1
|
Jenberie S, Nordli HR, Strandskog G, Greiner-Tollersrud L, Peñaranda MMD, Jørgensen JB, Jensen I. Virus-specific antibody secreting cells reside in the peritoneal cavity and systemic immune sites of Atlantic salmon (Salmo salar) challenged intraperitoneally with salmonid alphavirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105193. [PMID: 38729458 DOI: 10.1016/j.dci.2024.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The development and persistence of antibody secreting cells (ASC) after antigenic challenge remain inadequately understood in teleosts. In this study, intraperitoneal (ip) injection of Atlantic salmon (Salmo salar) with salmonid alphavirus (WtSAV3) increased the total ASC response, peaking 3-6 weeks post injection (wpi) locally in the peritoneal cavity (PerC) and in systemic lymphoid tissues, while at 13 wpi the response was only elevated in PerC. At the same time point a specific ASC response was induced by WtSAV3 in PerC and systemic tissues, with the highest frequency in PerC, suggesting a local role. Inactivated SAV (InSAV1) induced comparatively lower ASC responses in all sites, and specific serum antibodies were only induced by WtSAV3 and not by InSAV1. An InSAV1 boost did not increase these responses. Expression of immune marker genes implies a role for PerC adipose tissue in the PerC immune response. Overall, the study suggests the Atlantic salmon PerC as a secondary immune site and an ASC survival niche.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Henriette Rogstad Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Guro Strandskog
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ma Michelle D Peñaranda
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Mahdy OA, Salem MA, Abdelsalam M, Shaheed IB, Attia MM. Immunological and molecular evaluation of zoonotic metacercarial infection in freshwater fish: A cross-sectional analysis. Res Vet Sci 2024; 172:105239. [PMID: 38583195 DOI: 10.1016/j.rvsc.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Improperly cooked fish, carrying active metacercariae (MCs), can pose a significant risk for transmitting fish-borne zoonotic trematodes (FBZTs) to human consumers. This study aimed to enhance our understanding of FBZTs by conducting a comprehensive cross-sectional analysis involving various fish species, such as Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus), and red-belly tilapia (Tilapia zillii). These fish specimens were collected from distinct Egyptian governorates, specifically Giza, Kafr al-Shaykh, and Fayoum. The recovered flukes from experimentally infected domestic pigeons were identified as Prohemistomum vivax, Haplorchis pumilio, and Pygidiopsis genata based on morphological features. Furthermore, the identity of the retrieved adult flukes was confirmed using three species-specific primers for PCR amplification and sequencing analysis of the ITS rDNA region and have been deposited in GenBank with the following accession numbers: P. vivax (OR291421.1 and OR291422.1), P. genata (OP099561.1), and H. pumilio (OM439581.1-OP090510.1). Quantitative real-time PCR targeting the immunological genes Tumor Necrosis Factor-alpha (TNF-alpha) and Interleukin-1 (IL-1Β) was employed to compare the cellular immune response between infected with EMCs and uninfected O. niloticus. The results indicated a significant increase in TNF- and IL-1Β levels in FBZTs-infected vs un-infected fishes. Importantly, the presence of adult flukes and EMCs led to substantial histological alterations in both experimentally infected pigeons and naturally infected fish tissues. These changes included the necrosis of fish muscle bundles and a pronounced inflammatory reaction with muscular necrosis in the digestive tracts of experimentally infected pigeons.
