1
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
- Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
2
|
Li Y, Li R, Mo X, Wang Y, Yin J, Bergmann SM, Ren Y, Pan H, Shi C, Zhang D, Wang Q. Development of real-time recombinase polymerase amplification (RPA) and RPA combined with lateral flow dipstick (LFD) assays for the rapid and sensitive detection of cyprinid herpesvirus 3. JOURNAL OF FISH DISEASES 2024; 47:e13960. [PMID: 38708552 DOI: 10.1111/jfd.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
In this issue, we established rapid, cost-effective, and simple detection methods including recombines polymerase amplification with lateral flow dipstick (RPA-LFD) and real-time RPA for cyprinid herpesvirus 3(CyHV-3), and evaluated their sensitivity, specificity, and applicability, the real-time RPA method could achieve sensitive diagnosis of CyHV-3 within 1.3 copies per reaction, respectively. The real-time RPA method is 10-fold more sensitive than RPA-LFD method. The exact number of CyHV-3 can be calculated in each sample by real-time RPA. The sera from koi also can be tested in these methods. In addition, no cross-reaction was observed with other related pathogens, including carp oedema virus (CEV), spring viraemia of carp virus (SVCV), cyprinid herpesvirus 1(CyHV-1), cyprinid herpesvirus 2(CyHV-2), type I grass carp reovirus (GCRV-I), type II GCRV (GCRV-II), type III GCRV (GCRV-III), and Aeromonas hydrophila.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Ruifan Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Sven M Bergmann
- Germany Reference Laboratory for KHVD, Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Yan Ren
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
3
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
4
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
5
|
Wang Y, Yang K, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int J Biol Macromol 2023:125515. [PMID: 37353117 PMCID: PMC10284459 DOI: 10.1016/j.ijbiomac.2023.125515] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Since May 2022, the mpox virus (MPXV) has spread worldwide and become a potential threat to global public health. Vaccines are important tools for preventing MPXV transmission and infection in the population. However, there are still no available potent and applicable vaccines specifically for MPXV. Herein, we highlight several potential vaccine targets for MPVX and emphasize potent immunogens, such as M1R, E8L, H3L, A29L, A35R, and B6R proteins. These proteins can be integrated into diverse vaccine platforms to elicit powerful B-cell and T-cell responses, thereby providing protective immunity against MPXV infection. Overall, research on the MPXV vaccine targets would provide valuable information for developing timely effective MPXV-specific vaccines.
Collapse
Affiliation(s)
- Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| |
Collapse
|
6
|
Matsuoka S, Petri G, Larson K, Behnke A, Wang X, Peng M, Spagnoli S, Lohr C, Milston-Clements R, Divilov K, Jin L. Evaluation of Histone Demethylase Inhibitor ML324 and Acyclovir against Cyprinid herpesvirus 3 Infection. Viruses 2023; 15:163. [PMID: 36680202 PMCID: PMC9863241 DOI: 10.3390/v15010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) can cause severe disease in koi and common carp (Cyprinus carpio). Currently, no effective treatment is available against CyHV-3 infection in koi. Both LSD1 and JMJD2 are histone demethylases (HD) and are critical for immediate-early (IE) gene activation essential for lytic herpesvirus replication. OG-L002 and ML324 are newly discovered specific inhibitors of LSD1 and JMJD2, respectively. Here, HD inhibitors were compared with acyclovir (ACV) against CyHV-3 infection in vitro and in vivo. ML324, at 20-50 µM, can completely block ~1 × 103 PFU CyHV-3 replication in vitro, while OG-L002 at 20 µM and 50 µM can produce 96% and 98% inhibition, respectively. Only about 94% inhibition of ~1 × 103 PFU CyHV-3 replication was observed in cells treated with ACV at 50 µM. As expected, CyHV-3 IE gene transcription of ORF139 and ORF155 was blocked within 72 h post-infection (hpi) in the presence of 20 µM ML324. No detectable cytotoxicity was observed in KF-1 or CCB cells treated for 24 h with 1 to 50 µM ML324. A significant reduction of CyHV-3 replication was observed in ~6-month-old infected koi treated with 20 µM ML324 in an immersion bath for 3-4 h at 1-, 3-, and 5-days post-infection compared to the control and ACV treatments. Under heat stress, 50-70% of 3-4-month-old koi survived CyHV-3 infection when they were treated daily with 20 µM ML324 in an immersion bath for 3-4 h within the first 5 d post-infection (dpi), compared to 11-19% and 22-27% of koi in the control and ACV treatments, respectively. Our study demonstrates that ML324 has the potential to be used against CyHV-3 infection in koi.
