1
|
Tang W, Zheng K, Sun S, Zhong B, Luo Z, Yang J, Jia L, Yang L, Shang W, Jiang X, Lyu Z, Chen J, Chen G. Characteristics and Genomic Localization of Nurse Shark ( Ginglymostoma cirratum) IgNAR. Int J Mol Sci 2024; 25:12879. [PMID: 39684588 DOI: 10.3390/ijms252312879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
The variable domain of IgNAR shows great potential in biological medicine and therapy. IgNAR has been discovered in sharks and rays, with the nurse shark (Ginglymostoma cirratum) IgNARs being the most extensively studied among sharks. Despite being identified in nurse sharks over 30 years ago, the characteristics and genomic localization of IgNAR remain poorly defined, with significant gaps even in the latest released genome data. In our research, we localized the IgNAR loci in the nurse shark genome and resolved the previously missing regions. We identified three IgNAR loci, designated GcIgNAR1, GcIgNAR2, and GcIgNAR3, with only GcIgNAR1 and GcIgNAR2 being expressed. GcIgNAR1 and GcIgNAR2 belong to type I and type II IgNARs, respectively, and each exhibits several different isoforms. Most nurse shark IgNARs possess five constant domains. However, we found transcripts of GcIgNAR1 and GcIgNAR2 lacking two constant domains, C4 and C5, which differ from the IgNAR of the whitespotted bamboo shark. The protein structures of GcIgNAR1 and GcIgNAR2, generated by AlphaFold3, confirmed the accuracy of the IgNAR loci we identified. Our findings advance scientific understanding of IgNAR in nurse sharks and facilitate future research and medical applications.
Collapse
Affiliation(s)
- Wenjie Tang
- School of Life Sciences, Central South University, Changsha 410031, China
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kaixi Zheng
- School of Life Sciences, Central South University, Changsha 410031, China
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengjie Sun
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Bo Zhong
- School of Life Sciences, Central South University, Changsha 410031, China
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lan Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenna Shang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
2
|
Xu M, Zhao Z, Deng P, Sun M, Chiu CKC, Wu Y, Wang H, Bi Y. Functional Divergence in the Affinity and Stability of Non-Canonical Cysteines and Non-Canonical Disulfide Bonds: Insights from a VHH and VNAR Study. Int J Mol Sci 2024; 25:9801. [PMID: 39337289 PMCID: PMC11432006 DOI: 10.3390/ijms25189801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Single-domain antibodies, including variable domains of the heavy chains of heavy chain-only antibodies (VHHs) from camelids and variable domains of immunoglobulin new antigen receptors (VNARs) from cartilaginous fish, show the therapeutic potential of targeting antigens in a cytosol reducing environment. A large proportion of single-domain antibodies contain non-canonical cysteines and corresponding non-canonical disulfide bonds situated on the protein surface, rendering them vulnerable to environmental factors. Research on non-canonical disulfide bonds has been limited, with a focus solely on VHHs and utilizing only cysteine mutations rather than the reducing agent treatment. In this study, we examined an anti-lysozyme VNAR and an anti-BC2-tag VHH, including their non-canonical disulfide bond reduced counterparts and non-canonical cysteine mutants. Both the affinity and stability of the VNARs and VHHs decreased in the non-canonical cysteine mutants, whereas the reduced-state samples exhibited decreased thermal stability, with their affinity remaining almost unchanged regardless of the presence of reducing agents. Molecular dynamics simulations suggested that the decrease in affinity of the mutants resulted from increased flexibility of the CDRs, the disappearance of non-canonical cysteine-antigen interactions, and the perturbation of other antigen-interacting residues caused by mutations. These findings highlight the significance of non-canonical cysteines for the affinity of single-domain antibodies and demonstrate that the mutation of non-canonical cysteines is not equivalent to the disruption of non-canonical disulfide bonds with a reducing agent when assessing the function of non-canonical disulfide bonds.