Collapse
Affiliation(s)
- Olfat A Mahdy
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mai A Salem
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Iman B Shaheed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Marwa M Attia
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
3
|
Younis NA, Thabit H, El-Samannoudy SI, Attia MM. The immune responses of Oreochromis niloticus against Prohemistomum vivax encysted metacercariae infection with the evaluation of different biomarkers stressors. Sci Rep 2023; 13:11885. [PMID: 37482562 PMCID: PMC10363534 DOI: 10.1038/s41598-023-38809-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
This study aimed at evaluating the immunological status of Oreochromis niloticus (O. niloticus); so, a total of 120 O. niloticus were collected from different farms located in Kafr El-Sheikh Governorate in Egypt during the period from January 2021 to January 2022. The fish were surveyed for commonly encysted metacercariae present in different organs such as gills, spleen, liver, kidney, and muscles. The collected encysted metacercariae were of the family Cyathocotylidae (Prohemistomum vivax) with a prevalence of 25%. Different cell-mediated immune responses such as Major histocompatibility class II alpha (MHC-IIα), Toll-like receptor 7 (TLR-7), Interleukin (IL-8), and Clusters of differentiation 4 (CD4) were assessed in different organs such as gills, spleen, liver, kidney, and muscles which revealed an elevation in different genes in infected organs as a reaction from the body against parasitic infection. In addition, the liver enzymes; aspartate aminotransferase (AST), and alanine aminotransferase (ALT), were assessed in the serum of O. niloticus as well as blood glucose, cortisol levels, and lysozyme activity were estimated to record higher levels in the infected fish in comparison with the control non-infected ones.
Collapse
Affiliation(s)
- Nehal A Younis
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hasnaa Thabit
- Department of Zoology and Entomology, Faculty of Science, Assiut University, PO 71526, Assiut, Egypt.
| | - Salma I El-Samannoudy
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Ragab RH, Elgendy MY, Sabry NM, Sharaf MS, Attia MM, Korany RM, Abdelsalam M, Eltahan AS, Eldessouki EA, El-Demerdash GO, Khalil RH, Mahmoud AE, Eissa AE. Mass kills in hatchery-reared European seabass ( Dicentrarchus labrax) triggered by concomitant infections of Amyloodinium ocellatum and Vibrio alginolyticus. Int J Vet Sci Med 2022; 10:33-45. [PMID: 35573137 PMCID: PMC9090348 DOI: 10.1080/23144599.2022.2070346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amyloodiniosis and vibriosis are serious diseases in European seabass (Dicentrarchus labrax) hatcheries with noticeable high mortality. This study was conducted on tank-cultured D. labrax frys at a private marine hatchery near Mariout Lake (Alexandria, Egypt). Frys showed a high mortality rate (70%), lethargy, darkening, asphyxia, ascites, and velvety skin appearance. Both infectious agents were presumptively identified in all investigated frys. The identities of the two recovered agents were confirmed by molecular assay and phylogenetic analysis. On the tissue level, histopathological examination of skin, splenic, and renal tissue indicated severe alterations due to the direct impacts of both infections. On the cellular level, scanning electron micrographs showed both protozoal and bacterial pathogens on/in gill epithelial cells in solitary and colonial forms. Vibrio alginolyticus showed variable results for tested antibiotics, with a higher sensitivity to florfenicol. A successful control strategy was strictly adopted to overcome infections and stop mortalities. Copper sulphate and hydrogen peroxide were efficiently applied to tank water to overcome A. ocellatum infections. Further, florfenicol was effectively used to overcome systemic V. alginolyticus infections. The efficacy of treatments was confirmed by the absence of infectious agents in randomly collected fish samples. To the best of the authors’ knowledge, this study is one of the earliest Egyptian studies that dealt with the dilemma of mass kills associated with external parasitic/systemic bacterial infections among hatchery-reared European seabass.