Collapse
Affiliation(s)
- Shelby Matsuoka
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Gloria Petri
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kristen Larson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Alexandra Behnke
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Muhui Peng
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane Lohr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Ruth Milston-Clements
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Radhakrishnan A, Vaseeharan B, Ramasamy P, Jeyachandran S. Oral vaccination for sustainable disease prevention in aquaculture-an encapsulation approach. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 31:867-891. [PMID: 36407965 PMCID: PMC9660215 DOI: 10.1007/s10499-022-01004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of infectious diseases in the aquaculture industry and a limited number of safe and effective oral vaccines has imposed a challenge not only for fish immunity but also a threat to human health. The availability of fish oral vaccines has expanded recently, but little is known about how well they work and how they affect the immune system. The unsatisfactory efficacy of existing oral vaccinations is partly attributable to the antigen degradation in the adverse gastrointestinal environment of fishes, the highly tolerogenic gut environment, and inferior vaccine formulation. To overcome such challenges in designing: an easier, cost-efficient, and effective vaccination method, several encapsulation methods are being adopted to safeguard antigens from the intestinal atmosphere for their immunogenic functions. Oral vaccination is easily degraded by gastric acids and enzymes before reaching the immunological site; however, this issue can be solved by encapsulating antigens in poly-biodegradable nanoparticles, transgenic designed bacteria, plant systems, and live feeds. To enhance the immunological impact, each antigen delivery method operates at a different level. Utilizing nanotechnology, it has been possible to regulate vaccination parameters, target particular cells, and lower the antigen dosage with potent nanomaterials such as chitosan, poly D,L-lactic-co-glycolic acid (PLGA) as vaccine carriers. Live feeds such as Artemia salina can be utilized as bio-carrier, owing to their appropriate size and non-filter feed system, through a process called bio-encapsulation. It ensures the protection of antigens over the fish intestine and ensures complete uptake by immune cells in the hindgut for increased immune response. This review comprises recent advances in oral vaccination in aquaculture in terms of an encapsulation approach that can aid in future research.
