1
|
Thaimuangphol W, Sanoamuang L, Wangkahart E. The immune response of fairy shrimp Streptocephalus sirindhornae against bacterial black disease by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:108-115. [PMID: 34983002 DOI: 10.1016/j.fsi.2021.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
To enhance genomic resources and to understand the molecular immune mechanisms underlying the response of fairy shrimp (Streptocephalus sirindhornae) to pathogens, we first performed a comparative gene transcription analysis from Aeromonas hydrophila-immunized shrimp and from a control group through RNA sequencing. Meanwhile, the differentially expressed genes (DEGs) were investigated, and a total of 46,958,894 clean reads were obtained and then assembled into 73,297 unigenes with an average length of 993 bp and an N50 of 1,458 bp. Unigenes were annotated by comparison with the NR/NT/KO/SwissProt/PFAM/GO and KOG databases, and 28,198 unigenes (38.47%) were annotated in at least one database. After a bacterial challenge, 143 and 287 genes were identified as markedly up- or downregulated, respectively, and 345 were associated with 142 pathways, including the classic immune-related apoptosis, toll-like receptor and MAPK signaling pathways. Moreover, ten differently expressed immune-related genes were confirmed by using quantitative real-time PCR. This study characterized a gene expression pattern for normal and Aeromonas hydrophila-immunized S. sirindhornae for the first time and shed new light on its molecular mechanisms, thus enabling the future efforts of disease control programs for this valuable aquaculture species.
Collapse
Affiliation(s)
- Wipavee Thaimuangphol
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Laorsri Sanoamuang
- Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Laboratory of Biodiversity and Environmental Management, International College, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| |
Collapse
|
2
|
Lee J, Cho BC, Park JS. Transcriptomic analysis of brine shrimp Artemia franciscana across a wide range of salinities. Mar Genomics 2021; 61:100919. [PMID: 34965493 DOI: 10.1016/j.margen.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Brine shrimp Artemia franciscana, a commercially important species, can thrive in a wide range of salinities and is commonly found in hypersaline lakes and solar salterns. Transcriptome analysis can enhance the understanding of the adaptative mechanisms of brine shrimp in aquaculture. RNA sequencing (RNAseq) data was generated from A. franciscana adults that were salt-adapted for 2-4 weeks at five salinities: 35, 50, 100, 150, and 230 psu. Long-read isoform sequencing (IsoSeq) data was used to construct a high-quality transcriptome assembly. Also, the gene expression patterns in A. franciscana adults were examined. Notably, the transcriptional response of A. franciscana's acclimation to intermediate salinities (50-150 psu) displayed frequently and differentially U-shaped or inverted U-shaped expression patterns. In addition, the types of genes showing two nonmonotonic expression patterns were distinct from each other. The coordinated shifts in gene expression suggest different homeostatic strategies of A. franciscana at specific salinities; such strategies may enhance population fitness at extreme salinities. Our study should promote a scientific concept for the gene expression patterns of A. franciscana along a broad salinity gradient, and a variety of salinity and prey should be monitored for testing the gene expression pattern of this important aquaculture species.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
De Vos S, Rombauts S, Coussement L, Dermauw W, Vuylsteke M, Sorgeloos P, Clegg JS, Nambu Z, Van Nieuwerburgh F, Norouzitallab P, Van Leeuwen T, De Meyer T, Van Stappen G, Van de Peer Y, Bossier P. The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments. BMC Genomics 2021; 22:635. [PMID: 34465293 PMCID: PMC8406910 DOI: 10.1186/s12864-021-07937-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brine shrimp Artemia have an unequalled ability to endure extreme salinity and complete anoxia. This study aims to elucidate its strategies to cope with these stressors. RESULTS AND DISCUSSION Here, we present the genome of an inbred A. franciscana Kellogg, 1906. We identified 21,828 genes of which, under high salinity, 674 genes and under anoxia, 900 genes were differentially expressed (42%, respectively 30% were annotated). Under high salinity, relevant stress genes and pathways included several Heat Shock Protein and Leaf Embryogenesis Abundant genes, as well as the trehalose metabolism. In addition, based on differential gene expression analysis, it can be hypothesized that a high oxidative stress response and endocytosis/exocytosis are potential salt management strategies, in addition to the expression of major facilitator superfamily genes responsible for transmembrane ion transport. Under anoxia, genes involved in mitochondrial function, mTOR signalling and autophagy were differentially expressed. Both high salt and anoxia enhanced degradation of erroneous proteins and protein chaperoning. Compared with other branchiopod genomes, Artemia had 0.03% contracted and 6% expanded orthogroups, in which 14% of the genes were differentially expressed under high salinity or anoxia. One phospholipase D gene family, shown to be important in plant stress response, was uniquely present in both extremophiles Artemia and the tardigrade Hypsibius dujardini, yet not differentially expressed under the described experimental conditions. CONCLUSIONS A relatively complete genome of Artemia was assembled, annotated and analysed, facilitating research on its extremophile features, and providing a reference sequence for crustacean research.
