1
|
Ghani MU, Chen J, Khosravi Z, Wu Q, Liu Y, Zhou J, Zhong L, Cui H. Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management. Front Immunol 2024; 15:1378111. [PMID: 39483482 PMCID: PMC11524855 DOI: 10.3389/fimmu.2024.1378111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The pattern recognition receptor (PRR), which drives innate immunity, shields the host against invasive pathogens. Fish and other aquatic species with poorly developed adaptive immunity mostly rely on their innate immunity, regulated by PRRs such as inherited-encoded toll-like receptors (TLRs). The discovery of 21 unique TLR variations in various aquatic animals over the past several years has sparked interest in using TLRs to improve aquatic animal's immune response and disease resistance. This comprehensive review provides an overview of the latest investigations on the various characteristics of TLRs in aquatic animals. It emphasizes their categorization, insights into 3D architecture, ligand recognition, signaling pathways, TLRs mediated immune responses under biotic and abiotic stressors, and expression variations during several developmental stages. It also highlights the differences among aquatic animals' TLRs and their mammal counterparts, which signifies the unique roles that TLRs play in aquatic animal's immune systems. This article summarizes current aquaculture research to enhance our understanding of fish immune systems for effective aquaculture -related disease management.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qishu Wu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yujie Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jingjie Zhou
- Medical Research Institute, Southwest University, Chongqing, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Tran TT, Prakash H, Nagasawa T, Nakao M, Somamoto T. Characterization of CD83 homologs differently expressed during monocytes differentiation in ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105212. [PMID: 38878874 DOI: 10.1016/j.dci.2024.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024]
Abstract
CD83 is a costimulatory molecule of antigen-presenting cells (APCs) that plays an important role in eliciting adaptive responses. It is also a well-known surface protein on mature dendritic cells (DCs). Furthermore, monocytes have been reported to differentiate into macrophages and monocyte-derived dendritic cells, which play an important role in innate immunity. CD83 expression affects the activation and maturation of DCs and stimulates cell-mediated immune responses. This study aims to reveal the CD83 expression during monocyte differentiation in teleosts, and the CD83 homologs evolutionary relationship. This study found two distinct CD83 homologs (GbCD83 and GbCD83-L) in ginbuna crucian carp (Gb) and investigated the evolutionary relationship among GbCD83 homologs and other vertebrates and the gene and protein expression levels of the homologs during 4 days of monocyte culture. The phylogenetic tree showed that the two GbCD83 homologs are classified into two distinct branches. Interestingly, only ostariophysians (Gb, common carp, rohu, fathead minnow and channel catfish), but not neoteleosts, mammals, and others, have two CD83 homologs. Morphological observation and colony-stimulating factor-1 receptor (CSF-1R), CD83, CD80/86, and CCR7 gene expressions illustrated that there is a differentiation of monocytes isolated from peripheral blood leukocytes after 4 days. Specifically, gene expression and immunocytochemistry revealed that GbCD83 is mainly expressed on monocytes at the early stage of cell culture, whereas GbCD83-L is expressed in the latter stage. These findings provided the first evidence of differential expression of CD83 homologs during monocytes differentiation in teleost.
Collapse
Affiliation(s)
- Trang Thu Tran
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan.
| |
Collapse
|
3
|
Tawfik MM, Betancor MB, McMillan S, Norambuena F, Tocher DR, Douglas A, Martin SAM. Modulation of metabolic and immunoregulatory pathways in the gut transcriptome of Atlantic salmon ( Salmo salar L.) after early nutritional programming during first feeding with plant-based diet. Front Immunol 2024; 15:1412821. [PMID: 39015564 PMCID: PMC11249740 DOI: 10.3389/fimmu.2024.1412821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Mónica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Stuart McMillan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | | | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, China
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
4
|
DePasquale JA. A comparison of teleost rodlet cells with apicomplexan cells. Acta Histochem 2024; 126:152167. [PMID: 38733697 DOI: 10.1016/j.acthis.2024.152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Rodlet cells are unique pear-shaped cells found primarily in the epithelium of the teleost fishes. The rodlet cell was first identified by Thèlohan in 1892 who named it Rhabdospora thelohani as it was believed to be a protozoan parasite of the phylum Apicomplexa. The rodlet cell as parasite paradigm persisted for several decades afterwards but has since faded in the last 20 years or so. The rodlet cell is now generally believed to be an immune cell, functioning as an early responder to parasite intrusion. This short review makes a detailed comparison of apicomplexan structure and behavior with that of the rodlet cell to further strengthen the argument against a parasitic nature for the fish cell. It is then proposed that apical microvilli of the rodlet cell serve as a mechanical trigger for rodlet discharge as possible defense against larger ectoparasites.
