1
|
Yao YY, Zhang QS, Liu SB, Yang HW, Chen XY, Yang YL, Gao CC, Ran C, Teame T, Zhang Z, Zhou ZG. Pichia pastoris composition expressed aerolysin mutant of Aeromonas veronii as an oral vaccine evaluated in zebrafish ( Danio rerio). MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:475-487. [PMID: 39219683 PMCID: PMC11358560 DOI: 10.1007/s42995-024-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/07/2024] [Indexed: 09/04/2024]
Abstract
Vaccines are one of the most practical means to stop the spreading of Aeromonas veronii in aquaculture. In this study, virulence factor aerolysin mutant NTaer which has lost its hemolytic activity was used as a target antigen. Pichia pastoris constitutive secretory expression NTaer (GS115-NTaer) was used as a potential safe oral vaccine to evaluate its effectiveness on zebrafish immunity. The result shows that vaccination of GS115- NTaer for four weeks did not affect the growth performance of the host, while eliciting an effective immune protective response. Compared with the control group, the GS115-NTaer could significantly up-regulate the relative expression level of the intestinal tight junction protein 1α (TJP1α) gene, and significantly increased the contents of lysozyme (LYZ), complement C3 and C4 in the gut, indicating that the innate immune response of the fish was activated. The relative gene expression levels of macrophage-expressed gene 1 (MPEG1) and T cell receptor (TCR-α) in the gut, and MPEG1, CD4, CD8, TCR-α, GATA3, and T-bet in the spleen were all increased significantly, indicating that the cellular immune response of the fish was activated. Furthermore, the contents of serum IgM and intestinal mucosa IgZ antibodies were significantly increased, which showed that humoral immunity was also activated. Moreover, inoculation with GS115-NTaer significantly changed the structure of gut microbiota. In particular, the relative ratio of (Firmicutes + Fusobacteriota + Bacteroidota)/Proteobacteria was significantly higher than that of the control and GS115 groups. Lastly, the vaccinated fish were challenged with A. veronii, and the relative percent survival of GS115 and the GS115-NTear groups was 14.28% and 33.43%. This improvement of immunity was not only due to the specific immune response but also attributed to the improvement of innate immunity and the gut microbiota which was demonstrated by the germ-free zebrafish model. Collectively, this study provides information on the effectiveness of GS115-NTear as an oral vaccine for the green prevention and control of A. veronii infection in fish aquaculture.
Collapse
Affiliation(s)
- Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qing-Shuang Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shu-Bin Liu
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hong-Wei Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Institute of Marine Sciences, Shantou University, Shantou, 515063 China
| | - Xing-Yu Chen
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chen-Chen Gao
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tsegay Teame
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Tigray Agricultural Research Institute (TARI) Mekelle Center, Tigray, 7101 Ethiopia
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhi-Gang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
2
|
Wu H, Yin J, Li S, Wang H, Jiang P, Li P, Ding Z, Yan H, Chen B, Wang L, Wang Q. Oral immunization with recombinant L. lactis expressing GCRV-II VP4 produces protection against grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109439. [PMID: 38341115 DOI: 10.1016/j.fsi.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The hemorrhagic disease causing by grass carp reovirus (GCRV) infection, is associated with major economic losses and significant impact on aquaculture worldwide. VP4 of GCRV is one of the major outer capsid proteins which can induce an immune response in the host. In this study, pNZ8148-VP4/L. lactis was constructed to express recombinant VP4 protein of GCRV, which was confirmed by the Western-Blot and enzyme-linked immunosorbent assay. Then we performed the oral immunization for rare minnow model and the challenge with GCRV-II. After oral administration, pNZ8148-VP4/L. lactis can continuously reside in the intestinal tract to achieve antigen presentation. The intestinal and spleen samples were collected at different time intervals after immunization, and the expression of immune-related genes was detected by real-time fluorescence quantitative PCR. The results showed that VP4 recombinant L. lactis could induce complete cellular and humoral immune responses in the intestinal mucosal system, and effectively regulate the immunological effect of the spleen. The immunogenicity and the protective efficacy of the oral vaccine was evaluated by determining IgM levels and viral challenge to vaccinated fish, a significant level (P < 0.01) of antigen-specific IgM with GCRV-II neutralizing activity was able to be detected, which provided a effective protection in the challenge experiment. These results indicated that an oral probiotic vaccine with VP4 expression can provide effective protection for grass carp against GCRV-II challenge, suggesting a promising vaccine strategy for fish.
