1
|
Elkader HTAEA, Al-Shami AS. Acetylcholinesterase and dopamine inhibition suppress the filtration rate, burrowing behaviours, and immunological responses induced by bisphenol A in the hemocytes and gills of date mussels, Lithophaga lithophaga. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106971. [PMID: 38843741 DOI: 10.1016/j.aquatox.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Bisphenol A (BPA), a common industrial chemical with estrogenic activity, has recently gained attention due to its well-documented negative effects on humans and other organisms in the environment. The potential immunotoxicity and neurotoxicity of BPA remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA on a series of behaviours, immune responses, oxidative stress, neural biomarkers, histology, and the ultrastructure of gills were investigated in the date mussel, Lithophaga lithophaga. After 28 days of exposure to 0.25, 1, 2, and 5 µg/L BPA, hemolymphs from controls and exposed date mussels were collected, and the effects of BPA on immunological parameters were evaluated. Moreover, oxidative stress and neurochemical levels were measured in the gills of L. lithophaga. BPA reduced filtration rates and burrowing behaviour, whereas a 2 µg/L BPA resulted in an insignificant increase after 24 h. The exposure of date mussels to BPA significantly increased total hemocyte counts, a significant reduction in the diameter and phagocytosis of hemocytes, as well as gill lysozyme level. BPA increased lipid peroxidation levels and SOD activity in gills exposed to 2 and 5 µg/L BPA, but decreased GSH levels and SOD activity in 0.25 and 1 µg/L BPA-treated date mussels. Dose-dependent dynamics were observed in the inhibition of acetylcholinesterase activity and dopamine levels. Histological and scanning electron microscope examination revealed cilia erosion, necrosis, inflammation, and hyperplasia formation in the gills. Overall, our findings suggest a relationship between BPA exposure and changes in the measured immune parameters, oxidative stress, and neurochemical disturbances, which may be factored into the mechanisms underlying BPA toxicity in marine molluscs, providing a scientific foundation for marine BPA risk assessment and indicating immunosuppression in BPA-exposed date mussels.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Jiao C, Ruan J, Sun W, Zhang X, Liu X, Sun G, Liu C, Sun C, Tian X, Yang D, Chen L, Wang Z. Molecular characterization, expression and antibacterial function of a macin, HdMac, from Haliotis discus hannai. J Invertebr Pathol 2024; 204:108113. [PMID: 38631559 DOI: 10.1016/j.jip.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.
Collapse
Affiliation(s)
- Chunli Jiao
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264003, PR China
| | - Wei Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xinze Zhang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiaobo Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Guodong Sun
- Tianjin Xiqing District Agriculture and Rural Development Service Center, Tianjin 300380, PR China
| | - Caili Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Chunxiao Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Lizhu Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| | - Zhongquan Wang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| |
Collapse
|
3
|
Tang Y, Han Y, Zhang W, Yu Y, Huang L, Zhou W, Shi W, Tian D, Liu G. Bisphenol A and microplastics weaken the antimicrobial ability of blood clams by disrupting humoral immune responses and suppressing hemocyte chemotactic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119497. [PMID: 35594997 DOI: 10.1016/j.envpol.2022.119497] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Robust antimicrobial capability is crucial for marine organisms survival in complex ocean environments. Although the detrimental impacts of emergent pollutants on cellular immune response of marine bivalve mollusks were increasingly documented, the effects of bisphenol A (BPA) and microplastics (MPs) on humoral immune response and hemocyte chemotactic activity remain unclear. Therefore, in this study, the toxicities of BPA and MPs, alone or in combination, to the antimicrobial ability, humoral immune response, and hemocyte chemotactic activity were investigated in the blood clam Tegillarca granosa. Our data demonstrated that exposure of blood clams to BPA, MPs, and BPA-MPs for 2 weeks lead to significant reductions in their survival rates upon pathogenic bacterial challenge, indicating evident impairment of antimicrobial ability. Compared to control, the plasma of pollutant-incubated blood clams exhibited significantly less antimicrobial activity against the growth of V. harveyi, suggesting significant reduction in humoral immune effectors including defensin, lysozyme (LZM), and lectin. Moreover, hemocytes migration across the polycarbonate membrane to the serum containing chamber was markedly arrested by 2-week exposure to BPA, MPs, and BPA-MPs, suggesting a hampered chemotactic activity. In addition, the intracellular contents of ROS and protein carbonyl in hemocytes were markedly induced whereas the expression levels of key genes from the MAPK and actin cytoskeleton regulation pathways were significantly suppressed upon exposure. In this study, it was also found that BPA-MP coexposure was significantly more toxic than single exposures. In summary, our findings revealed that exposure to the pollutants tested possibly impair the antimicrobial ability of blood clam through (1) reducing the inhibitory effect of plasma on bacterial growth, the contents of humoral immune effectors, and the chemotactic activity of hemocytes, (2) interrupting IL-17 activation of MAPK signal pathway, (3) inducing intracellular ROS, elevating protein carbonylation levels, and disrupting actin cytoskeleton regulation in hemocytes.