Collapse
|
5
|
Deng F, Wang D, Yu Y, Lu T, Li S. Systemic immune response of rainbow trout exposed to Flavobacterium psychrophilum infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109305. [PMID: 38128681 DOI: 10.1016/j.fsi.2023.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum is one of the most serious bacterial diseases leading to significant economic loss for rainbow trout (Oncorhynchus mykiss) aquaculture. However, little is known about the systemic immune response of rainbow trout against F. psychrophilum infection. This study investigated the immune response of rainbow trout to F. psychrophilum infection using multiple experiments, including bacterial load detection, phagocyte activity assessment, enzyme activity evaluation, and gene expression profiling. Results showed that the spleen index and intestinal pathogen load reached a peak at 3 days post-infection, with strong pro-inflammatory gene expression observed in rainbow trout. Leukocytes RBA and PKA were significantly elevated in the spleen, blood and intestine at 7 days post-infection. Heat map analysis demonstrated that the spleen had a more substantial pro-inflammatory response compared to the intestine post-infection and exhibited higher expression levels of immune-related genes, including IgM, il1β, il6, cd4, cd8a, cd8b, c1q, chathelicidin, inos, and lysozyme. Both Th1 and Th2 polarized responses in the spleen were activated, with Th2 (il4/13a, gata3) (FC > 4) being more intense than Th1 (tnfα, t-bet) (FC > 2). Tight junction proteins exhibited down-regulation followed by up-regulation post-infection. Collectively, the results of this study expand our current understanding of the immune response of rainbow trout post F. psychrophilum infection but also provide new avenues for investigation in salmonid aquaculture.
Collapse
Affiliation(s)
- Furong Deng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Di Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| | - Yang Yu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| |
Collapse
|
6
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
7
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunity of the intestinal mucosa in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108572. [PMID: 36717066 DOI: 10.1016/j.fsi.2023.108572] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
8
|
Immunohistochemistry of the Gut-Associated Lymphoid Tissue (GALT) in African Bonytongue ( Heterotis niloticus, Cuvier 1829). Int J Mol Sci 2023; 24:ijms24032316. [PMID: 36768639 PMCID: PMC9917283 DOI: 10.3390/ijms24032316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse immune system that represents an important line of defense against those pathogens inhabiting the external environment that can enter through food. The GALT comprises intraepithelial lymphocytes, which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes, macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time, the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques, using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein, serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures that are morphologically similar to the isolated lymphoid follicles present in birds and mammals, thus expanding our knowledge about the intestinal immunity shown by this fish.
Collapse
|
9
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
11
|
Alesci A, Capillo G, Fumia A, Messina E, Albano M, Aragona M, Lo Cascio P, Spanò N, Pergolizzi S, Lauriano ER. Confocal Characterization of Intestinal Dendritic Cells from Myxines to Teleosts. BIOLOGY 2022; 11:1045. [PMID: 36101424 PMCID: PMC9312193 DOI: 10.3390/biology11071045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APCs) that regulate the beginning of adaptive immune responses. The mechanisms of tolerance to antigens moving through the digestive tract are known to be regulated by intestinal DCs. Agnatha and Gnathostoma are descendants of a common ancestor. The Ostracoderms gave rise to Cyclostomes, whereas the Placoderms gave rise to Chondrichthyes. Sarcopterygii and Actinopterygii are two evolutionary lines of bony fishes. Brachiopterygii and Neopterygii descend from the Actinopterygii. From Neopterygii, Holostei and Teleostei evolved. Using immunohistochemistry with TLR-2, Langerin/CD207, and MHC II, this study aimed to characterize intestinal DCs, from myxines to teleosts. The findings reveal that DCs are positive for the antibodies tested, highlighting the presence of DCs and DC-like cells phylogenetically from myxines, for the first time, to teleosts. These findings may aid in improving the level of knowledge about the immune system's evolution and these sentinel cells, which are crucial to the body's defense.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy;
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico “G. Martino”, 98124 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Nunziacarla Spanò
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM, CNR), 98164 Messina, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (E.M.); (M.A.); (P.L.C.); (S.P.); (E.R.L.)