Collapse
Affiliation(s)
- Reham H. Ragab
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mamdouh Y. Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Nader M Sabry
- Fish Disease Lab, Aquaculture Division, National Institute of Oceanography and Fishery (NIOF), Alexandria, Egypt
| | - Mahmoud S. Sharaf
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reda M.S. Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed S. Eltahan
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Elsayed A. Eldessouki
- Department of Fish Health and Diseases, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Ghada O. El-Demerdash
- Agriculture Research Centre, Animal Health Research Institute, Al-Fayoum Provincial Laboratory, Giza, Egypt
| | - Riad H. Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer E. Mahmoud
- Department of Fish Diseases, Animal Health Research Institute, Assiut Provincial Laboratory, Agriculture Research Center, Dokki, Egypt
| | - Alaa Eldin Eissa
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Severe Natural Outbreak of Cryptocaryon irritans in Gilthead Seabream Produces Leukocyte Mobilization and Innate Immunity at the Gill Tissue. Int J Mol Sci 2022; 23:ijms23020937. [PMID: 35055122 PMCID: PMC8780452 DOI: 10.3390/ijms23020937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
The protozoan parasite Cryptocaryon irritans causes marine white spot disease in a wide range of fish hosts, including gilthead seabream, a very sensitive species with great economic importance in the Mediterranean area. Thus, we aimed to evaluate the immunity of gilthead seabream after a severe natural outbreak of C. irritans. Morphological alterations and immune cell appearance in the gills were studied by light microscopy and immunohistochemical staining. The expression of several immune-related genes in the gills and head kidney were studied by qPCR, including inflammatory and immune cell markers, antimicrobial peptides (AMP), and cell-mediated cytotoxicity (CMC) molecules. Serum humoral innate immune activities were also assayed. Fish mortality reached 100% 8 days after the appearance of the C. irritans episode. Gill filaments were engrossed and packed without any space between filaments and included parasites and large numbers of undifferentiated and immune cells, namely acidophilic granulocytes. Our data suggest leukocyte mobilization from the head kidney, while the gills show the up-regulated transcription of inflammatory, AMPs, and CMC-related molecules. Meanwhile, only serum bactericidal activity was increased upon infection. A potent local innate immune response in the gills, probably orchestrated by AMPs and CMC, is triggered by a severe natural outbreak of C. irritans.
Collapse
|
6
|
Hosseini H, Pooyanmehr M, Foroughi A, Esmaeili N, Ghiasi F, Lorestany R. Remarkable positive effects of figwort (Scrophularia striata) on improving growth performance, and immunohematological parameters of fish. FISH & SHELLFISH IMMUNOLOGY 2022; 120:111-121. [PMID: 34801674 DOI: 10.1016/j.fsi.2021.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate the effect of figwort on the growth and immunohematological parameters of common carp (14.20 ± 0.53 g). Four experimental diets were developed to feed fish for eight weeks: control, Figw10 (10 g/kg figwort), Figw20 (20 g/kg figwort), and Figw30 (30 g/kg figwort). The results showed that fish fed dietary Figw10 gained more weight (38.25 g) than control (P < 0.05). Regarding immunohematological parameters, fish fed dietary Figw30 had a higher level of white blood cells (31.2 103/mm3), hematocrit (35.82%), blood performance (14.63), total protein (1.96 g/dL), albumin (0.79 g/dL), globulin (1.17 g/dL), lymphocyte (70.53%), monocyte (3.03%), alternative hemolytic complement activity (ACH50) (147.76 u/mL), lysozyme (62.19 u/mL), and bactericidal activities (135.24) than the control group (P < 0.05). After 14 days of the challenge with Aeromonas hydrophila, the Figw30 treatment had the highest survival ratio (61.76%) compared to the control with 26.46%. Further, after the challenge, fish fed dietary Figw30 had a higher value of immunoglobulin M (42.00 μg/mL), antibody titer (19.23), complement component 3 (296.39 μg/mL), and complement component 4 (97.91 μg/mL) when compared with those fed control diet (P < 0.05). In conclusion, the optimum dosage for providing the best immune response was 30 g/kg in diet.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Mehrdad Pooyanmehr
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Azadeh Foroughi
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Noah Esmaeili
- The Institute for Marine and Antarctic Studies (IMAS), University of Tasmania. Hobart, Tasmania, Australia.
| | - Farzad Ghiasi
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Iran.