Collapse
Affiliation(s)
- Huiliang Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Siming Li
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, China
| | - Hao Wang
- Shanghai Ocean University/National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China
| | - Peng Jiang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, 530000, China
| | - Zhaoyang Ding
- Shanghai Ocean University/National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306, China
| | - Han Yan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, China
| | - Bo Chen
- Nanchang Yimen Biology Technology Co., Ltd., Nanchang, 330200, China
| | - Linchuan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
3
|
Song HC, Yang YX, Lan QG, Cong W. Immunological effects of recombinant Lactobacillus casei expressing pilin MshB fused with cholera toxin B subunit adjuvant as an oral vaccine against Aeromonas veronii infection in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108934. [PMID: 37419434 DOI: 10.1016/j.fsi.2023.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Aeromonas veronii is a zoonotic agent capable of infecting fish and mammals, including humans, posing a serious threat to the development of aquaculture and public health safety. Currently, few effective vaccines are available through convenient routes against A. veronii infection. Herein, we developed vaccine candidates by inserting MSH type VI pili B (MshB) from A. veronii as an antigen and cholera toxin B subunit (CTB) as a molecular adjuvant into Lactobacillus casei and evaluated their immunological effect as vaccines in a crucian carp (Carassius auratus) model. The results suggested that recombinant L. casei Lc-pPG-MshB and Lc-pPG-MshB-CTB can be stably inherited for more than 50 generations. Oral administration of recombinant L. casei vaccine candidates stimulated the production of high levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) superoxide dismutase (SOD), lysozyme (LZM), complement 3 (C3) and C4 in crucian carp (carassius auratus) compared to the control group (Lc-pPG612 group and PBS group) without significant changes. Moreover, the expression levels of interleukin-10 (IL-10), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) genes in the gills, liver, spleen, kidney and gut of crucian carp orally immunized with recombinant L. casei were significantly upregulated compared to the control groups, indicating that recombinant L. casei induced a significant cellular immune response. In addition, viable recombinant L. casei can be detected and stably colonized in the intestine tract of crucian carp. Particularly, crucian carp immunized orally with Lc-pPG-MshB and Lc-pPG-MshB-CTB exhibited higher survival rates (48% for Lc-pPG-MshB and 60% for Lc-pPG-MshB-CTB) and significantly reduced loads of A. veronii in the major immune organs after A. veronii challenge. Our findings indicated that both recombinant L. casei strains provide favorable immune protection, with Lc-pPG-MshB-CTB in particular being more effective and promising as an ideal candidate for oral vaccination.
Collapse
Affiliation(s)
- Hai-Chao Song
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Yi-Xuan Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Qi-Guan Lan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
4
|
Altwaijry N, Khan MS, Shaik GM, Tarique M, Javed M. Redox Status, Immune Alterations, Histopathology, and Micronuclei Induction in Labeo rohita Dwelling in Polluted River Water. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:179-187. [PMID: 36586095 DOI: 10.1007/s00244-022-00976-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In this study, we measured various parameters of oxidative stress, immune response, and abnormalities in the erythrocyte nucleus of Labeo rohita inhabiting the polluted Kshipra River, India. The river water contains heavy metals in this order: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Fe showed the highest accumulation in gills, liver, and gut, whereas Ni (gills and gut) and Cd (liver) were lowest accumulated. The superoxide dismutase (SOD) and catalase (CAT) were found to be increased significantly (p < 0.05) in the gills (SOD: 211%; CAT: 150%), liver (SOD: 447%; CAT: 304%), and gut (SOD: 98.11%; CAT: 58.69%) in comparison with the reference fish. However, glutathione S transferase (GST) showed significantly (p < 0.05) higher activity in the gills (25.5%) but lower activity in the liver (- 49.22%) and the gut (- 30.57%). Moreover, reduced glutathione (GSH) decreased significantly (p < 0.05) in the gills (- 46.66%), liver (- 33.20%), and gut (- 39.87%). Despite the active response of the antioxidant enzymes, the highest lipid peroxidation was observed in the liver (463%). The effect of heavy metals was also observed on the immunity of the fish, causing immunosuppression as evident by significantly (p < 0.05) lower values of acid phosphatase (- 50%), myeloperoxidase (- 48.33%), and nitric oxide synthase (- 50%) in serum. Histopathological findings showed gill lamellae shortening, hyperplasia, club-shaped lamellar tip in exposed gills and necrosis, vacuolization, and pyknosis in the exposed liver. Furthermore, polluted river water was also found to induce micronuclei (2.1%) and lobed nuclei (0.72%) in erythrocytes (0.65%). These results indicate the potential of heavy metal-induced oxidative stress and other forms of stress in inhabiting fish, highlighting the need to control the pollution of this river water.