Collapse
Affiliation(s)
- Stephanie De Vos
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Louis Coussement
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Patrick Sorgeloos
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - James S Clegg
- Coastal and Marine Sciences Institute, University of California, Bodega Bay, Davis, CA, USA
| | - Ziro Nambu
- Department of Medical Technology, School of Health Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Chen B, Chu TW, Chiu K, Hong MC, Wu TM, Ma JW, Liang CM, Wang WK. Transcriptomic analysis elucidates the molecular processes associated with hydrogen peroxide-induced diapause termination in Artemia-encysted embryos. PLoS One 2021; 16:e0247160. [PMID: 33606769 PMCID: PMC7894940 DOI: 10.1371/journal.pone.0247160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Treatment with hydrogen peroxide (H2O2) raises the hatching rate through the development and diapause termination of Artemia cysts. To comprehend the upstream genetic regulation of diapause termination activated by exterior H2O2 elements, an Illumina RNA-seq analysis was performed to recognize and assess comparative transcript amounts to explore the genetic regulation of H2O2 in starting the diapause termination of cysts in Artemia salina. We examined three groupings treated with no H2O2 (control), 180 μM H2O2 (low) and 1800 μM H2O2 (high). The results showed a total of 114,057 unigenes were identified, 41.22% of which were functionally annotated in at least one particular database. When compared to control group, 34 and 98 differentially expressed genes (DEGs) were upregulated in 180 μM and 1800 μM H2O2 treatments, respectively. On the other hand, 162 and 30 DEGs were downregulated in the 180 μM and 1800 μM H2O2 treatments, respectively. Cluster analysis of DEGs demonstrated significant patterns among these types of 3 groups. GO and KEGG enrichment analysis showed the DEGs involved in the regulation of blood coagulation (GO: 0030193; GO: 0050818), regulation of wound healing (GO:0061041), regulation of hemostasis (GO: 1900046), antigen processing and presentation (KO04612), the Hippo signaling pathway (KO04391), as well as the MAPK signaling pathway (KO04010). This research helped to define the diapause-related transcriptomes of Artemia cysts using RNA-seq technology, which might fill up a gap in the prevailing body of knowledge.
Collapse
Affiliation(s)
- Bonien Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tah-Wei Chu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jui-Wen Ma
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chih-Ming Liang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Tian CB, Li YY, Huang J, Chu WQ, Wang ZY, Liu H. Comparative Transcriptome and Proteome Analysis of Heat Acclimation in Predatory Mite Neoseiulus barkeri. Front Physiol 2020; 11:426. [PMID: 32411020 PMCID: PMC7201100 DOI: 10.3389/fphys.2020.00426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
In our previous study, we reported a high temperature adapted strain (HTAS) of the predatory mite Neoseiulus barkeri was artificially selected via a long-term heat acclimation (35°C) and frequent heat hardenings. To understand the molecular basis of heat acclimation, 'omics' analyses were performed to compare the differences between HTAS female adults to conventional strain (CS) at transcriptional and translational levels. We obtained a total of 5,374 differentially expressed genes and 500 differentially expressed proteins. Among them, 119 transcripts had concurrent transcription and translation profiles. It's conserved that some processes, such as high expression of heat shock protein (HSP) genes, involved in heat tolerance of transcriptome analyses, while many protective enzymes including glutathione S-transferase, superoxide dismutase, peroxidase, and cytochrome P450 displayed down-regulated expression. KEGG analysis mapped 4,979 and 348 differentially expressed genes and proteins, to 299 and 253 pathways, respectively. The mitogen-activated protein kinases (MAPK) signaling pathway may provide new insights for the investigation of the molecular mechanisms of heat tolerance. Correlation enriched pathways indicated that there were four pathways associated with heat acclimation involving in energy metabolism and immunity. In addition, the expression patterns of ten randomly selected genes including HSP were consistent with the transcriptome results obtained through quantitative real-time PCR. Comparisons between transcriptome and proteome results indicated the upregulation of HSPs and genes participated in ATP production, immunity and energy metabolism process. A majority of antioxidant-related genes and detoxication-related genes were down-regulated suggesting a fitness cost of heat acclimation. Our results demonstrated that heat tolerance during a long-time acclimation of N. barkeri is a fairly complicated process of physiological regulations. These findings also contribute to a better understanding of the mechanisms of thermal responses of phytoseiid mites which could provide useful information for biological control through natural enemies.
Collapse
Affiliation(s)
| | | | | | | | | | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|