| | - Reza Lorestany
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
7
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
8
|
Barrett DE, Estensoro I, Sitjà-Bobadilla A, Bartholomew JL. Intestinal Transcriptomic and Histologic Profiling Reveals Tissue Repair Mechanisms Underlying Resistance to the Parasite Ceratonova shasta. Pathogens 2021; 10:1179. [PMID: 34578212 PMCID: PMC8467531 DOI: 10.3390/pathogens10091179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Myxozoan parasites infect fish worldwide causing significant disease or death in many economically important fish species, including rainbow trout and steelhead trout (Oncorhynchus mykiss). The myxozoan Ceratonova shasta is a parasite of salmon and trout that causes ceratomyxosis, a disease characterized by severe inflammation in the intestine resulting in hemorrhaging and necrosis. Populations of O. mykiss that are genetically fixed for resistance or susceptibility to ceratomyxosis exist naturally, offering a tractable system for studying the immune response to myxozoans. The aim of this study was to understand how steelhead trout that are resistant to the disease respond to C. shasta once it has become established in the intestine and identify potential mechanisms of resistance. RESULTS Sequencing of intestinal mRNA from resistant steelhead trout with severe C. shasta infections identified 417 genes differentially expressed during the initial stage of the infection compared to uninfected control fish. A strong induction of interferon-gamma and interferon-stimulated genes was evident, along with genes involved in cell adhesion and migration. A total of 11,984 genes were differentially expressed during the late stage of the infection, most notably interferon-gamma, interleukin-6, and immunoglobulin transcripts. A distinct hardening of the intestinal tissue and a strong inflammatory reaction in the intestinal submucosa including severe hyperplasia and inflammatory cell infiltrates were observed in response to the infection. The massive upregulation of caspase-14 early in the infection, a protein involved in keratinocyte differentiation might reflect the rapid onset of epithelial repair mechanisms, and the collagenous stratum compactum seemed to limit the spread of C. shasta within the intestinal layers. These observations could explain the ability of resistant fish to eventually recover from the infection. CONCLUSIONS Our results suggest that resistance to ceratomyxosis involves both a rapid induction of key immune factors and a tissue response that limits the spread of the parasite and the subsequent tissue damage. These results improve our understanding of the myxozoan-host dialogue and provide a framework for future studies investigating the infection dynamics of C. shasta and other myxozoans.
Collapse
Affiliation(s)
- Damien E. Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA;
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Castellón, Spain; (I.E.); (A.S.-B.)
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Castellón, Spain; (I.E.); (A.S.-B.)
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA;
| |
Collapse
|
9
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
10
|
Tattiyapong P, Dechavichitlead W, Waltzek TB, Surachetpong W. Tilapia develop protective immunity including a humoral response following exposure to tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:666-674. [PMID: 32858185 DOI: 10.1016/j.fsi.2020.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
Tilapia lake virus (TiLV) is an emerging virus associated with high mortality in cultured tilapia. Since the first report of tilapia lake virus, it has been detected in diseased tilapia in sixteen countries around the world. Thus, there is an urgent need to develop an efficacious vaccine to prevent TiLV disease (TiLVD) and reduce its global economic impact. Understanding the role of the adaptive immune response following exposure of tilapia to TiLV is a critical step in the development of such a vaccine. In this study, we challenged red hybrid tilapia by cohabitation or intraperitoneal injection and demonstrated that surviving fish develop a protective immunity. We also demonstrated that tilapia that survived experimental infections possess significant antibodies against the protein encoded by the TiLV segment 4. We then developed a TiLV indirect ELISA to determine the antibody response in tilapia. The ELISA revealed high antibody levels in survivors of experimental challenges and following outbreaks on farms. The ELISA effectively distinguished TiLV-exposed from unexposed tilapia and was used to monitor anti-TiLV antibody kinetics following infection. During the primary infection, tilapia developed an antibody response as early as 7 days post TiLV challenge (dpc), peaked at 15 dpc, showed a gradual decline up until about 42 dpc, but persisted in some fish up until day 110 dpc. Upon re-infection, an increased antibody response occurred within 7-14 days, demonstrating that tilapia that survive TiLV infections develop humoral memory. In conclusion, our results demonstrated that tilapia mount antibody responses against TiLV that supports protective immunity to subsequent TiLV disease. The persistence of anti-TiLV antibodies in survivors following a single exposure suggests a single vaccination might be adequate to protect tilapia during the entire grow-out period. This study provides important information about the immune response of tilapia following exposure to TiLV as a first step in the development of an efficacious vaccine against this emerging and economically important viral disease.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand
| | - Worawan Dechavichitlead
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand.