Collapse
Affiliation(s)
- Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gouse M Shaik
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, USA
| | - Mehjbeen Javed
- Department of Science, T.R. Kanya Mahavidyalaya, Aligarh, India.
| |
Collapse
|
5
|
Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. FISH & SHELLFISH IMMUNOLOGY 2022; 131:244-256. [PMID: 36182025 DOI: 10.1016/j.fsi.2022.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of two probiotics namely Clostridium butyricum and Bacillus subtilis, and one prebiotic known as algae-sourced β-1,3 glucan, on the overall performances of grass turtles (Chinemys reevesii) juveniles. Growth performance, immune responses, enzymatic antioxidant activities, intestinal histomorphology, and disease resistance against the challenge with Aeromonas veronii were assessed. Two hundred and sixteen (216) juvenile turtles with an average initial weight of 106.35 ± 0.03 g were divided into four groups, each containing three replicates with 18 turtles per each replicate, which were fed a basic diet (control group, GD) and a basal diet supplemented with C. butyricum 1.0 × 108 CFU per kg (GA group), or with B. subtilis 1.0 × 108 CFU per kg (GB group) and with algal-sourced β-1,3-glucan 50 mg per kg (GC group), respectively. After the turtles had been fed for 60 d, 90 d, and 120 d of the experimental period, the growth performance and survival rate (SR), intestinal digestive enzyme, hepatic and intestinal antioxidant capacity, serum biochemical indexes, and immune performance were measured. The results showed that the weight gain rate and SR were significantly enhanced (P < 0.05) after fed probiotics and algae-sourced β-1,3-glucan in all test times;The pepsin, amylase, acid phosphatase, total antioxidant capacity, triglyceride, alkaline phosphatase, urea nitrogen, cholesterol, total protein, IgA, IgG, IgM at 120 d were significantly enhanced (P<0.05) after fed C. butyricum. The intestinal villi heights, widths, and the thickness of the muscle layer were significantly higher in groups GA, GB, and GC than those reared within the GD control group (P < 0.05). After injecting the challenge by A. veronii the survival rate of grass turtles in the GA group (75%) was significantly higher than the other three groups (P<0.05), while there was no significant difference between the GB and GC groups compared with the control GD group, respectively (P>0.05). Overall, these results indicated that dietary supplementation with probiotics or algae-sourced β-1,3 glucan, exhibited positive effects on C. reevesii. In particular, C. butyricum, showed the greatest improvements relating to growth, immune response, antioxidant activity, intestinal health, and disease resistance.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
7
|
Lactobacillus casei (IBRC-M 10,711) ameliorates the growth retardation, oxidative stress, and immunosuppression induced by malathion toxicity in goldfish ( Carassius auratus). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Probiotics can functionality improve fish wellbeing and are suggested as antioxidative agents to protect fish from xenobiotics toxicity. Herein, dietary Lactobacillus casei (IBRC-M 10,711) was included in the diets of goldfish (Carassius auratus) to protect against malathion toxicity. Fish (12.47 ± 0.06 g) were randomly allocated to six groups (triplicates), as follows: T1) control; T2) fish exposed to 50% of malathion 96 h LC50; T3) L. casei at 106 CFU/g diet; T4) L. casei at 107 CFU/g diet; T5) fish exposed to 50% of malathion 96 h LC50 + L. casei at 106 CFU/g diet; T6) fish exposed to 50% of malathion 96 h LC50 + L. casei at 107 CFU/g diet. After 60 days, goldfish fed T4 had the highest final body weight (FBW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among the groups (P < 0.05). However, the T2 group showed lower FBW, WG, and SGR and higher FCR than fish in T1 (P < 0.05). Fish in the T4 group had the highest blood total proteins, albumin, and globulin, while fish in T2 had the lowest levels (P < 0.05). Fish in the group T2 had the highest triglycerides, cholesterol, cortisol, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels in the blood, while fish fed T4 had the lowest values (P < 0.05). The superoxide dismutase (SOD) and catalase (CAT) showed the highest activities in T3 and T4 groups, and the lowest SOD was seen in the T2 group, whereas the lowest CAT was seen in the T2, T5, and T6 groups (P < 0.05). Fish in the T5 and T6 groups had higher glutathione peroxidase (GSH-Px) activities than fish in T1 and T2 groups but T3 and T4 groups showed the highest values (P < 0.05). T2 group had the highest malondialdehyde (MDA) level, while T3 and T4 groups had the lowest MDA level (P < 0.05). Blood immunoglobulin (Ig) and lysozyme activity were significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The alternative complement pathway (ACH50) was significantly higher in T2, T3, T4, T5, and T6 groups than in the T1 group (P < 0.05). Skin mucus Ig was significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The highest lysozyme activity, protease, and ACH50 in the skin mucus samples were in the T4 group, while the lowest values were in the T2 group (P < 0.05). In conclusion, dietary L. casei protects goldfish from malathion-induced growth retardation, oxidative stress, and immunosuppression.