| |
Collapse
|
12
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
13
|
Immunomolecular response of CD4+, CD8+, TNF-α and IFN-γ in Myxobolus-infected koi (Cyprinus carpio) treated with probiotics. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front Immunol 2022; 12:773193. [PMID: 34975860 PMCID: PMC8716388 DOI: 10.3389/fimmu.2021.773193] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, MS, United States
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Malaysia
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
15
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Holen E, Austgulen MH, Espe M. RNA form baker's yeast cultured with and without lipopolysaccharide (LPS) modulates gene transcription in an intestinal epithelial cell model, RTgutGC from rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2021; 119:397-408. [PMID: 34687880 DOI: 10.1016/j.fsi.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to evaluate if the intestinal RTgutGC cell line could be suitable for research on dietary ingredients and their function as modulators of inflammation during lipopolysaccharide (LPS) induced stress. The RTgutGC cells cultured together with RNA from baker's yeast, reached confluency after 72 h. The cells were grown in either compete L-15 (CM) or nutrient deprived L-15 (DM). Then, the RTgutGC cells were exposed to LPS or RNA from baker's yeast, either alone, or in combination, in CM or DM. All cultures were harvested following LPS challenge for 48 h and 72 h. LPS induced transcription of Interleukin 1β (IL-1β), Interleukin -8 (IL-8), Toll like receptor 3 (TLR3), interferon regulating factor 3 (irf3), Nuclear factor ĸβ (NFĸβ), one of the multidrug transporters, ABCC2, and glutamine synthase 1 (GLS01) in RTgutGC cells at one or both sampling points (48 h and/or 72 h post LPS challenge). RNA from baker's yeast in culture alone, (cultured 120 h and 144 h with RTgutGC cells and harvested at the respective LPS sampling points) induced transcription of INF1, TNFα and ticam/trif, not induced by LPS. In addition, RNA from baker's yeast affected IL-1β, TLR3, irf3 and NFĸβ, comparable to the responses triggered by LPS. RNA from baker's yeast alone did not affect ABCC2 or GLS01 transcriptions in this set up. So, LPS and RNA from baker's yeast affects distinct but also common gene transcripts in this intestinal cell line. Culturing RTgutGC cells in DM, adding a combination of LPS and RNA from baker's yeast, reduced IL-1β transcription compared to cells grown in CM, 48 h and 72 h post LPS challenge. Also, in RTgutGC cells, grown in DM, the LPS induced transcription of ABCC2 declined, measured 48 h post LPS challenge. Possibly indicating that optimal transcription of IL-1β and ABBC2 in RTgutGC cells, cultured over time, requires access of adequate nutrients under stressful condition. RNA from baker's yeast induced INF1 transcription in the RTgutGC cells, regardless if the medium was complete or deprived of nutrients. However, culturing RTgutGC cells in DM enriched with RNA from baker's yeast for a longer period of time (120 h, 144 h), seemed beneficial for INF1 transcription.
Collapse
Affiliation(s)
- Elisabeth Holen
- Institute of Marine Research, Postbox 1870 Nordnes, 5817, Bergen, Norway.
| | | | - Marit Espe
- Institute of Marine Research, Postbox 1870 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
17
|
Qiu R, Sun YY, Guan CC, Kan YC, Yao LG. Characterization of TCR + and CD8 + head kidney leucocytes in Japanese flounder (Paralichthys olivaceus) with antisera against TCRα and CD8α. JOURNAL OF FISH BIOLOGY 2021; 99:345-353. [PMID: 33751560 DOI: 10.1111/jfb.14722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
T lymphocytes play an important role in cellular and adaptive immunity in vertebrates. The mechanisms of the fish immune system are little studied because of the lack of population-specific antibodies. This study examined the expression of two T lymphocyte markers, TCRα (PoTCRα) and CD8α (PoCD8α) in the Japanese flounder (Paralichthys olivaceus). The expression of PoTCRα and PoCD8α was mainly detected in immune/mucosal tissues. Recombinant PoTCRα and PoCD8α were expressed in pET32a and pET259, respectively. Then, rabbit anti-PoTCRα serum and rat anti-PoCD8α serum were prepared. Using serum, the characteristics of TCR+ and CD8+ head kidney leucocytes (HKLs) were investigated. The results of laser scanning confocal microscopy (LSCM) demonstrated that TCRα and CD8α were transmembrane proteins localized on the cell surface. The populations of CD8α- , CD8α+ , TCRα- , and TCRα+ were sorted by flow cytometry (FCM) and analysed using qRT-PCR. The results demonstrated that all TCRα+ /TCRα- or CD8α+ /CD8α- HKLs expressed IFN-γ. The CD4-1 and IgM transcripts were detected only in TCRα- and CD8α- cells. Furthermore, HKL mitogenesis was induced with concanavalin A (ConA) stimulation. Taken together, the results from LSCM and FCM analyses showed that mammalian and P. olivaceus TCR+ and CD8+ leucocytes share basic characteristics.
