for energy supplies might be the adaptive strategies for LV-AT relative to LV-AS after ammonia stress. Collectively, the combination of transcriptomics and metabolomics results will greatly contribute to incrementally understand the stress responses on ammonia exposure to L. vannamei and supply molecular level support for evaluating the environmental effects of ammonia on aquatic organisms. The results further constitute new sights on the potential molecular mechanisms of ammonia adaptive strategies in shrimps at the transcriptomics and metabolomics levels.
Collapse
Affiliation(s)
- Jie Xiao
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Qiang-Yong Li
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Jia-Peng Tu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Xiu-Li Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Xiao-Han Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Qing-Yun Liu
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-Yun Zhou
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Yong-Zhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China.
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
17
|
Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice. Toxins (Basel) 2019; 11:toxins11090482. [PMID: 31438657 PMCID: PMC6783826 DOI: 10.3390/toxins11090482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing cyanobacterial blooms have recently been considered a severe environmental problem. Microcystin-leucine arginine (MC-LR) is one of the secondary products of cyanobacteria metabolism and most harmful cyanotoxins found in water bodies. Studies show MC-LR negatively affects various human organs when exposed to it. The phenotype of the jejunal chronic toxicity induced by MC-LR has not been well described. The aim of this paper was to investigate the effects of MC-LR on the jejunal microstructure and expression level of inflammatory-related factors in jejunum. Mice were treated with different doses (1, 30, 60, 90 and 120 μg/L) of MC-LR for six months. The microstructure and mRNA expression levels of inflammation-related factors in jejunum were analyzed. Results showed that the microstructure of the jejunum was destroyed and expression levels of inflammation-related factors interleukin (IL)-1β, interleukin (IL)-8, tumor necrosis factor alpha, transforming growth factor-β1 and interleukin (IL)-10 were altered at different MC-LR concentrations. To the best of our knowledge, this is the first study that mice were exposed to a high dose of MC-LR for six months. Our data demonstrated MC-LR had the potential to cause intestinal toxicity by destroying the microstructure of the jejunum and inducing an inflammatory response in mice, which provided new insight into understanding the prevention and diagnosis of the intestinal diseases caused by MC-LR.
Collapse
|