1
|
Wen Q, Tang S, Mo J, Zhang M, Long M, Lu Y, Gan Z. Different activation of STAT1 and STAT2 phosphorylation by IFNc, IFNd, and IFNh in tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109776. [PMID: 39019128 DOI: 10.1016/j.fsi.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Type I IFNs are a subset of cytokines exerting their antiviral effects mainly through the JAK-STAT signalling. Immunogenetic studies have shown that fish possess key components of IFN-JAK-STAT cascade, but the information about the distinct responses of STAT1 and STAT2 to different IFNs is rather limited in fish. Here, we identified and cloned STAT1 and STAT2 genes (named as On-STAT1 and On-STAT2) from tilapia, Oreochromis niloticus. On-STAT1 and On-STAT2 genes were detected in all orangs/tissues examined, and were rapidly induced in spleen, head kidney, and liver following the stimulation of poly(I:C). In addition, the stimulation of poly(I:C), poly(A:T), and different subgroups of recombinant IFNs could induce the expression of On-STAT1 and On-STAT2 in TA-02 cells with distinct induction levels. Importantly, On-STAT2 was rapidly phosphorylated by all three subgroups of IFNs, but the phosphorylation of On-STAT1 was only observed in IFNc- and IFNh-treated TA-02 cells, reflecting the distinct activation of STAT by different subgroups of fish IFNs. The present results thus contribute to better understanding of the JAK-STAT signalling mediated by different subgroups of IFNs in fish.
Collapse
Affiliation(s)
- Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
2
|
He HX, Guo HY, Liu BS, Zhang N, Zhu KC, Zhang DC. Two IFNa3s mediate the regulation of IRF9 in the process of infection with Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105167. [PMID: 38574830 DOI: 10.1016/j.dci.2024.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
IRF9 can play an antibacterial role by regulating the type I interferon (IFN) pathway. Streptococcus iniae can cause many deaths of yellowfin seabream, Acanthopagrus latus in pond farming. Nevertheless, the regulatory mechanism of type I IFN signalling by A. latus IRF9 (AlIRF9) against S. iniae remains elucidated. In our study, AlIRF9 has a total cDNA length of 3200 bp and contains a 1311 bp ORF encoding a presumed 436 amino acids (aa). The genomic DNA sequence of AlIRF9 has nine exons and eight introns, and AlIRF9 was expressed in various tissues, containing the stomach, spleen, brain, skin, and liver, among which the highest expression was in the spleen. Moreover, AlIRF9 transcriptions in the spleen, liver, kidney, and brain were increased by S. iniae infection. By overexpression of AlIRF9, AlIRF9 is shown as a whole-cell distribution, mainly concentrated in the nucleus. Moreover, the promoter fragments of -415 to +192 bp and -311 to +196 bp were regarded as core sequences from two AlIFNa3s. The point mutation analyses verified that AlIFNa3 and AlIFNa3-like transcriptions are dependent on both M3 sites with AlIRF9. In addition, AlIRF9 could greatly reduce two AlIFNa3s and interferon signalling factors expressions. These results showed that in A. latus, both AlIFNa3 and AlIFNa3-like can mediate the regulation of AlIRF9 in the process of infection with S. iniae.
Collapse
Affiliation(s)
- Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| |
Collapse
|
3
|
Wang Q, Li B, Sun XN, Gan Z. Evolutionary and functional conservation of IRF7 in the Tibetan frog Nanorana parkeri. Mol Biol Rep 2024; 51:114. [PMID: 38227268 DOI: 10.1007/s11033-023-09067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Bo Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Na Sun
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic, Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
4
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
5
|
Gan Z, Cheng J, Hou J, Chen S, Xia H, Xia L, Kwok KWH, Lu Y, Nie P. Tilapia dsRNA-activated protein kinase R (PKR): An interferon-induced antiviral effector with translation inhibition activity. FISH & SHELLFISH IMMUNOLOGY 2021; 112:74-80. [PMID: 33667675 DOI: 10.1016/j.fsi.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The dsRNA-activated protein kinase R (PKR) is one of key antiviral effectors induced by interferons (IFNs), and its functions are largely unknown in tilapia, an important commercial fish species suffering from several viral infectious diseases. In the present study, a PKR gene named On-PKR was identified and cloned from Nile tilapia, Oreochromis niloticus. On-PKR gene was constitutively expressed in all tissues examined, with the highest expression level observed in head kidney and liver, and was rapidly induced in all organs/tissues tested following the stimulation of poly(I:C). Importantly, the expression of On-PKR is induced by group I and group II IFNs with distinct induction kinetics in vivo: group I IFN elicits a relative delayed but sustained induction of On-PKR, whereas group II IFN triggers a rapid and transient expression of On-PKR. Moreover, the overexpression of On-PKR has been proven to inhibit the protein translation and virus replication in fish cells. The present study thus contributes to a better understanding of the functions of antiviral effectors in tilapia, and may provide clues for the prevention and therapy of viral diseases in fish.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Kevin W H Kwok