Collapse
Affiliation(s)
- Akshaya Radhakrishnan
- Department of Biotechnology and Microbiology, National College (Autonomous), Tiruchirappalli, Tamil Nadu 620001 India
| | - Baskaralingam Vaseeharan
- Department of Animal Health & Management, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Pasiyappazham Ramasamy
- Marine Natural Product Division, Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Insti tute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077 Tamil Nadu India
| | - Sivakamavalli Jeyachandran
- Department of Biotechnology and Microbiology, National College (Autonomous), Tiruchirappalli, Tamil Nadu 620001 India
| |
Collapse
|
8
|
de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int J Nanomedicine 2022; 17:751-781. [PMID: 35241912 PMCID: PMC8887185 DOI: 10.2147/ijn.s341890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| | - Ana Luiza Moraes Octaviano
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
9
|
Yin XH, Xu YM, Lau ATY. Nanoparticles: Excellent Materials Yet Dangerous When They Become Airborne. TOXICS 2022; 10:50. [PMID: 35202237 PMCID: PMC8874650 DOI: 10.3390/toxics10020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Since the rise and rapid development of nanoscale science and technology in the late 1980s, nanomaterials have been widely used in many areas including medicine, electronic products, crafts, textiles, and cosmetics, which have provided a lot of convenience to people's life. However, while nanomaterials have been fully utilized, their negative effects, also known as nano pollution, have become increasingly apparent. The adverse effects of nanomaterials on the environment and organisms are mainly based on the unique size and physicochemical properties of nanoparticles (NPs). NPs, as the basic unit of nanomaterials, generally refer to the ultrafine particles whose spatial scale are defined in the range of 1-100 nm. In this review, we mainly introduce the basic status of the types and applications of NPs, airborne NP pollution, and the relationship between airborne NP pollution and human diseases. There are many sources of airborne NP pollutants, including engineered nanoparticles (ENPs) and non-engineered nanoparticles (NENPs). The NENPs can be further divided into those generated from natural activities and those produced by human activities. A growing number of studies have found that exposure to airborne NP pollutants can cause a variety of illnesses, such as respiratory diseases, cardiovascular diseases, and neurological disorders. To deal with the ever increasing numbers and types of NPs being unleashed to the air, we believe that extensive research is needed to provide a comprehensive understanding of NP pollution hazards and their impact mechanisms. Only in this way can we find the best solution and truly protect the safety and quality of life of human beings.
Collapse
Affiliation(s)
- Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
10
|
Gong YM, Zhang C, Li Y, Chen G, Wang GX, Zhu B. Optimization of immunization procedure for SWCNTs-based subunit vaccine with mannose modification against spring viraemia of carp virus in common carp. JOURNAL OF FISH DISEASES 2021; 44:1925-1936. [PMID: 34383969 DOI: 10.1111/jfd.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 05/19/2023]
Abstract
Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs-MG vaccine against SVCV has not been reported. In this study, accordingly, a full-factor experiment was designed to optimize the immunization procedure of SWCNTs-MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L-1 , 24 fish L-1 and 48 fish L-1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L-1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune-related genes and relative percentage survival (RPS). At 28 days post-vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L-1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune-related genes such as IL-10, CD4 and MHC-II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L-1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs-MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text].
Collapse
Affiliation(s)
- Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5978. [PMID: 34683568 PMCID: PMC8538389 DOI: 10.3390/ma14205978] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Carbon nanomaterials (CNMs) have received tremendous interest in the area of nanotechnology due to their unique properties and flexible dimensional structure. CNMs have excellent electrical, thermal, and optical properties that make them promising materials for drug delivery, bioimaging, biosensing, and tissue engineering applications. Currently, there are many types of CNMs, such as quantum dots, nanotubes, nanosheets, and nanoribbons; and there are many others in development that promise exciting applications in the future. The surface functionalization of CNMs modifies their chemical and physical properties, which enhances their drug loading/release capacity, their ability to target drug delivery to specific sites, and their dispersibility and suitability in biological systems. Thus, CNMs have been effectively used in different biomedical systems. This review explores the unique physical, chemical, and biological properties that allow CNMs to improve on the state of the art materials currently used in different biomedical applications. The discussion also embraces the emerging biomedical applications of CNMs, including targeted drug delivery, medical implants, tissue engineering, wound healing, biosensing, bioimaging, vaccination, and photodynamic therapy.