| |
Collapse
|
11
|
Henry MA, Kokou F, Palenzuela O, Pyrenis G, Rigos G. Experimental infection model with the bivalvulid Enteromyxum leei (Myxidiidae) in the sharpsnout seabream, Diplodus puntazzo (Sparidae), and evaluation of the antiparasitic efficacy of a functional diet. Folia Parasitol (Praha) 2020; 67. [PMID: 33021202 DOI: 10.14411/fp.2020.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022]
Abstract
An infection model for sharpsnout seabream Diplodus puntazzo (Walbaum) challenged with the myxosporean Enteromyxum leei (Diamant, Lom et Dyková, 1994), resembling the natural infection conditions, was used to evaluate the antiparasitic efficacy of a functional diet. Fish of an average weight of 12.5 ± 1.2 g were delivered either a functional (included as feed supplement at 0.3% levels) or a control extruded diet. After four weeks of administration of the experimental diets, fish were challenged with the parasites (cohabitation with infected donors; donor: recipient ratio 1 : 1). The experiment was terminated four weeks after the start of the challenge. At the end of the experiment, growth and feeding (specific growth rate and feed efficiency), as well as immunological parameters (respiratory burst activity, antibacterial activities, hemoglobin concentration, anti-protease activity and ceruloplasmin activity) were measured along with cumulative mortality and total parasitic count in the gut. No significant difference was evident with regard to growth and feeding performance, mortality, gut parasitic load or immunological parameters as the parasitical challenge significantly affected both the performance of the control and functional diet fed fish. However, there was a less prominent impact on antibacterial, anti-protease and ceruloplasmin activity in fish fed with the functional diet. Overall, the present study validated the experimental cohabitation infection model and evaluated the efficacy of a functional ingredient as an antiparasitic agent, showing some potential effects on the fish immune response.
Collapse
Affiliation(s)
- Morgane A Henry
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Anavissos, Attiki, Greece
| | - Fotini Kokou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Anavissos, Attiki, Greece.,Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | - George Pyrenis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Anavissos, Attiki, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Anavissos, Attiki, Greece
| |
Collapse
|
12
|
Picard-Sánchez A, Estensoro I, Perdiguero P, Del Pozo R, Tafalla C, Piazzon MC, Sitjà-Bobadilla A. Passive Immunization Delays Disease Outcome in Gilthead Sea Bream Infected With Enteromyxum leei (Myxozoa), Despite the Moderate Changes in IgM and IgT Repertoire. Front Immunol 2020; 11:581361. [PMID: 33013935 PMCID: PMC7516018 DOI: 10.3389/fimmu.2020.581361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Passive immunization constitutes an emerging field of interest in aquaculture, particularly with the restrictions for antibiotic use. Enteromyxum leei is a myxozoan intestinal parasite that invades the paracellular space of the intestinal epithelium, producing a slow-progressing disease, leading to anorexia, cachexia and mortalities. We have previously demonstrated that gilthead sea bream (GSB, Sparus aurata) that survive E. leei infection become resistant upon re-exposure, and this resistance is directly related to the presence of high levels of specific IgM in serum. Thus, the current work was aimed to determine if passive immunization could help to prevent enteromyxosis in GSB and to study in detail the nature of these protective antibodies. Serum from a pool of resistant (SUR) or naïve (NAI) animals was intracoelomically injected 24 h prior to the E. leei-effluent challenge and at 9 days post-challenge (dpc). Effluent challenge lasted for 23 days, and then the injected groups were allocated in separate tanks with clean water. A non-lethal parasite diagnosis was performed at 56 dpc. At the final sampling (100 dpc), blood, serum and tissues were collected for histology, molecular diagnosis and the detection of circulating antibodies. In parallel, we performed an immunoglobulin repertoire analysis of the fish generating SUR and NAI sera. The results showed that, fish injected with parasite-specific antibodies (spAbs) became infected with the parasite, but showed lower disease signs and intensity of infection than the other groups, indicating a later establishment of the parasite. Repertoire analysis revealed that E. leei induced a polyclonal expansion of diverse IgM and IgT subsets that could be in part an evasion strategy of the parasite. Nonetheless, GSB was able to produce sufficient levels of parasite-spAbs to avoid re-infection of surviving animals and confer certain degree of protection upon passive transfer of antibodies. These results highlight the crucial role of spAb responses against E. leei and set the basis for the development of effective treatment or prophylactic methods for aquaculture.