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, And Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
6
|
Gan Z, Cheng J, Hou J, Xia L, Lu Y, Nie P. Molecular and functional characterization of interferon regulatory factor 1 (IRF1) in amphibian Xenopus tropicalis. Int J Biol Macromol 2020; 167:719-725. [PMID: 33279564 DOI: 10.1016/j.ijbiomac.2020.11.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Interferon regulatory factor 1 (IRF1) is an important regulator in controlling the transcription of type I interferon genes, and its functions have been well-characterized in mammals, birds and fish. However, little information is available regarding the function of amphibian IRF1. In this study, an IRF1 gene homolog named as Xt-IRF1 was identified in the Western clawed frog (Xenopus tropicalis), an amphibian model specie widely used for comparative immunology research. Xt-IRF1 and IRF1 in other vertebrates possess similar genomic structure and flanking genes, and were grouped together to form a separate clade in phylogenetic tree. In addition, Xt-IRF1 gene was constitutively expressed in all tissues examined, with the highest expression level observed in spleen, and was inducible after poly(I:C) stimulation. Importantly, the expression of Xt-IRF1 was markedly induced by recombinant type I interferon, and Xt-IRF1 induced a strong activation of both IFNβ and ISRE promoters. The present study opens the door to investigate the roles of IRF1 in amphibians, and thus contributes to a better understanding of the functional evolution of IRFs in lower tetrapods.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Gan Z, Cheng J, Xia L, Kwok KW, Lu Y, Nie P. Unique duplication of IFNh genes in Nile tilapia (Oreochromis niloticus) reveals lineage-specific evolution of IFNh in perciform fishes. FISH & SHELLFISH IMMUNOLOGY 2020; 107:36-42. [PMID: 32941975 DOI: 10.1016/j.fsi.2020.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Fish appear to harbour a complex type I IFN repertoire containing subgroups a, b, c, d, e, f, and h, and IFNh is only reported in perciform fishes. However, no multiple copies of IFNh gene has been identified in fish to date. In this study, two IFNh genes named On-IFNh1 and On-IFNh2 were cloned from Nile tilapia, Oreochromis niloticus. The predicted proteins of On-IFNh1 and On-IFNh2 contain several structural features known in type I IFNs, and estimation of divergence time revealed that these two genes may have arisen from a much recent local duplication event. On-IFNh genes were constitutively expressed in all tissues examined, with the highest expression level observed in gill, and were rapidly induced in all organs/tissues tested following the stimulation of poly(I:C). In addition, both recombinant On-IFNh1 and On-IFNh2 trigger a relative delayed but sustained induction of interferon-stimulated genes (ISGs), whereas recombinant On-IFNc elicits a rapid and transient expression of ISGs in vivo. The present study thus contributes to a better understanding of the functional properties of tilapia interferons, and also provides a new insight into the evolution of IFNh in fish.
Collapse
Affiliation(s)
- Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Gan Z, Cheng J, Chen S, Hou J, Li N, Xia H, Xia L, Lu Y, Nie P. Identification and characterization of tilapia CRFB1, CRFB2 and CRFB5 reveals preferential receptor usage of three IFN subtypes in perciform fishes. FISH & SHELLFISH IMMUNOLOGY 2020; 107:194-201. [PMID: 33011433 DOI: 10.1016/j.fsi.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Type I interferons are a subset of cytokines playing central roles in host antiviral defense, and their effects depend on the interaction with the heterodimeric receptor complex. Surprisingly, two pairs of the receptor subunits, CRFB1 and CRFB5, and CRFB2 and CRFB5, have been identified in fish, but the studies about preferential receptor usage of different fish IFN subtypes are rather limited. In this study, the three receptor chains of type I IFNs named as On-CRFB1, On-CRFB2 and On-CRFB5 were identified in Nile tilapia, Oreochromis niloticus. These three genes were constitutively expressed in all tissues examined, with the highest expression level observed in muscle and liver, and were rapidly induced in liver following the stimulation of poly(I:C). Interestingly, it is possible that all three subtypes of tilapia IFNs are able to signal through two pairs of the receptor subunits, On-CRFB1 and On-CRFB5, and On-CRFB2 and On-CRFB5. More importantly, tilapia group I IFNs (On-IFNd and On-IFNh) preferentially signal through a receptor complex composed of On-CRFB1 and On-CRFB5, and group II IFNs (On-IFNc) preferentially signal through a receptor complex comprised of On-CRFB2 and On-CRFB5. The present study thus provides new insights into the receptor usage of group I and group II IFNs in fish.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|