Collapse
Affiliation(s)
- Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Charu Misra
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Fionn Ó. Maolmhuaidh
- National Centre for Sensor Research, School of Chemistry, Dublin City University, D09 V209 Dublin, Ireland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Ahmed Barhoum
- Nano Struc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
12
|
Zhang Z, Liu G, Liu J, Zhu B, Wang G, Ling F. Epitope screening of the major capsid protein within grouper iridovirus of Taiwan and the immunoprotective effect with SWCNTs as the vaccine carrier. FISH & SHELLFISH IMMUNOLOGY 2021; 117:17-23. [PMID: 34280519 DOI: 10.1016/j.fsi.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Iridovirus can cause a mass of death in grouper, leading to huge economic loss in recent years. At present, practical vaccine is still the best way to control the outbreak of this virus. Many researches had indicated that the major capsid protein (MCP) of grouper iridovirus of Taiwan (TGIV) is an effective antigen to induce a specific immune response in grouper. However, these traditional vaccines that based on large proteins or whole organisms are faced with challenges because of the unnecessary antigenic load. Thus, in this study, we screened the dominant linear epitope within the MCP of TGIV and then, a new peptide vaccine (P2) was developed via prokaryotic expression system. Furthermore, SWCNTs was used as a vaccine carrier to enhance the immunoprotective effect. To evaluate the immunoprotective effect of this vaccine, a total of 245 fish were vaccinated with P2 (5, 10, 20 mg L-1) and SWCNTs-P2 (5, 10, 20 mg L-1) via immersion before being challenged with live TGIV at 28 days post immunization (d.p.i.). Results showed that the serum antibody titer, enzymatic activity, expression level of some immune-related genes (CC chemokine, IgM and TNF-α) and survival rate were significantly increased (SWCNTs-P2, 20 mg L-1, 100%) compared to the control group (0%). These results indicated that this peptide vaccine could effectively induce specific immune response in vaccinated groupers. Functionalized SWCNTs could serve as a carrier of the peptide vaccine to enhance the immunoprotective effect via immersion. To sum up, epitope screening might be a potential way to develop an effective vaccine nowadays, and SWCNTs might provide a practical method that can be used in large-scale vaccination, especially for juvenile fish, to fight against diseases in aquaculture industry.
Collapse
Affiliation(s)
- Zhongyu Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Gaoyang Liu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Jingyao Liu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
13
|
Dong H, Wang Z, Zhao D, Leng X, Zhao Y. Antiviral strategies targeting herpesviruses. J Virus Erad 2021; 7:100047. [PMID: 34141443 PMCID: PMC8187247 DOI: 10.1016/j.jve.2021.100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Herpesviruses, known as large DNA viruses, have a wide host range. In addition to human beings, cattle, and horses, even carp can be hosts for herpesvirus infection. Herpesviruses are pathogens possessing elaborate mechanisms that regulate host cell components for its replication, assembly and generating mature virus particles that can infect humans and most animals, usually causing multiple and lifelong infections. In addition, several human diseases, such as genital or mouth herpes, mononucleosis, and Burkitt lymphoma, are usually associated with herpesvirus infection. Blocking the steps of viral infection, such as entry, replication and assembly, may be an effective way for many different herpes viruses and their related diseases. Therefore, we aim to describe antiviral agents that are able to prevent herpesvirus entry, replication and assembly in host cells. We summarize antiviral strategies, including certain small molecular drugs, RNA interference and CRISPR/Cas9 system-based antiviral approaches, which represent promising approaches.
Collapse
Affiliation(s)
| | | | - Daqing Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines (Basel) 2021; 9:563. [PMID: 34071482 PMCID: PMC8228360 DOI: 10.3390/vaccines9060563] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
The production of subunit nanovaccines relies heavily on the development of a vaccine delivery system that is safe and efficient at delivering antigens to the target site. Nanoparticles have been extensively investigated for vaccine delivery over the years, as they often possess self-adjuvanting properties. The conjugation of antigens to nanoparticles by covalent bonds ensures co-delivery of these components to the same subset of immune cells in order to trigger the desired immune responses. Herein, we review covalent conjugation strategies for grafting protein or peptide antigens onto other molecules or nanoparticles to obtain subunit nanovaccines. We also discuss the advantages of chemical conjugation in developing these vaccines.