Collapse
Affiliation(s)
- Mingce Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Penghui Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsi Sun
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | | | - Yujie Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Hao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Yunchen Bi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
3
|
Liu C, Chen Y, Lin H, Cao L, Wang K, Wang X, Sui J. The construction of ofloxacin detection in fish matrix based on a shark-derived single-domain antibody. Anal Chim Acta 2024; 1319:342986. [PMID: 39122284 DOI: 10.1016/j.aca.2024.342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Due to the serious issue of ofloxacin (OFL) abuse, there is an increasingly urgent need for accurate and rapid detection of OFL. Immunoassay has become the "golden method" for detecting OFL in complex matrix beneficial to its applicability for a large-scale screening, rapidity, and simplicity. However, traditional antibodies used in immunoassay present challenges such as time-consuming preparation, unstable sensitivity and specificity, and difficulty in directional evolution. In this paper, we successfully developed an OFL detection method based on a shark-derived single-domain antibody (ssdAb) to address these issues. RESULTS Using phage display technology and a heterologous expression system, OFL-specific clones 1O11, 1O13, 1O17, 1O19, 1O21, and 2O26 were successfully isolated and expressed in soluble form. Among all OFL-specific ssdAbs, the 1O17 ssdAb exhibited the highest binding affinity to OFL in a concentration-dependence manner. The limit of detection (IC10) of 1O17 ssdAb was calculated as 0.34 ng/mL with a detection range of 3.40-1315.00 ng/mL, and its cross reactivity with other analogs was calculated to be less than 5.98 %, indicating high specificity and sensitivity. Molecular docking results revealed that 100Trp and 101Arg located in the CDR3 region of 1O17 ssdAb were crucial for OFL binding. In fish matrix performance tests, the 1O17 ssdAb did not demonstrate severe matrix interference in OFL-negative fish matrix, achieving satisfactory recovery rates ranging from 83.04 % to 108.82 % with high reproducibility. SIGNIFICANCE This research provides a new and efficient OFL detection recognition element with significant potential in immunoassay applications, broadening the application scenarios of ssdAbs. It offers valuable insights into the structure-activity relationship between ssdAbs and small molecules, laying a theoretical foundation for the further directional modification and maturation of ssdAbs in subsequent applications.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore
| | - Yuan Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China.
| |
Collapse
|
4
|
Li W, Chen M, Wang T, Feng X, Jiang X, Dong X, Zhang H, Tang X, Tian R, Zhang Y, Li Z. Characterization and humanization of VNARs targeting human serum albumin from the whitespotted bamboo shark (Chiloscyllium plagiosum). Int J Biol Macromol 2024; 273:133082. [PMID: 38878923 DOI: 10.1016/j.ijbiomac.2024.133082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The Shark-derived immunoglobulin new antigen receptors (IgNARs) have gained increasing attention for their high solubility, exceptional thermal stability, and intricate sequence variation. In this study, we immunized whitespotted bamboo shark (Chiloscyllium plagiosum) to create phage display library of variable domains of IgNAR (VNARs) for screening against Human Serum Albumin (HSA), a versatile vehicle in circulation due to its long in vivo half-life. We identified two HSA-binding VNAR clones, 2G5 and 2G6, and enhanced their expression in E. coli with the FKPA chaperone. 2G6 exhibited a strong binding affinity of 13 nM with HSA and an EC50 of 1 nM. In vivo study with a murine model further provided initial validation of 2G6's ability to prolong circulation time by binding to HSA. Additionally, we employed computational molecular docking to predict the binding affinities of both 2G6 and its humanized derivative, H2G6, to HSA. Our analysis unveiled that the complementarity-determining regions (CDR1 and CDR3) are pivotal in the antigen recognition process. Therefore, our study has advanced the understanding of the potential applications of VNARs in biomedical research aimed at extending drug half-life, holding promise for future therapeutic and diagnostic progressions.
Collapse
Affiliation(s)
- Weijie Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China; School of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China.
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China
| | - Xin Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, Fujian 361102, China
| | - Xierui Jiang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Xiaoning Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huan Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Xixiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China.
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, Fujian 361102, China.
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China.
| |
Collapse
|
5
|
Wang Z, Xie X, He Z, Sun Z, Zhang Y, Mao F, Pei H, Zhang S, Hammock BD, Liu X. Development of Shark Single Domain Antibodies Specific for Human α-Fetoprotein and the Multimerization Strategy in Serum Detection. Anal Chem 2024; 96:4242-4250. [PMID: 38408370 DOI: 10.1021/acs.analchem.3c05675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.