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
13
|
Attia MM, El-Gameel SM, Ismael E. Evaluation of tumor necrosis factor-alpha (TNF-α); gamma interferon (IFN-γ) genes and oxidative stress in sheep: immunological responses induced by Oestrus ovis (Diptera: Oestridae) infestation. J Parasit Dis 2020; 44:332-337. [PMID: 32508407 DOI: 10.1007/s12639-020-01220-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the cell mediated immune responses against Oestrus ovis (O. ovis) in sheep through measurement of the changes in mRNA expression of the tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) cytokines using quantitative Real time-PCR (qRt-PCR). Also; to detect the role of Oestrus ovis infestation in the oxidative stress markers in sheep. Fifty sheep head were examined in Cairo abattoir from the period of May to August 2019. Sera were separated and collected for measurement of nitric oxide, zinc and malondialdehyde (MDA). While TNF-α and IFN-γ mRNA were extracted from nasal mucosa. Levels of IFN-γ and TNF-α were significantly higher in infested sheep than that in non-infested one. Also, oxidative stresses were indicated by high level of nitric oxide as one of reactive oxygen species (ROS) and serum MDA as oxidative stress marker and low antioxidant capacity (zinc concentration in serum) in infested sheep. The obtained results indicated that measurements of TNF-α and IFN-γ cytokines using qRT-PCR could be used as an association and reproducible quantitative method for the diagnosis of O. ovis infestation in sheep.
Collapse
Affiliation(s)
- Marwa M Attia
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Sohila M El-Gameel
- Parasitology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
14
|
Picard-Sánchez A, Estensoro I, Del Pozo R, Palenzuela OR, Piazzon MC, Sitjà-Bobadilla A. Water temperature, time of exposure and population density are key parameters in Enteromyxum leei fish-to-fish experimental transmission. JOURNAL OF FISH DISEASES 2020; 43:491-502. [PMID: 32100319 DOI: 10.1111/jfd.13147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Enteromyxum leei is a myxozoan histozoic parasite that infects the intestine of several teleost fish species. In gilthead sea bream (Sparus aurata), it provokes a chronic disease, entailing anorexia, delayed growth, reduced marketability and mortality. Direct fish-to-fish transmission, relevant in aquaculture conditions, has been demonstrated for E. leei via effluent, cohabitation, and oral and anal routes. However, the minimum time of exposure for infection has not been established, nor the possible effect on the fish immune response. Two effluent trials were performed at different temperatures (high: average of 25.6°C; and low: constant at 18°C), different times of exposure to the effluent (1, 3, 5 and 7 weeks) and different population densities. The results showed that 1 week was enough to infect 100% of fish at high temperature and 58.3% at low temperature. High temperature not only increased the prevalence of infection in posterior intestine, but also induced a higher production of specific antibodies, limiting the progression of the infection along the intestine. Longer time of exposure to the parasite and higher fish densities facilitated E. leei infection. These results show that effective diagnosis, lowering animal density and removal of infected fish are key aspects to manage this disease in aquaculture facilities.