Collapse
Affiliation(s)
| | | | | | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| |
Collapse
|
15
|
Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection. J Virol 2021; 95:JVI.00415-21. [PMID: 33827944 DOI: 10.1128/jvi.00415-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Koi herpesvirus (KHV) is highly contagious and lethal to cyprinid fish, causing significant economic losses to the carp aquaculture industry, particularly to koi carp breeders. Vaccines delivered through intramuscular needle injection or gene gun are not suitable for mass vaccination of carp. So, the development of cost-effective oral vaccines that are easily applicable at a farm level is highly desirable. In this study, we utilized chitosan-alginate capsules as an oral delivery system for a live probiotic (Lactobacillus rhamnosus) vaccine, pYG-KHV-ORF81/LR CIQ249, expressing KHV ORF81 protein. The tolerance of the encapsulated recombinant Lactobacillus to various digestive environments and the ability of the probiotic strain to colonize the intestine of carp was tested. The immunogenicity and the protective efficacy of the encapsulated probiotic vaccine was evaluated by determining IgM levels, lymphocyte proliferation, expression of immune-related genes, and viral challenge to vaccinated fish. It was clear that the chitosan-alginate capsules protected the probiotic vaccine effectively against extreme digestive environments, and a significant level (P < 0.01) of antigen-specific IgM with KHV-neutralizing activity was detected, which provided a protection rate of ca. 85% for koi carp against KHV challenge. The strategy of using chitosan-alginate capsules to deliver probiotic vaccines is easily applicable for mass oral vaccination of fish.IMPORTANCE An oral probiotic vaccine, pYG-KHV-ORF81/LR CIQ249, encapsulated by chitosan-alginate capsules as an oral delivery system was developed for koi carp against koi herpesvirus (KHV) infection. This encapsulated probiotic vaccine can be protected from various digestive environments and maintain effectively high viability, showing a good tolerance to digestive environments. This encapsulated probiotic vaccine has a good immunogenicity in koi carp via oral vaccination, and a significant level of antigen-specific IgM was effectively induced after oral vaccination, displaying effective KHV-neutralizing activity. This encapsulated probiotic vaccine can provide effective protection for koi carp against KHV challenge, which is handling-stress free for the fish, cost effective, and suitable for the mass oral vaccination of koi carp at a farm level, suggesting a promising vaccine strategy for fish.
Collapse
|
16
|
Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021; 16:1681-1706. [PMID: 33688185 PMCID: PMC7936533 DOI: 10.2147/ijn.s299448] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
The unique properties of carbon nanotubes (CNTs) (such as their high surface to volume ratios, enhanced conductivity and strength, biocompatibility, ease of functionalization, optical properties, etc.) have led to their consideration to serve as novel drug and gene delivery carriers. CNTs are effectively taken up by many different cell types through several mechanisms. CNTs have acted as carriers of anticancer molecules (including docetaxel (DTX), doxorubicin (DOX), methotrexate (MTX), paclitaxel (PTX), and gemcitabine (GEM)), anti-inflammatory drugs, osteogenic dexamethasone (DEX) steroids, etc. In addition, the unique optical properties of CNTs have led to their use in a number of platforms for improved photo-therapy. Further, the easy surface functionalization of CNTs has prompted their use to deliver different genes, such as plasmid DNA (PDNA), micro-RNA (miRNA), and small interfering RNA (siRNA) as gene delivery vectors for various diseases such as cancers. However, despite all of these promises, the most important continuous concerns raised by scientists reside in CNT nanotoxicology and the environmental effects of CNTs, mostly because of their non-biodegradable state. Despite a lack of widespread FDA approval, CNTs have been studied for decades and plenty of in vivo and in vitro reports have been published, which are reviewed here. Lastly, this review covers the future research necessary for the field of CNT medicine to grow even further.
Collapse
Affiliation(s)
- Hossein Zare
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Science and Engineering Department, Iran University of Science and Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mohammad Ghanbari
- School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, MA, Iran
| | - Thomas J Webster
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ebrahim Mostafavi
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Jha R, Singh A, Sharma P, Fuloria NK. Smart carbon nanotubes for drug delivery system: A comprehensive study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|