Collapse
|
8
|
Effects of Dietary Enterococcus faecalis YFI-G720 on the Growth, Immunity, Serum Biochemical, Intestinal Morphology, Intestinal Microbiota, and Disease Resistance of Crucian Carp (Carassius auratus). FISHES 2022. [DOI: 10.3390/fishes7010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diseases of crucian carp (Carassius auratus) are closely related to intestinal parameters. Enterococcus faecalis has strong colonization ability in the intestinal tract, and produces natural antibiotics, bacteriocin, and other bacteriostatic substances, which can effectively inhibit some pathogenic bacteria and improve the intestinal microenvironment. This study aimed to assess the effects of E. faecalis YFI-G720 which was isolated from the intestinal of crucian carp on the growth, immunity, intestinal health, and disease resistance of crucian carp. Fish (48.16 ± 0.55 g) were fed four diets, commercial diet or diet containing E. faecalis at 105 CFU/g (EF1), 106 CFU/g (EF2), or 107 CFU/g (EF3) for 28 days. The results showed that supplementation of E. faecalis significantly improved the weight gain ratio (WGR) and the specific growth rate (SGR) compared with control group (p < 0.05). Intestinal mucosal epithelial cells in EF2 were intact and normal, but there was obvious vacuolation in CG. Compared with CG, serum C3 and IgM in EF2 were significantly increased at the end of the experiment (p < 0.05), and serum alkaline phosphatase was significantly higher in all experimental groups (p < 0.05). Among studied immune-related genes, expression was detected by qPCR, C3, IgM, and IL-1βwere upregulated in all experimental groups to varying degrees from 14 days, with highest expression in EF2 at 28 days. Intestinal microbiota structure analyzed through high-throughput sequencing, and the results showed that the relative abundance of Aeromonas and Acinetobacter decreased while Cetobacterium increased in all experimental groups, with the greatest changes in EF2. Challenge tests showed that fish fed E. faecalis were more resistant to Aeromonas veronii (p < 0.05). In conclusion, dietary E. faecalis YFI-G720 at 106 CFU/g can improve the health status, immune parameters, intestinal microbiota composition, and disease resistance of crucian carp.
Collapse
|
9
|
Kong Y, Li M, Shan X, Wang G, Han G. Effects of deltamethrin subacute exposure in snakehead fish, Channa argus: Biochemicals, antioxidants and immune responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111821. [PMID: 33360593 DOI: 10.1016/j.ecoenv.2020.111821] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
To evaluate the effects on biochemicals, antioxidants, immune responses and disease resistance of the snakehead fish, following exposure to deltamethrin at 0.061, 0.121, 0.242, 0.485 and 0.970 μg/L. After 28 d, the biochemical, the levels of antioxidant enzymes and immune enzymes in liver, spleen, kidney and intestine were negatively related to the concentrations of deltamethrin exposure. Likewise, the survival rates of the fish after 7 d challenge with Aeromonas veronii were negatively related. The levels of IL-1β, IL-8, TNF-α, Hsp70 and malondialdehyde in liver, spleen, kidney and intestine were positively connected to the concentrations of deltamethrin exposure. Results demonstrated that environmentally relevant concentrations (0.121, 0.242, 0.485 and 0.970 μg/L) inhibited the biochemicals, antioxidants and immune responses and disease resistance of snakehead fish.