Collapse
Affiliation(s)
- Zheming Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Liu C, Lin H, Cao L, Wang K, Sui J. Characterization, specific recognition, and the performance in fish matrix of a shark-derived single-domain antibody against enrofloxacin. Talanta 2023; 265:124852. [PMID: 37385191 DOI: 10.1016/j.talanta.2023.124852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
The third generation of genetic engineering antibodies, single-domain antibodies, have been widely reported as potential biomaterials in recognizing small molecular hazards. In this study, a shark-derived single-domain antibody was used as the recognition element for the first time to detect enrofloxacin (ENR), one of the most representative hazards in aquaculture. An ENR-specific clone named 2E6 was isolated by phage display technology. Experimental results proved that 2E6 ssdAb showed high affinity to ENR-PEI complete antigen, with the highest OD450 value of 1.348 in binding ELISA. Through icELISA, it was determined that the IC50 of 2E6 ssdAb to ENR was 19.230 ng/mL, while the IC10 was 0.975 ng/mL, with rare recognition to other fluoroquinolones, which showed high sensitivity and specificity to ENR. The 2E6 ssdAb also performed excellently in fish matrix immunoassay. Results showed that the ENR-negative fish matrix did not seriously interfere with the recognition of 2E6 ssdAb to ENR-OVA, with the matrix index between 4.85% and 11.75%, while the results of icELISA in ENR-spiked fish matrix showed that 2E6 ssdAb could recognize the target ENR in different ENR-spiked concentrations of the fish matrix (10-1000 ng/mL), with the recovery between 89.30% and 126.38% and the RSD between 1.95% and 9.83%. This study broadens the application scenario of shark-derived single-domain antibodies as small molecule recognition biomaterials, providing a new recognition element on ENR detection for immunoassay.
Collapse
Affiliation(s)
- Chang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China.
| |
Collapse
|
7
|
Jia L, Wang Y, Shen Y, Zhong B, Luo Z, Yang J, Chen G, Jiang X, Chen J, Lyu Z. IgNAR characterization and gene loci identification in whitespotted bamboo shark (Chiloscyllium plagiosum) genome. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108535. [PMID: 36649810 DOI: 10.1016/j.fsi.2023.108535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Single domain antibodies (sdAb) are promising candidates in cancer and anti-virus biotherapies for their unique structure characters. Though VHH and IgNAR have been discovered in camelidae and nurse shark (Ginlymostoma cirratum) respectively serval decades ago, expense of these large animals still limits the studies and applications of sdAb. Recently, IgNAR has been found in whitespotted bamboo shark (Chiloscyllium plagiosum), a small-sized sharks, while how to characterize and achieved the IgNAR of whitespotted bamboo shark is still unclear. In our research, we identified four IgNAR coding gene loci in whitespotted bamboo shark chromosome 44 (NC_057753.1), and primers were designed for single domain variable regions of IgNAR (VNAR) libraries preparation. Following sequencing results revealed that all plasmids constructed with our predicted VNAR libraries contained VNAR coding sequences, which confirmed the specificities of our primers in VNAR amplification. To our surprise, ≥90% VNAR sequences were encoded by IgNAR1, which suggests IgNAR1 is the most active IgNAR transcription locus in whitespotted bamboo shark. Interestingly, we found IgNAR(ΔC2-C3) were encoded by IgNAR3. Our findings gave a new sight of whitespotted bamboo shark IgNAR, which would broad the way of IgNAR studies and applications in biotherapies.
Collapse
Affiliation(s)
- Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Yu Wang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| | - Yajun Shen
- Economic Development Bureau of Shaoxing Binhai New Area Management Committee, 312090, Shaoxing, China.
| | - Bo Zhong
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Guodong Chen
- Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China; Zhejiang Q-peptide Biotechnology Co., Ltd, 312366, Shaoxing, China.
