1
|
Lin XH, Dong BB, Liang QJ. Deficiency of PvDRAM2 increased the nitrite sensitivity of Pacific white shrimp (Penaeus vannamei) by inhibiting autophagy. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110068. [PMID: 39505289 DOI: 10.1016/j.cbpc.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Autophagy is an essential response mechanism to environmental stress during the evolution of organisms. DRAM2 (Damage-regulated autophagy regulator 2) is recognized as necessary for the process of p53-mediated cell apoptosis. Although the role of DRAM2 in apoptosis has been confirmed, the mechanism of its relationship with autophagy is still unclear. Here we describe PvDRAM2 features and functions. We found that nitrite stress induced autophagy accumulation and ROS production. A novel DRAM-homologous protein, DRAM2, was cloned, and its expression is significantly up-regulated under nitrite stress conditions. PvDRAM2 primarily localizes within the cytoplasmic lysosome.Loss of PvDRAM2 increased sensitivity response to nitrite stress of Pacific white shrimp. And silenced of PvDRAM2 promoted ROS production and inhibited autophagy accumulation. In addition, silenced of PvDRAM2 decreased the autophagy-related protein of p62, Beclin 1, and LC3 expression under nitrite stress of Pacific white shrimp. Collectively, these studies uncover a novel critical role for PvDRAM2 in regulating autophagy under nitrite stress. Specifically, PvDRAM2 is essential for the induction of autophagy, enabling Pacific white shrimp to adapt to environmental stress. This provides mechanistic insight into how autophagy functions as a way for Pacific white shrimp to cope with environmental challenges.
Collapse
Affiliation(s)
- Xing-Hao Lin
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Bei-Bei Dong
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qing-Jian Liang
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; College of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Shi J, Che J, Sun X, Zeng X, Du Q, Guo Y, Wu Z, Pan D. Transcriptomic Responses to Nitrite Degradation by Limosilactobacillus fermentum RC4 and Effect of ndh Gene Overexpression on Nitrite Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13156-13164. [PMID: 37624070 DOI: 10.1021/acs.jafc.3c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The excessive nitrite residue may increase cell damage and cancer risk. Limosilactobacillu fermentum RC4 exhibited excellent nitrite degradation ability. Herein, the molecular mechanism of nitrite degradation by L. fermentum RC4 was studied by integrating scanning electron microscopy analysis, transcriptomics, and gene overexpression. The results demonstrated that the gene profile of RC4 cultured in MRS broth with 0, 100, and 300 mg/L NaNO2 varied considerably; RC4 responded to nitrite degradation by regulating pyruvate metabolism, energy synthesis, nitrite metabolism, redox equilibrium, protein protection, and signaling. High nitrite concentrations affected the morphology of RC4 with a longer phenotype, rough and wrinkle cell and reduced cell surface hydrophobicity. Moreover, an up-regulated expression of gene ndh encoding NADH dehydrogenase, which provides electrons for nitrite reduction by catalyzing NADH, was identified when RC4 was exposed to nitrite. Overexpression of ndh in RC4 increased the nitrite degradation rate by 2-9.5% in MRS broth with 100 mg/L NaNO2. Thus, the findings of this study could be helpful for the application of L. fermentum to reduce nitrite residues and improve food safety in fermented food products.
Collapse
Affiliation(s)
- Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jiahao Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqian Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
3
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
4
|
Stankevičiūtė M, Sauliutė G, Makaras T, Čapukoitienė B, Vansevičiūtė G, Markovskaja S. Biomarker responses in perch (Perca fluviatilis) under multiple stress: Parasite co-infection and multicomponent metal mixture exposure. ENVIRONMENTAL RESEARCH 2022; 207:112170. [PMID: 34606842 DOI: 10.1016/j.envres.2021.112170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Parasitic infections may cause damage to the host immune system (i.e. fish), thereby endangering its health and weakening its responses to other types of stressors. Therefore, exposure to different kinds of natural or anthropogenic stressors can lead to unexpected toxicity outcomes in aquatic organisms. This study examined the haematological, genotoxic and cytotoxic effects of the co-infection with the protozoan parasite (Trichodina sp.) and the pathogenic oomycete (Saprolegnia parasitica) in Perca fluviatilis alone and in combination with chemical stress (environmentally-relevant aqueous concentrations of metal mixtures). Haematological analyses such as red cell and white cell indices revealed that chemical and biological stressors, used singly and in combination, exerted adverse effects on fish health. Changes in haematological indices induced by exposure to each of the above-mentioned stressors separately and by combined exposure to all of them suggested the multiple stress-induced inflammation process in the exposed fish. The cytogenetic damage inflicted by the S. parasitica and Trichodina sp. co-infection and multiple stress was revealed in fish erythrocytes. This information is expected to contribute to the elucidation of how multiple stressors impact on responses of haematic indices, geno- and cytotoxicity endpoints in P. fluviatilis. Assessment of the risk associated with multiple stressors is expected to prove valuable for the effective aquatic environment management (Løkke et al., 2013 and references therein).
Collapse
Affiliation(s)
- Milda Stankevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania.
| | - Gintarė Sauliutė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Tomas Makaras
- Laboratory of Fish Ecology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Brigita Čapukoitienė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Gelminė Vansevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
5
|
Qi M, Geng H, Geng N, Cui Y, Qi C, Cheng G, Song K, Hu L, Liu Y, Liu J, Han B. Streptococcus agalactiae-induced autophagy of bovine mammary epithelial cell via PI3K/AKT/mTOR pathway. J DAIRY RES 2022; 89:1-7. [PMID: 35388773 DOI: 10.1017/s0022029922000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Streptococcus agalactiae (S. agalactiae) infection is a significant cause of mastitis, resulting in loss of cellular homeostasis and tissue damage. Autophagy plays an essential function in cell survival, defense, and the preservation of cellular homeostasis, and is often part of the response to pathogenic challenge. However, the effect of autophagy induced by S. agalactiae in bovine mammary epithelial cells (bMECs) is mainly unknown. So in this study, an intracellular S. agalactiae infection model was established. Through evaluating the autophagy-related indicators, we observed that after S. agalactiae infection, a significant quantity of LC3-I was converted to LC3-II, p62 was degraded, and levels of Beclin1 and Bcl2 increased significantly in bMECs, indicating that S. agalactiae induced autophagy. The increase in levels of LAMP2 and LysoTracker Deep Red fluorescent spots indicated that lysosomes had participated in the degradation of autophagic contents. After autophagy was activated by rapamycin (Rapa), the amount of p-Akt and p-mTOR decreased significantly, whilst the amount of intracellular S. agalactiae increased significantly. Whereas the autophagy was inhibited by 3-methyladenine (3MA), the number of intracellular pathogens decreased. In conclusion, the results demonstrated that S. agalactiae could induce autophagy through PI3K/Akt/mTOR pathway and utilize autophagy to survive in bMECs.
Collapse
Affiliation(s)
- Mengzhu Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Hao Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Yukun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Liping Hu
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong251000, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|