Collapse
Affiliation(s)
- Yidi Kong
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agriculture University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agriculture University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agriculture University, Changchun 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Mohammadiazarm H, Maniat M. Lacticaseibacillus casei in Diet of Juvenile Convict Cichlid Fish (Amatitlania nigrofasciata): Evaluating Growth Performance, Digestive Enzyme Activities, Immune Responses, and Stress Resistance. Probiotics Antimicrob Proteins 2020; 13:647-654. [PMID: 33169342 DOI: 10.1007/s12602-020-09718-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
In this study, growth performance, body composition, digestive enzymes activity, mucosal and immunological parameters, cultivable bacterial populations, and stress resistance were investigated in juvenile convict cichlid fish (Amatitlania nigrofasciata) that received a dietary supplement containing 0 (control), 5 × 106 (LC1), 5 × 107 (LC2), and 5 × 108 CFU g-1 diet (LC3) Lacticaseibacillus casei PB-LC39. Two hundred and forty fish (2.44 ± 0.04 g) were assigned to twelve experimental aquariums and feed ad libitum three times a day for 8 weeks. After final sampling, final body weight, percentage of weight gain (WG %), specific growth rate (SGR), food conversion ratio (FCR), and protein content of whole-body composition were significantly higher (P < 0.05) in fish fed LC1 diet than other treatments. Total protease, amylase, and lipase activities were also significantly higher (P < 0.05) in fish fed LC1 diet than other groups. Total protein from serum and mucus, lysozyme activity, total immunoglobulin (Ig), and serum globulin were significantly increased (P < 0.05) in fish fed LC1 diet compared with other groups. Moreover, total counts of lactic acid bacteria (LAB) in fish gut were significantly higher (P < 0.05) by different levels of L. casei PB-LC39 than the control group. Recovery rates of fish fed the probiotic cells, after an air-dive test, was significantly increased (P < 0.05) compared with the control group. Therefore, the results showed that L. casei PB-LC39 resulted in improving growth, health status, and stress resistance of fish during the rearing of juvenile convict cichlid fish.
Collapse
Affiliation(s)
- Hamid Mohammadiazarm
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran.
| | - Milad Maniat
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khuzestan, Iran
| |
Collapse
|
11
|
Chen M, Chen XQ, Tian LX, Liu YJ, Niu J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108791. [PMID: 32413493 DOI: 10.1016/j.cbpc.2020.108791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/18/2022]
Abstract
This study was to explore the impacts of water-soluble chitosan and mixed probiotics on growth performance, intestinal short-chain fatty acids (SCFAs) and immunity and ammonia resistance in Litopenaeus vannamei. Shrimp were fed one of four experimental diets including basal diet (CON), 0.10% water-soluble chitosan diet (WSC), 0.30% mixed probiotics (MP) and 0.10% water-soluble chitosan +0.30% mixed probiotics (SYN) for 8 weeks. Results showed shrimp fed with dietary MP and SYN diets could significantly improve growth performance and feed utilization in comparison with those of shrimp fed with CON diet (P < 0.05). Acetic acid content was significantly higher in shrimp fed with all supplemented diets compared to that in shrimp fed with CON diet (P < 0.05). Compared to shrimp fed with CON diet, dietary WSC and MP significantly influenced the contents and/or activities of aspartate aminotransferase (AST), total protein (TP), superoxide dismutase (SOD), lysozyme (LZM) in serum, SOD, malondialdehyde (MDA), acid phosphatase (ACP) in hepatopancreas and SOD and MDA in intestine. In addition, the gene expression levels of prophenoloxidase (proPO), penaiedin 3a (Pen-3a), crustin (Crustin), serine proteinase (SP), GPX and SOD in hepatopancreas, were significantly upregulated compared to those in CON diet at some time points (P < 0.05). Significantly higher survival rate in all supplemented diets were observed after ammonia challenge (P < 0.05). Therefore, the above results indicated dietary WSC and MP or SYN could enhance intestinal SCFAs content, stimulated antioxidant capacity and immune response, and increase the ammonia resistance of Litopenaeus vannamei. Besides, the growth performance was also improved by dietary MP and SYN.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xian-Quan Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|