1
|
Acevedo W, Morán-Figueroa R, Vargas-Chacoff L, Morera FJ, Pontigo JP. Revealing the Salmo salar NLRP3 Inflammasome: Insights from Structural Modeling and Transcriptome Analysis. Int J Mol Sci 2023; 24:14556. [PMID: 37834004 PMCID: PMC10572965 DOI: 10.3390/ijms241914556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The NLRP3, one of the most heavily studied inflammasome-related proteins in mammals, remains inadequately characterized in Atlantic salmon (Salmo salar), despite the significant commercial importance of this salmonid. The NLRP3 inflammasome is composed of the NLRP3 protein, which is associated with procaspase-1 via an adapter molecule known as ASC. This work aims to characterize the Salmo salar NLRP3 inflammasome through in silico structural modeling, functional transcript expression determination in the SHK-1 cell line in vitro, and a transcriptome analysis on Atlantic salmon. The molecular docking results suggested a similar arrangement of the ternary complex between NLRP3, ASC, and caspase-1 in both the Atlantic salmon and the mammalian NLRP3 inflammasomes. Moreover, the expression results confirmed the functionality of the SsNLRP3 inflammasome in the SHK-1 cells, as evidenced by the lipopolysaccharide-induced increase in the transcription of genes involved in inflammasome activation, including ASC and NLRP3. Additionally, the transcriptome results revealed that most of the inflammasome-related genes, including ASC, NLRP3, and caspase-1, were down-regulated in the Atlantic salmon following its adaptation to seawater (also known as parr-smolt transformation). This is correlated with a temporary detrimental effected on the immune system. Collectively, these findings offer novel insights into the evolutionarily conserved role of NLRP3.
Collapse
Affiliation(s)
- Waldo Acevedo
- Biological Chemistry Laboratory, Institute of Chemistry, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso 2373223, Chile;
| | - Rodrigo Morán-Figueroa
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Luis Vargas-Chacoff
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- IDEAL Research Center for Dynamics of High Latitude Marine Ecosystems, Universidad Austral de Chile, Valdivia 5110566, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
- Integrative Biology Group, Valdivia 5110566, Chile
| | - Francisco J. Morera
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Integrative Biology Group, Valdivia 5110566, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional de Investigación, Facultad Ciencias de la Naturaleza, Medicina Veterinaria, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5090000, Chile
| |
Collapse
|
2
|
Kannimuthu D, Roh H, Peñaranda MMD, Wessel Ø, Mæhle S, Berhe GD, Nordbø J, Kvamme BO, Morton HC, Grove S. Long-term persistence of piscine orthoreovirus-1 (PRV-1) infection during the pre-smolt stages of Atlantic salmon in freshwater. Vet Res 2023; 54:69. [PMID: 37644605 PMCID: PMC10463814 DOI: 10.1186/s13567-023-01201-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
Piscine orthoreovirus (PRV) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. During salmon production cycles, HSMI has predominantly been observed after seawater transfer. More recently, better surveillance and longitudinal studies have detected occurrences of PRV-1 in freshwater broodstock farms and hatcheries. However, very little is known about the viral kinetics of PRV-1 or disease development of HSMI during these pre-smolt stages. In this study, we conducted a long-term PRV-1 challenge experiment to examine the profile of viral load, infectiousness and/or clearance in Atlantic salmon during their development from fry to parr stage. Atlantic salmon fry (mean weight: 1.1 ± 0.19 g) were infected with PRV-1 (high virulent variant) via intraperitoneal (IP) injection. The viral load reached a peak at 2-4 weeks post-challenge (wpc) in heart and muscle tissues. The virus was detected at relatively high levels in whole blood, spleen, and head kidney tissues until 65 wpc. Heart and muscle lesions typical of HSMI were clearly observed at 6 and 8 wpc but then subsided afterwards resolving inflammation. Innate and adaptive immune responses were elicited during the early/acute phase but returned to basal levels during the persistent phase of infection. Despite achieving high viremia, PRV-1 infection failed to cause any mortality during the 65-week virus challenge period. Cohabitation of PRV-1 infected fish (10 and 31 wpc) with naïve Atlantic salmon fry resulted in very low or no infection. Moreover, repeated chasing stress exposures did not affect the viral load or shedding of PRV-1 at 26 and 44 wpc. The present findings provide knowledge about PRV-1 infection in juvenile salmon and highlight the importance of continued monitoring and management to prevent and mitigate the PRV-1 infection in freshwater facilities.