Collapse
Affiliation(s)
- Reng Qiu
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| | - Yuan Y Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Cui C Guan
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| | - Yun C Kan
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
- School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Lun G Yao
- China-UKNYNU-RRes Joint Laboratory of Insect Biology and Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
18
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
19
|
Wu S, Nguyen LTM, Pan H, Hassan S, Dai Y, Xu J, Wen Z. Two phenotypically and functionally distinct microglial populations in adult zebrafish. SCIENCE ADVANCES 2020; 6:6/47/eabd1160. [PMID: 33208372 PMCID: PMC7673811 DOI: 10.1126/sciadv.abd1160] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/02/2020] [Indexed: 05/23/2023]
Abstract
Microglia are the tissue-resident macrophages in the central nervous system and are critically involved in immune defense, neural development and function, and neuroinflammation. The versatility of microglia has long been attributed to heterogeneity. Recent studies have revealed possible heterogeneity in human but not in murine microglia, yet a firm demonstration linking microglial heterogeneity to functional phenotypes remains scarce. Here, we identified two distinct microglial populations in adult zebrafish that differ in morphology, distribution, development, and function. The predominant population, phagocytotic microglia, which expresses ccl34b.1, is broadly distributed, amoeboid in shape, highly mobile, and phagocytotic. The other white matter-enriched ccl34b.1- population, regulatory microglia, has ramified protrusions but has limited mobility and phagocytosis capability. These functional differences are further supported by distinct transcriptomes and responses to bacterial infection, where ccl34b.1+ microglia function in tissue clearance and ccl34b.1- microglia release immune regulators. Our study sheds light on the heterogeneity and functional diversification of microglia.
Collapse
Affiliation(s)
- Shuting Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Linh T M Nguyen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongru Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shaoli Hassan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yimei Dai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, Guangzhou 510630, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518055, China
| |
Collapse
|
20
|
Perdiguero P, Goméz-Esparza MC, Martín D, Bird S, Soleto I, Morel E, Díaz-Rosales P, Tafalla C. Insights Into the Evolution of the prdm1/Blimp1 Gene Family in Teleost Fish. Front Immunol 2020; 11:596975. [PMID: 33193451 PMCID: PMC7662092 DOI: 10.3389/fimmu.2020.596975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, Blimp1 (B lymphocyte-induced maturation protein 1) encoded by the prdm1 gene and its homolog Hobit (homolog of Blimp1 in T cells) encoded by znf683, represent key transcriptional factors that control the development and differentiation of both B and T cells. Despite their essential role in the regulation of acquired immunity, this gene family has been largely unexplored in teleosts to date. Until now, one prdm1 gene has been identified in most teleost species, whereas a znf683 homolog has not yet been reported in any of these species. Focusing our analysis on rainbow trout (Oncorhynchus mykiss), an in silico identification and characterization of prdm1-like genes has been undertaken, confirming that prdm1 and znf683 evolved from a common ancestor gene, acquiring three gene copies after the teleost-specific whole genome duplication event (WGD) and six genes after the salmonid-specific WGD. Additional transcriptional studies to study how each of these genes are regulated in homeostasis, in response to a viral infection or in B cells in different differentiation stages, provide novel insights as to how this gene family evolved and how their encoded products might be implicated in the lymphocyte differentiation process in teleosts.