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| |
Collapse
|
8
|
Liu C, Lin H, Cao L, Wang K, Sui J. Research progress on unique paratope structure, antigen binding modes, and systematic mutagenesis strategies of single-domain antibodies. Front Immunol 2022; 13:1059771. [PMID: 36479130 PMCID: PMC9720397 DOI: 10.3389/fimmu.2022.1059771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Single-domain antibodies (sdAbs) showed the incredible advantages of small molecular weight, excellent affinity, specificity, and stability compared with traditional IgG antibodies, so their potential in binding hidden antigen epitopes and hazard detection in food, agricultural and veterinary fields were gradually explored. Moreover, its low immunogenicity, easy-to-carry target drugs, and penetration of the blood-brain barrier have made sdAbs remarkable achievements in medical treatment, toxin neutralization, and medical imaging. With the continuous development and maturity of modern molecular biology, protein analysis software and database with different algorithms, and next-generation sequencing technology, the unique paratope structure and different antigen binding modes of sdAbs compared with traditional IgG antibodies have aroused the broad interests of researchers with the increased related studies. However, the corresponding related summaries are lacking and needed. Different antigens, especially hapten antigens, show distinct binding modes with sdAbs. So, in this paper, the unique paratope structure of sdAbs, different antigen binding cases, and the current maturation strategy of sdAbs were classified and summarized. We hope this review lays a theoretical foundation to elucidate the antigen-binding mechanism of sdAbs and broaden the further application of sdAbs.
Collapse
|
9
|
Identification of Anti-TNFα VNAR Single Domain Antibodies from Whitespotted Bambooshark (Chiloscyllium plagiosum). Mar Drugs 2022; 20:md20050307. [PMID: 35621957 PMCID: PMC9146136 DOI: 10.3390/md20050307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor necrosis factor α (TNFα), an important clinical testing factor and drug target, can trigger serious autoimmune diseases and inflammation. Thus, the TNFα antibodies have great potential application in diagnostics and therapy fields. The variable binding domain of IgNAR (VNAR), the shark single domain antibody, has some excellent advantages in terms of size, solubility, and thermal and chemical stability, making them an ideal alternative to conventional antibodies. This study aims to obtain VNARs that are specific for mouse TNF (mTNF) from whitespotted bamboosharks. After immunization of whitespotted bamboosharks, the peripheral blood leukocytes (PBLs) were isolated from the sharks, then the VNAR phage display library was constructed. Through phage display panning against mTNFα, positive clones were validated through ELISA assay. The affinity of the VNAR and mTNFα was measured using ELISA and Bio-Layer Interferometry. The binding affinity of 3B11 VNAR reached 16.7 nM. Interestingly, one new type of VNAR targeting mTNF was identified that does not belong to any known VNAR type. To understand the binding mechanism of VNARs to mTNFα, the models of VNARs-mTNFα complexes were predicted by computational modeling combining HawkDock and RosettaDock. Our results showed that four VNARs’ epitopes overlapped in part with that of mTNFR. Furthermore, the ELISA assay shows that the 3B11 potently inhibited mTNFα binding to mTNFR. This study may provide the basis for the TNFα blockers and diagnostics applications.