Collapse
Affiliation(s)
| | - HyeongJin Roh
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | | | - Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Stig Mæhle
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | | | - Joachim Nordbø
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Bjørn Olav Kvamme
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| | - Søren Grove
- Institute of Marine Research, Nordnes, P.O. Box 1870, N-5817, Bergen, Norway
| |
Collapse
|
3
|
Gao S, Liu X, Han B, Wang N, Lv X, Guan X, Xu G, Huang J, Shi W, Liu M. Salmonid alphavirus non-structural protein 2 is a key protein that activates the NF-κB signaling pathway to mediate inflammatory responses. FISH & SHELLFISH IMMUNOLOGY 2022; 129:182-190. [PMID: 36058437 DOI: 10.1016/j.fsi.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Salmonid alphavirus (SAV) infection of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) causes pancreas disease (PD) with typical inflammatory responses, such as necrosis of the exocrine pancreas, cardiomyopathy and skeletal myopathy. However, the pathogenic mechanism underlying SAV infection is still unclear. Inflammation may cause damage to the body, but it is a defense response against infection by pathogenic microorganisms, of which nuclear factor-kappa B (NF-κB) is the main regulator. This study revealed that SAV can activate NF-κB, of which the viral nonstructural protein Nsp2 is the major activating protein. SAV activates the NF-κB signaling pathway by simultaneously up-regulating TLR3, 7, 8 and then the expression of the signaling molecule myeloid differentiation factor 88 (Myd88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). We found that Nsp2 can induce IκB degradation and p65 phosphorylation and transnucleation, and activate NF-κB downstream inflammatory cytokines. Nsp2 may simultaneously activate NF-κB through TLR3,7,8-dependent signaling pathways. Overexpression of Nsp2 can up-regulate mitochondrial antiviral signaling protein (MAVS) and then promote the expression of IFNa1 and antiviral protein Mx, which inhibits viral replication. This study shows that Nsp2 acts as a key activator protein for the NF-κB signaling pathway, which induces inflammation post-SAV infection. This study systematically analyzes the molecular mechanism of SAV activation of the NF-κB signaling pathway, and provides a theoretical basis for revealing the mechanism of innate immune response and inflammatory injury caused by SAV.
Collapse
Affiliation(s)
- Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xuefei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bing Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaonan Lv
- Beijing Aquaculture Technology Extention Station, Beijing, 100176, People's Republic of China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, People's Republic of China
| | - Jinshan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
4
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
5
|
Cao M, Wang N, Yan X, Yang N, Fu Q, Zhang X, Zhang Y, Li C. Structures, evolutionary relationships and expression profiles of the tumour necrosis factor superfamily and their receptors in black rockfish (Sebastes schlegelii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104405. [PMID: 35364135 DOI: 10.1016/j.dci.2022.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Members of tumour necrosis factor superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) have crucial roles in many important biological processes such as cell proliferation, cell death, development, survival, immunity, and various diseases. The human TNFSF consists of 19 ligands and 29 receptors. Compared with those in human, fish have most of the TNFSF and receptors that have been found in mammals, while some of the homologues are specific or lost in fish. Especially, no systematic report on the identification of TNFSF ligands and their receptors in S. schlegelii. Therefore, to investigate the characterization and molecular evolution of TNFSF and TNFRSF genes in Sebastes schlegelii, we performed a genome-wide survey and identified 14 TNFSFs and 24 TNFRSFs from S. schlegelii. In S. schlegelii, we found duplication events occurred in TNFSF2, TNFSF6, TNFSF10, TNFSF13, TNFSF14, TNFRSF5, TNFRSF6, TNFRSF6B, TNFRSF10B, TNFRSF16, and TNFRSF19 genes. Among which, the tandem duplications events occurred in TNFSF13 and TNFRSF6, and the whole genome duplications events occurred in the remaining TNFSF and TNFRSF genes. Based on the molecular phylogenetic analysis, 14 TNFSFs were divided into three different clusters and 24 TNFRSFs were classed as three distinct subgroups, respectively. Meanwhile, protein domains and motifs analysis revealed that TNFSF contain homology domain (THD), and TNFRSF have typical cysteine-rich domains (CRDs). Synteny results indicates that the TNFSFs and TNFRSFs neighborhood genes have taken place great changes compared to those in human, fugu and zebrafish. Meanwhile, qRT-PCR results demonstrated that most TNFSFs and TNFSRSFs were significantly differentially expressed in gill, skin and intestine after E. tarda infection with time-dependent manners. In addition, protein-protein interaction network (PPI) analysis indicated that the most related genes connecting to TNFSF and TNFRSFs were TNFSF ligands and receptors. In summary, this study provided a new understanding for characterization and evolution of the TNFSF genes and their receptors in S. schlegelii.