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain
| | - Oswaldo R Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain
| | - Maria Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Spain
| |
Collapse
|
15
|
Ronza P, Estensoro I, Bermúdez R, Losada AP, Pérez-Cordón G, Pardo BG, Sitjà-Bobadilla A, Quiroga MI. Effects of Enteromyxum spp. (Myxozoa) infection in the regulation of intestinal E-cadherin: Turbot against gilthead sea bream. JOURNAL OF FISH DISEASES 2020; 43:337-346. [PMID: 31984535 DOI: 10.1111/jfd.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Enteromyxoses are relevant diseases for turbot and gilthead sea bream aquaculture. The myxozoan parasites invade the intestinal mucosa, causing a cachectic syndrome associated with intestinal barrier alteration; nonetheless, their pathological impact is different. Turbot infected by Enteromyxum scophthalmi develop more severe intestinal lesions, reaching mortality rates of 100%, whereas in E. leei-infected gilthead sea bream, the disease progresses slowly, and mortality rates are lower. The mechanisms underlying the different pathogenesis are still unclear. We studied the distribution and expression changes of E-cadherin, a highly conserved protein of the adherens junctions, in the intestine of both species by immunohistochemistry and quantitative PCR, using the same immunohistochemical protocol and common primers. The regular immunostaining pattern observed in control fish turned into markedly irregular in parasitized turbot, showing an intense immunoreaction at the host-parasite interface. Nevertheless, E-cadherin gene expression was not significantly modulated in this species. On the contrary, no evident changes in the protein distribution were noticed in gilthead sea bream, whereas a significant gene downregulation occurred in advanced infection. The results contribute to the understanding of the different host-parasite interactions in enteromyxoses. Host and parasite cells appear to establish diverse relationships in these species, which could underlie the different pathological picture.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gregorio Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal, Castellón, Spain
- Cryptosporidium Reference Unit, Public Health Wales, Singleton Hospital, Swansea, UK
| | - Belén G Pardo
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Mª Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
- Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Liu T, Wei WY, Wang KY, Yang Q, Wang EL. Pathological and immunological analyses of Thelohanellus kitauei (Myxozoa:Myxosporea) infection in the scattered mirror carp, Cyprinus carpio. Sci Rep 2019; 9:20014. [PMID: 31882981 PMCID: PMC6934683 DOI: 10.1038/s41598-019-56752-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022] Open
Abstract
Thelohanellus kitauei is a spore-forming myxosporean parasite prevalent in scattered mirror carp (Cyprinus carpio) that generates numerous cysts in the intestine and causes mass mortality in fish. To investigate the infection and mortality induced by T. kitauei in pond-reared farms in Luo-Jiang (104°51’N, 31°31’E), southwest China, morphological and molecular analyses of infected fish were conducted. Natural and specific immune indicators were further evaluated to determine the immunological effects of response to parasitic infection. The infectious parasite was identified as Thelohanellus kitauei based on morphological, 18S rDNA and infectious characteristics. Scattered mirror carp was determined as the specific intermediate host of the parasite. However, T. kitauei still caused considerable damage to the fish, in particular, injury and blockage of the intestines, resulting in malnutrition and even death. The mature spores of T. kitauei colonize the intestinal submucosa of carp and form cysts of various sizes that block the intestinal tract and release spores into the enteric cavity upon rupture, leading to the next phase of T. kitauei growth. Moreover, T. kitauei-infected carp showed weaker innate immunity. IgM is involved in the fight against parasitic infection while cytokines, such as IL-6, IL-1β and TNF-α, had an impact on infection processes. To our knowledge, this is the first report to show that T. kitauei infects and causes death in scattered mirror carp. Our collective findings from systematic pathology, morphology and immunology experiments provide a foundation for further research on infections by this type of parasite and development of effective treatment strategies.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| | - Wen-Yan Wei
- China Institute of fisheries of chengdu agriculture and forestry academy, Cheng du, 610000, China
| | - Kai-Yu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China.
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| | - Er-Long Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| |
Collapse
|
17
|
Sitjà-Bobadilla A, Gil-Solsona R, Estensoro I, Piazzon MC, Martos-Sitcha JA, Picard-Sánchez A, Fuentes J, Sancho JV, Calduch-Giner JA, Hernández F, Pérez-Sánchez J. Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: a story told from serum metabolomics. Parasit Vectors 2019; 12:486. [PMID: 31619276 PMCID: PMC6796429 DOI: 10.1186/s13071-019-3746-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background In the animal production sector, enteritis is responsible for serious economic losses, and intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced marketability and increased mortality. Methods This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electrophysiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-targeted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits. Results The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the differential expression of 20 identified compounds significantly separated control from infected groups in multivariate analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and validated with commercial kits. Conclusions The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metabolomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei.![]()
Collapse
Affiliation(s)
- Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain. .,Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.
| | - Rubén Gil-Solsona
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.,Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, University of Cádiz, 11510, Cádiz, Spain
| | - Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, CCMar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Juan Vicente Sancho
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Josep A Calduch-Giner
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Félix Hernández
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Vicent Sos Baynat, s/n. Campus del Riu Sec, 12071, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Associated Unit of Marine Ecotoxicology (IATS-IUPA), Castellon, Spain.,Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|