Collapse
|
10
|
Khalid Z, Chen Y, Yu D, Abbas M, Huan M, Naz Z, Mengist HM, Cao MJ, Jin T. IgNAR antibody: Structural features, diversity and applications. FISH & SHELLFISH IMMUNOLOGY 2022; 121:467-477. [PMID: 35077867 DOI: 10.1016/j.fsi.2022.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In response to the invasion of exogenous microorganisms, one of the defence strategies of the immune system is to produce antibodies. Cartilaginous fish is among those who evolved the earliest humoral immune system that utilizes immunoglobulin-type antibodies. The cartilaginous fish antibodies fall into three categories: IgW, IgM, and IgNAR. The shark Immunoglobulin Novel Antigen Receptor (IgNAR) constitutes disulfide-bonded dimers of two protein chains, similar to the heavy chain of mammalian IgGs. Shark IgNAR is the primary antibody of a shark's adaptive immune system with a serum concentration of 0.1-1.0 mg/mL. Its structure comprises of one variable (V) domain (VNAR) and five constant (C1 -C5) domains in the secretory form. VNARs are classified into several subclasses based on specific properties such as the quantity and position of additional non-canonical cysteine (Cys) residues in the VNAR. The VDJ recombination in IgNAR comprises various fragments; one variable component, three diverse sections, one joining portion, and a solitary arrangement of constant fragments framed in each IgNAR gene cluster. The re-arrangement happens just inside this gene cluster bringing about a VD1D2D3J segment. Therefore, four re-arrangement procedures create the entire VNAR space. IgNAR antibody can serve as an excellent diagnostic, therapeutic, and research tool because it has a smaller size, high specificity for antigen-binding, and perfect stability. The domain characterization, structural features, types, diversity and therapeutic applications of IgNAR molecules are highlighted in this review. It would be helpful for further research on IgNAR antibodies acting as an essential constituent of the adaptive immune system and a potential therapeutic agent.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yulei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Du Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Misbah Abbas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ma Huan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zara Naz
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hylemariam Mihiretie Mengist
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|
11
|
Wei L, Wang M, Xiang H, Jiang Y, Gong J, Su D, Al Azad MAR, Dong H, Feng L, Wu J, Chan LL, Yang N, Shi J. Bamboo Shark as a Small Animal Model for Single Domain Antibody Production. Front Bioeng Biotechnol 2021; 9:792111. [PMID: 34957081 PMCID: PMC8692893 DOI: 10.3389/fbioe.2021.792111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
The development of shark single domain antibodies (sdAbs) is hindered by the high cost and tediousness of large-sized shark farming. Here, we demonstrated white-spotted bamboo sharks (Chiloscyllium plagiosum) being cultivated commercially as a promising small animal model to produce sdAbs. We found that immunoglobulin new antigen receptor (IgNAR) presented in bamboo shark genome, transcriptome, and plasma. Four complete IgNAR clusters including variable domains (vNARs) were discovered in the germline, and the Variable–Joining pair from IgNAR1 cluster was dominant from immune repertoires in blood. Bamboo sharks developed effective immune responses upon green fluorescent protein (GFP), near-infrared fluorescent protein iRFP713, and Freund’s adjuvant immunization revealed by elevated lymphocyte counts and antigen specific IgNAR. Before and after immunization, the complementarity determining region 3 (CDR3) of IgNAR were the major determinant of IgNAR diversity revealed by 400-bp deep sequencing. To prove that bamboo sharks could produce high-affinity IgNAR, we isolated anti-GFP and anti-iRFP713 vNARs with up to 0.3 and 3.8 nM affinities, respectively, from immunized sharks. Moreover, we constructed biparatopic vNARs with the highest known affinities (20.7 pM) to GFP and validated the functions of anti-GFP vNARs as intrabodies in mammalian cells. Taken together, our study will accelerate the discovery and development of bamboo shark sdAbs for biomedical industry at low cost and easy operation.
Collapse
Affiliation(s)
- Likun Wei
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Jiang
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jinhua Gong
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Su
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - M A R Al Azad
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongming Dong
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Feng
- Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Complete Genomics Inc., San Jose, CA, United States
| | - Jiahai Shi
- State Key Laboratory of Marine Pollution, Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Shen Zhen Research Institute, City University of Hong Kong, Shen Zhen, China.,Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China.,Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Shark New Antigen Receptor (IgNAR): Structure, Characteristics and Potential Biomedical Applications. Cells 2021; 10:cells10051140. [PMID: 34066890 PMCID: PMC8151367 DOI: 10.3390/cells10051140] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Shark is a cartilaginous fish that produces new antigen receptor (IgNAR) antibodies. This antibody is identified with a similar human heavy chain but dissimilar sequences. The variable domain (VNAR) of IgNAR is stable and small in size, these features are desirable for drug discovery. Previous study results revealed the effectiveness of VNAR as a single molecule or a combination molecule to treat diseases both in vivo and in vitro with promising clinical applications. We showed the first evidence of IgNAR alternative splicing from spotted bamboo shark (Chiloscyllium plagiosum), broadening our understanding of the IgNARs characteristics. In this review, we summarize the discoveries on IgNAR with a focus on its advantages for therapeutic development based on its peculiar biochemistry and molecular structure. Proper applications of IgNAR will provide a novel avenue to understand its special presence in cartilaginous fishes as well as designing a number of drugs for undefeated diseases.