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ningning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Bakke AF, Rebl A, Frost P, Afanasyev S, Røyset KA, Søfteland T, Lund H, Boysen P, Krasnov A. Effect of two constant light regimens on antibody profiles and immune gene expression in Atlantic salmon following vaccination and experimental challenge with salmonid alphavirus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:188-196. [PMID: 34252544 DOI: 10.1016/j.fsi.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Before seawater transfer, farmed Atlantic salmon are subjected to treatments that may affect the immune system and susceptibility to pathogens. E.g., exposure to constant light (CL) stimulates smoltification, which prepares salmon to life in sea water, but endocrine changes in this period are associated with suppression of immune genes. Salmon are vaccinated towards end of the freshwater period to safeguard that adequate vaccine efficacy is achieved by the time the fish is transferred to sea. In the present study, we investigated how the responses to vaccination and viral infection varied depending on the time of CL onset relative to vaccination. The salmon were either exposed to CL two weeks prior to vaccination (2-PRI) or exposed to CL at the time of vaccination (0-PRI). A cohabitant challenge with salmonid alphavirus, the causative agent of pancreatic disease, was performed 9 weeks post vaccination. The immunological effects of the different light manipulation were examined at 0- and 6-weeks post vaccination, and 6 weeks post challenge. Antibody levels in serum were measured using a serological bead-based multiplex panel as well as ELISA, and 92 immune genes in heart and spleen were measured using an integrated fluidic circuit-based qPCR array for multiple gene expression. The 2-PRI group showed a moderate transcript down-regulation of genes in the heart at the time of vaccination, which were restored 6 weeks after vaccination (WPV). Conversely, at 6WPV a down-regulation was seen for the 0-PRI fish. Moreover, the 2-PRI group had significantly higher levels of antibodies binding to three of the vaccine components at 6WPV, compared to 0-PRI. In response to SAV challenge, transcription of immune genes between 2-PRI and 0-PRI was markedly dissimilar in the heart and spleen of control fish, but no difference was found between vaccinated salmon from the two CL regimens. Thus, by using labor-saving high throughput detection methods, we demonstrated that light regimens affected antibody production and transcription of immune genes in non-vaccinated and virus challenged salmon, but the differences between the light treatment groups appeared eliminated by vaccination.
Collapse
Affiliation(s)
- Anne Flore Bakke
- Faculty of Veterinary Medicine, University of Life Sciences (NMBU), Oslo, Norway.
| | - Alexander Rebl
- The Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Petter Frost
- MSD Animal Health, Thormøhlensgate 55, N-5006 Bergen, Norway
| | - Sergey Afanasyev
- Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | | | - Tina Søfteland
- MSD Animal Health, Thormøhlensgate 55, N-5006 Bergen, Norway
| | - Hege Lund
- Faculty of Veterinary Medicine, University of Life Sciences (NMBU), Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, University of Life Sciences (NMBU), Oslo, Norway
| | | |
Collapse
|
7
|
West AC, Mizoro Y, Wood SH, Ince LM, Iversen M, Jørgensen EH, Nome T, Sandve SR, Martin SAM, Loudon ASI, Hazlerigg DG. Immunologic Profiling of the Atlantic Salmon Gill by Single Nuclei Transcriptomics. Front Immunol 2021; 12:669889. [PMID: 34017342 PMCID: PMC8129531 DOI: 10.3389/fimmu.2021.669889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Yasutaka Mizoro
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Shona H. Wood
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Louise M. Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Iversen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew S. I. Loudon
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Hazlerigg
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Bakke AF, Bjørgen H, Koppang EO, Frost P, Afanasyev S, Boysen P, Krasnov A, Lund H. IgM+ and IgT+ B Cell Traffic to the Heart during SAV Infection in Atlantic Salmon. Vaccines (Basel) 2020; 8:E493. [PMID: 32878234 PMCID: PMC7563723 DOI: 10.3390/vaccines8030493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023] Open