Collapse
Affiliation(s)
| | | | - Diana Martín
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
21
|
Attaya A, Secombes CJ, Wang T. Effective isolation of GALT cells: Insights into the intestine immune response of rainbow trout (Oncorhynchus mykiss) to different bacterin vaccine preparations. FISH & SHELLFISH IMMUNOLOGY 2020; 105:378-392. [PMID: 32615166 DOI: 10.1016/j.fsi.2020.06.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The teleost gut is a multifunction complex structure that plays a pivotal immunological role in homeostasis and the maintenance of health, in addition to digestion of food and/or nutrient absorption. In vitro examination of the intestine leucocyte repertoire has the potential to aid our understanding of gut immune competence and allows a rapid screen of host-microorganism interactions in different immunological contexts. To explore this possibility, in the present study we investigated the response of isolated gut leucocytes to 4 bacterins of Aeromonas salmonicida, prepared from different strains, combinations and strains grown in different environments, in comparison to a Yersinia ruckeri bacterin for which a commercial/effective oral booster vaccine has been developed. To aid this study we also optimized further our method of GALT cell isolation from rainbow trout, so as to avoid mechanical clearance of the intestine contents. This drastically increased the cell yield from ~12 × 106 to ~210 × 106/fish with no change in the percent cell viability over time or presence of transcripts typical of the key leucocyte types needed for the study of immune modulation (i.e. T- and B-cells, dendritic cells and macrophages). A wide array of immune transcripts were modulated by the bacterins, demonstrating the diversity of GALT cell responses to bacterial stimulation. Indeed, the GALT leucocyte responses were sensitive enough to distinguish the different bacterial species, strains and membrane proteins, as seen by distinct kinetics of immune gene expression. However, the response of the GALT cells was often relatively slow and of a low magnitude compared to those of PBL. These results enhance our knowledge of the gut biocapacity and help validate the use of this model for screening of oral vaccine candidates.
Collapse
Affiliation(s)
- Ahmed Attaya
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
22
|
Perdiguero P, Martín-Martín A, Benedicenti O, Díaz-Rosales P, Morel E, Muñoz-Atienza E, García-Flores M, Simón R, Soleto I, Cerutti A, Tafalla C. Teleost IgD +IgM - B Cells Mount Clonally Expanded and Mildly Mutated Intestinal IgD Responses in the Absence of Lymphoid Follicles. Cell Rep 2020; 29:4223-4235.e5. [PMID: 31875534 PMCID: PMC6941218 DOI: 10.1016/j.celrep.2019.11.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/19/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin D (IgD) is an ancient antibody with dual membrane-bound and fluid-phase antigen receptor functions. The biology of secreted IgD remains elusive. Here, we demonstrate that teleost IgD+IgM− plasmablasts constitute a major lymphocyte population in some mucosal surfaces, including the gut mucosa. Remarkably, secreted IgD binds to gut commensal bacteria, which in turn stimulate IgD gene transcription in gut B cells. Accordingly, secreted IgD from gut as well as gill mucosae, but not the spleen, show a V(D)J gene configuration consistent with microbiota-driven clonal expansion and diversification, including mild somatic hypermutation. By showing that secreted IgD establishes a mutualistic relationship with commensals, our findings suggest that secreted IgD may play an evolutionary conserved role in mucosal homeostasis. IgD+IgM− B cells constitute the main non-IgT B cell subset in rainbow trout guts Gut IgD responses establish a two-way interaction with the local microbiota Mucosal but not splenic IgD undergoes clonal expansion and diversification Despite the lack of germinal centers, mucosal IgD is mildly mutated in rainbow trout
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Rocío Simón
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Andrea Cerutti
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain; Inflammatory and Cardiovascular Disorders Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| |
Collapse
|
23
|
Somamoto T, Nakanishi T. Mucosal delivery of fish vaccines: Local and systemic immunity following mucosal immunisations. FISH & SHELLFISH IMMUNOLOGY 2020; 99:199-207. [PMID: 31911291 DOI: 10.1016/j.fsi.2020.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
The mucosal organs of fishes are directly exposed to their aquatic environment, which is suited to the colonization and growth of microorganisms, and thus these barriers are considered to play an important role in maintaining homeostasis and preventing entry of invasive pathogens. Research on fish mucosal immunity have shown that mucosal organs such as gills, skin, intestines and olfactory organs harbor lymphoid cells, including T and B cells as well as dendritic-like cells. Findings related to immune responses following direct administration of antigens into the mucosal organs could help to shed light upon the development of fish mucosal vaccines. The present review highlights vaccine delivery via mucosal organs, in particular focusing on methods other than those of typical mucosal vaccine platforms, such as oral and immersion vaccines. In addition, we propose the hypothesis that mucosal tissues are important sites for generating cell-mediated immunity following vaccination with extracellular antigens.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan.