Collapse
|
13
|
Oreste U, Ametrano A, Coscia MR. On Origin and Evolution of the Antibody Molecule. BIOLOGY 2021; 10:biology10020140. [PMID: 33578914 PMCID: PMC7916673 DOI: 10.3390/biology10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary Like many other molecules playing vital functions in animals, the antibody molecule possesses a complex structure with distinctive features. The structure of the basic unit, i.e., the immunoglobulin domain of very ancient origin is substantially simple. However, high complexity resides in the types and numbers of the domains composing the whole molecule. The emergence of the antibody molecule during evolution overturned the effectiveness of the organisms’ defense system. The particular organization of the coding genes, the mechanisms generating antibody diversity, and the plasticity of the overall protein structure, attest to an extraordinary successful evolutionary history. Here, we attempt to trace, across the evolutionary scale, the very early origins of the most significant features characterizing the structure of the antibody molecule and of the molecular mechanisms underlying its major role in recognizing an almost unlimited number of pathogens. Abstract The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins.
Collapse
Affiliation(s)
- Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
| | - Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Correspondence: ; Tel.: +39-081-6132556
| |
Collapse
|
14
|
Matz H, Munir D, Logue J, Dooley H. The immunoglobulins of cartilaginous fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103873. [PMID: 32979434 PMCID: PMC7708420 DOI: 10.1016/j.dci.2020.103873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/12/2023]
Abstract
Cartilaginous fishes, comprising the chimeras, sharks, skates, and rays, split from the common ancestor with other jawed vertebrates approx. 450 million years ago. Being the oldest extant taxonomic group to possess an immunoglobulin (Ig)-based adaptive immune system, examination of this group has taught us much about the evolution of adaptive immunity, as well as the conserved and taxon-specific characteristics of Igs. Significant progress has been made analyzing sequences from numerous genomic and transcriptomic data sets. These findings have been supported by additional functional studies characterizing the Igs and humoral response of sharks and their relatives. This review will summarize what we have learned about the genomic organization, protein structure, and in vivo function of these Ig isotypes in cartilaginous fishes and highlight the areas where our knowledge is still lacking.
Collapse
Affiliation(s)
- Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Danish Munir
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
15
|
Mitchell CD, Criscitiello MF. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. FISH & SHELLFISH IMMUNOLOGY 2020; 107:435-443. [PMID: 33161090 DOI: 10.1016/j.fsi.2020.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 05/05/2023]
Abstract
Cartilaginous fish are located at a pivotal point in phylogeny where the adaptive immune system begins to resemble that of other, more-derived jawed vertebrates, including mammals. For this reason, sharks and other cartilaginous fish are ideal models for studying the natural history of immunity. Insights from such studies may include distinguishing the (evolutionarily conserved) fundamental aspects of adaptive immunity from the (more recent) accessory. Some lymphoid tissues of sharks, including the thymus and spleen, resemble those of mammals in both appearance and function. The cartilaginous skeleton of sharks has no bone marrow, which is also absent in bony fish despite calcified bone, but cartilaginous fish have other Leydig's and epigonal organs that function to provide hematopoiesis analogous to mammalian bone marrow. Conserved across all vertebrate phylogeny in some form is gut-associated lymphoid tissues, or GALT, which is seen from agnathans to mammals. Though it takes many forms, from typhlosole in lamprey to Peyer's patches in mammals, the GALT serves as a site of antigen concentration and exposure to lymphocytes in the digestive tract. Though more complex lymphoid organs are not present in agnathans, they have several primitive tissues, such as the thymoid and supraneural body, that appear to serve their variable lymphocyte receptor-based adaptive immune system. There are several similarities between the adaptive immune structures in cartilaginous and bony fish, such as the thymus and spleen, but there are mechanisms employed in bony fish that in some instances bridge their adaptive immune systems to that of tetrapods. This review summarizes what we know of lymphoid tissues in cartilaginous fishes and uses these data to compare primary and secondary tissues in jawless, cartilaginous, and bony fishes to contextualize the early natural history of vertebrate mucosal immune tissues.
Collapse
Affiliation(s)
- Christian D Mitchell
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, 77807, USA.
| |
Collapse
|