Collapse
Affiliation(s)
- Yu Tang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weixia Zhang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yihan Yu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lin Huang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
4
|
Hein MJA, Kvansakul M, Lay FT, Phan TK, Hulett MD. Defensin-lipid interactions in membrane targeting: mechanisms of action and opportunities for the development of antimicrobial and anticancer therapeutics. Biochem Soc Trans 2022; 50:423-437. [PMID: 35015081 PMCID: PMC9022979 DOI: 10.1042/bst20200884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
Defensins are a class of host defence peptides (HDPs) that often harbour antimicrobial and anticancer activities, making them attractive candidates as novel therapeutics. In comparison with current antimicrobial and cancer treatments, defensins uniquely target specific membrane lipids via mechanisms distinct from other HDPs. Therefore, defensins could be potentially developed as therapeutics with increased selectivity and reduced susceptibility to the resistance mechanisms of tumour cells and infectious pathogens. In this review, we highlight recent advances in defensin research with a particular focus on membrane lipid-targeting in cancer and infection settings. In doing so, we discuss strategies to harness lipid-binding defensins for anticancer and anti-infective therapies.
Collapse
Affiliation(s)
- Matthew J. A. Hein
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Fung T. Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| |
Collapse
|
5
|
The Functions of β-Defensin in Flounder ( Paralichthys olivaceus): Antibiosis, Chemotaxis and Modulation of Phagocytosis. BIOLOGY 2021; 10:biology10121247. [PMID: 34943162 PMCID: PMC8698591 DOI: 10.3390/biology10121247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary The study identified a new spliced isoform of anionic β-defensin from flounder (Paralichthys olivaceus, fBD) and examined its antibiosis, chemotaxis and modulation of phagocytosis. It also analyzed the contributions of fBD to the antimicrobial activity of extracellular traps (ETs). The analyses found that an anionic β-defensin in fish possesses strong bacteriostatic ability in line with that of cationic defensins and also plays an important role in immune response. This study provides new insights into the biological function of anionic defensins, which can serve as one of the important effectors in extracellular traps and contribute to the immune response. Abstract Most defensins are cationic antimicrobial peptides with broad-spectrum killing activity against bacteria, fungi and enveloped viruses. However, it should be recognized that there are some non-cationic β-defensins in organisms, which need to be further studied. In this study, a new spliced isoform of anionic β-defensin from flounder (Paralichthys olivaceus, fBD) was identified, and its antibiosis, chemotaxis and modulation of phagocytosis were examined. In addition, the contributions of fBD to the antimicrobial activity of extracellular traps (ETs) were also analyzed. The recombinant fBD (rfBD) could effectively inhibit the growth of Gram-positive bacteria (S. aureus, Micrococcus luteus) and Gram-negative bacteria (E. coli, V. alginolyticus, V. anguillarum). An indirect immunofluorescence assay showed that the fBD was co-localized in the extracellular traps released by the leukocytes. When the ETs were blocked with antibodies against rfBD, the proliferation of S. aureus and E. coli incubated with ETs tended to increase compared with that in the control group. In addition, the results obtained by flow cytometry showed that the rfBD could significantly chemoattract leukocytes and increase phagocytic activity in vitro. In conclusion, this study provides new insights into the biological function of anionic defensins, which can serve as one of the important effectors in extracellular traps and as a bridge between innate and adaptive immunity in teleosts.
Collapse
|
6
|
Huang J, Yang X, Wang A, Huang C, Tang H, Zhang Q, Fang Q, Yu Z, Liu X, Huang Q, Zhou R, Li L. Pigs Overexpressing Porcine β-Defensin 2 Display Increased Resilience to Glaesserella parasuis Infection. Antibiotics (Basel) 2020; 9:antibiotics9120903. [PMID: 33327385 PMCID: PMC7764891 DOI: 10.3390/antibiotics9120903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
As the causative agent of Glässer’s disease, Glaesserella (Haemophilus) parasuis has led to serious economic losses to the swine industry worldwide. Due to the low cross-protection of vaccines and increasing antimicrobial resistance of G. parasuis, it is important to develop alternative approaches to prevent G. parasuis infection. Defensins are host defense peptides that have been suggested to be promising substitutes for antibiotics in animal production, while porcine β-defensin 2 (PBD-2) is a potent antimicrobial peptide discovered in pigs. Our previous study generated transgenic (TG) pigs overexpressing PBD-2, which displayed enhanced resistance to Actinobacillus pleuropneumoniae. In this study, the antibacterial activities of PBD-2 against G. parasuis are determined in vitro and in the TG pig model. The concentration-dependent bactericidal activity of synthetic PBD-2 against G. parasuis was measured by bacterial counting. Moreover, after being infected with G. parasuis via a cohabitation challenge model, TG pigs overexpressing PBD-2 displayed significantly milder clinical signs and less severe gross pathological changes than their wild-type (WT) littermates. The TG pigs also exhibited alleviated lung and brain lesions, while bacterial loads in the lung and brain tissues of the TG pigs were significantly lower than those of the WT pigs. Additionally, lung and brain homogenates from TG pigs possessed enhanced antibacterial activity against G. parasuis when compared with those from the WT pigs. Altogether, these proved that overexpression of PBD-2 could also endow pigs with increased resilience to G. parasuis infection, which further confirmed the potential of using the PBD-2 coding gene to develop disease-resistant pigs and provided a novel strategy to combat G. parasuis as well.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Antian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuming Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| |
Collapse
|