| | - Teruyuki Nakanishi
- Goto Aquaculture Institute Co., Ltd, Sayama City, Saitama, 350-1332, Japan
| |
Collapse
|
24
|
Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019; 7:microorganisms7120627. [PMID: 31795391 PMCID: PMC6955699 DOI: 10.3390/microorganisms7120627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
Immersion vaccines are used for a variety of aquacultured fish to protect against infectious diseases caused by bacteria and viruses. During immersion vaccination the antigens are taken up by the skin, gills or gut and processed by the immune system, where the resulting response may lead to protection. The lack of classical secondary responses following repeated immersion vaccination may partly be explained by the limited uptake of antigens by immersion compared to injection. Administration of vaccines depends on the size of the fish. In most cases, immersion vaccination is inferior to injection vaccination with regard to achieved protection. However, injection is problematic in small fish, and fry as small as 0.5 gram may be immersion vaccinated when they are considered adaptively immunocompetent. Inactivated vaccines are, in many cases, weakly immunogenic, resulting in low protection after immersion vaccination. Therefore, during recent years, several studies have focused on different ways to augment the efficacy of these vaccines. Examples are booster vaccination, administration of immunostimulants/adjuvants, pretreatment with low frequency ultrasound, use of live attenuated and DNA vaccines, preincubation in hyperosmotic solutions, percutaneous application of a multiple puncture instrument and application of more suitable inactivation chemicals. Electrostatic coating with positively charged chitosan to obtain mucoadhesive vaccines and a more efficient delivery of inactivated vaccines has also been successful.
Collapse
|
25
|
Gong X, Huang C, Yang X, Mao Q, Zeng L, Zheng P, Pu J, Chen J, Wang H, Xu B, Zhou C, Xie P. Proteomic analysis of the intestine reveals SNARE-mediated immunoregulatory and amino acid absorption perturbations in a rat model of depression. Life Sci 2019; 234:116778. [PMID: 31430454 DOI: 10.1016/j.lfs.2019.116778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
AIMS To clarify the role of the gut-brain axis in depression. MAIN METHODS We used the iTRAQ technique to identify differential proteins in the intestine of the rat model of chronic unpredictable mild stress (CUMS)-induced depression. Significant differential proteins were subjected to Gene Ontology (GO) functional annotations and KEGG pathway enrichment analysis. Key proteins were validated at the mRNA and protein levels. The levels of cytokines in the intestine, serum and hypothalamus were examined by ELISA. HPLC-UV was used to detect the levels of amino acids. KEY FINDINGS In the rat intestine, 349 differential proteins (209 downregulated, 140 upregulated) were identified. GO analysis indicated that "protein complex assembly" was the first-ranked biological process. SNARE complex components, including SNAP23, VAMP3 and VAMP8, were increased at the mRNA levels, while only VAMP3 and VAMP8 were also upregulated at the protein level. TNFα, IL6 and IL1β were upregulated in the CUMS rat intestine, while TNFα was decreased in the serum and hypothalamus. IL1β was decreased in the serum. "Protein digestion and absorption" was the most significantly enriched KEGG pathway, involving 5 differential proteins: SLC9A3, ANPEP, LAT1, ASCT2 and B0AT1. Glutamine, glycine and aspartic acid were perturbed in the CUMS rat intestine. SIGNIFICANCE Our findings suggest that CUMS enhances the adaptive immune response in the intestine through ER-phagosome pathway mediated by SNARE complex and disturb absorption of amino acids. It advances our understanding of the role of gut-brain axis in depression and provides a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Xue Gong
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Huang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Yang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Mao
- Department of Pharmacy, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Zeng
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peng Zheng
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Haiyang Wang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Bing Xu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, Chongqing, China; South Australian Health and Medical Research Institute, Mind and Brain Theme, Adelaide, SA, Australia; Flinders University, Adelaide, SA, Australia.
| |
Collapse
|