Abstract
B cells of teleost fish differentiate in the head kidney, and spleen, and either remain in the lymphatic organs or move to the blood and peripheral tissues. There is limited knowledge about piscine B cell traffic to sites of vaccination and infection and their functional roles at these sites. In this work, we examined the traffic of B cells in Atlantic salmon challenged with salmonid alphavirus (SAV). In situ hybridization (RNAScope) showed increased numbers of immunoglobin (Ig)M+ and IgT+ B cells in the heart in response to SAV challenge, with IgM+ B cells being most abundant. An increase in IgT+ B cells was also evident, indicating a role of IgT+ B cells in nonmucosal tissues and systemic viral infections. After infection, B cells were mainly found in the stratum spongiosum of the cardiac ventricle, colocalizing with virus-infected myocardial-like cells. From sequencing the variable region of IgM in the main target organ (heart) and comparing it with a major lymphatic organ (the spleen), co-occurrence in antibody repertoires indicated a transfer of B cells from the spleen to the heart, as well as earlier recruitment of B cells to the heart in vaccinated fish compared to those that were unvaccinated. Transcriptome analyses performed at 21 days post-challenge suggested higher expression of multiple mediators of inflammation and lymphocyte-specific genes in unvaccinated compared to vaccinated fish, in parallel with a massive suppression of genes involved in heart contraction, metabolism, and development of tissue. The adaptive responses to SAV in vaccinated salmon appeared to alleviate the disease. Altogether, these results suggest that migration of B cells from lymphatic organs to sites of infection is an important part of the adaptive immune response of Atlantic salmon to SAV.
Collapse
Affiliation(s)
- Anne Flore Bakke
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Håvard Bjørgen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Erling Olaf Koppang
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Petter Frost
- MSD Animal Health Innovation AD, Thormøhlens Gate 55, 5006 Bergen, Norway;
| | - Sergey Afanasyev
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Torez 44, Saint-Petersburg 194223, Russia;
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | | | - Hege Lund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| |
Collapse
|
9
|
Fish TNF and TNF receptors. SCIENCE CHINA-LIFE SCIENCES 2020; 64:196-220. [DOI: 10.1007/s11427-020-1712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
|
10
|
Robinson NA, Krasnov A, Burgerhout E, Johnsen H, Moghadam HK, Hillestad B, Aslam ML, Baranski M, Boison SA. Response of the Salmon Heart Transcriptome to Pancreas Disease: Differences Between High- and Low-Ranking Families for Resistance. Sci Rep 2020; 10:868. [PMID: 31964968 PMCID: PMC6972705 DOI: 10.1038/s41598-020-57786-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Pancreas disease caused by salmonid alphaviruses leads to severe losses in Atlantic salmon aquaculture. The aim of our study was to gain a better understanding of the biological differences between salmon with high and low genomic breeding values (H-gEBV and L-gEBV respectively) for pancreas disease resistance. Fish from H- and L-gEBV families were challenged by intraperitoneal injection of salmonid alphavirus or co-habitation with infected fish. Mortality was higher with co-habitation than injection, and for L- than H-gEBV. Heart for RNA-seq and histopathology was collected before challenge and at four- and ten-weeks post-challenge. Heart damage was less severe in injection-challenged H- than L-gEBV fish at week 4. Viral load was lower in H- than L-gEBV salmon after co-habitant challenge. Gene expression differences between H- and L-gEBV manifested before challenge, peaked at week 4, and moderated by week 10. At week 4, H-gEBV salmon showed lower expression of innate antiviral defence genes, stimulation of B- and T-cell immune function, and weaker stress responses. Retarded resolution of the disease explains the higher expression of immune genes in L-gEBV at week 10. Results suggest earlier mobilization of acquired immunity better protects H-gEBV salmon by accelerating clearance of the virus and resolution of the disease.
Collapse
Affiliation(s)
- N A Robinson
- Breeding and Genetics, Nofima, Ås, 1430, Norway. .,Sustainable Aquaculture Laboratory- Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, 3010, Australia.
| | - A Krasnov
- Breeding and Genetics, Nofima, Ås, 1430, Norway
| | | | - H Johnsen
- Breeding and Genetics, Nofima, Ås, 1430, Norway
| | | | | | - M L Aslam
- Breeding and Genetics, Nofima, Ås, 1430, Norway
| | | | | |
Collapse
|