1
|
Jayamali BPMV, Wijerathna HMSM, Sirisena DMKP, Hanchapola HACR, Warnakula WADLR, Arachchi UPE, Liyanage DS, Jung S, Wan Q, Lee J. Molecular depiction and functional delineation of E3 ubiquitin ligase MARCH5 in yellowtail clownfish (Amphiprion clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105283. [PMID: 39481581 DOI: 10.1016/j.dci.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Membrane-associated Ring-CH 5 (MARCH5) is a mitochondrial E3 ubiquitin ligase playing a key role in the regulation of mitochondrial dynamics. In mammals, MARCH5 negatively regulates mitochondrial antiviral signaling (MAVS) protein aggregation during viral infection and hampers downstream type I interferon signaling to prevent excessive immune activation. However, its precise functional role in the teleost immune system remains unclear. This study investigated the molecular characteristics and immune response of the MARCH5 ortholog in Amphiprion clarkii (A. clarkii; AcMARCH5). The predicted AcMARCH5 protein sequence consists of 287 amino acids with a molecular weight of 32.02 kDa and a theoretical isoelectric point of 9.11. It contains four C-terminal transmembrane (TM) domains and an N-terminal RING cysteine-histidine (CH) domain, which directly regulates ubiquitin transfer. Multiple sequence alignment revealed a high level of conservation between AcMARCH5 and its orthologs in other vertebrate species. Under normal physiological conditions, AcMARCH5 showed the highest mRNA expression in the muscle, brain, and kidney tissues of A. clarkii. Upon stimulation with polyinosinic:polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi, AcMARCH5 expression was drastically modulated. Functional assays showed that overexpression of AcMARCH5 in fathead minnow (FHM) cells downregulated antiviral gene expression, accompanied by enhanced viral hemorrhagic septicemia virus (VHSV) replication. In murine macrophages, AcMARCH5 overexpression markedly reduced the production of pro-inflammatory cytokines in response to poly I:C treatment. Additionally, AcMARCH5 exhibited an anti-apoptotic effect in H2O2-treated FHM cells. Collectively, these results suggest that AcMARCH5 may play a role in maintaining cellular homeostasis under disease and stress conditions in A. clarkii.
Collapse
Affiliation(s)
- B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
2
|
Hanchapola HACR, Kim G, Liyanage DS, Omeka WKM, Udayantha HMV, Kodagoda YK, Dilshan MAH, Rodrigo DCG, Jayamali BPMV, Kim J, Jeong T, Lee S, Qiang W, Lee J. Molecular features, antiviral activity, and immunological expression assessment of interferon-related developmental regulator 1 (IFRD1) in red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109859. [PMID: 39182708 DOI: 10.1016/j.fsi.2024.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Interferon-related developmental regulator 1 (IFRD1) is a viral responsive gene associated with interferon-gamma. Herein, we identified the IFRD1 gene (EaIFRD1) from red-spotted grouper (Epinephelus akaara), evaluated its transcriptional responses, and investigated its functional features using various biological assays. EaIFRD1 encodes a protein comprising 428 amino acids with a molecular mass of 48.22 kDa. It features a substantial domain belonging to the interferon-related developmental regulator superfamily. Spatial mRNA expression of EaIFRD1 demonstrated the highest expression levels in the brain and the lowest in the skin. Furthermore, EaIFRD1 mRNA expression in grouper tissues exhibited significant modulation in response to immune stimulants, including poly (I:C), LPS, and nervous necrosis virus (NNV) infection. We analyzed downstream gene regulation by examining type Ⅰ interferon pathway genes following EaIFRD1 overexpression. The results demonstrated a significant upregulation in cells overexpressing EaIFRD1 compared to the control after infection with viral hemorrhagic septicemia virus (VHSV). A subcellular localization assay confirmed the nuclear location of the EaIFRD1 protein, consistent with its role as a transcriptional coactivator. Cells overexpressing EaIFRD1 exhibited increased migratory activity, enhancing wound-healing capabilities compared to the control. Additionally, under H2O2 exposure, EaIFRD1 overexpression protected cells against oxidative stress. Overexpression of EaIFRD1 also reduced poly (I:C)-mediated NO production in RAW267.4 macrophage cells. In FHM cells, EaIFRD1 overexpression significantly reduced VHSV virion replication. Collectively, these findings suggest that EaIFRD1 plays a crucial role in the antiviral immune response and immunological regulation in E. akaara.
Collapse
Affiliation(s)
- H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Joungeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Wan Qiang
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
3
|
Yang G, Gu J, Wang H, Yang B, Feng S, Zhang Y, Zhang X, Chang X, Shao J, Meng X. Identification, Expression, Characteristic Analysis, and Immune Function of Two Akirin Genes in Grass Carp ( Ctenopharyngodon idella). Animals (Basel) 2024; 14:2443. [PMID: 39199975 PMCID: PMC11350764 DOI: 10.3390/ani14162443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Intensive aquaculture of grass carp often leads to decreased immunity and increased disease prevalence, resulting in economic losses. Improving grass carp immunity is therefore a critical strategy for addressing these challenges. Akirin reportedly participates in myogenesis, growth, and immune responses. However, its role in grass carp remains unclear. Herein, we isolated akirins from the spleen of grass carp and analyzed their tissue-specific expression. Akirin expression was detected following treatment with poly (I:C), LPS, and Aeromonas hydrophila (A. hydrophila). The immunological function of the akirin protein was evaluated in head kidney leukocytes (HKLs). The results revealed that the coding sequence (CDS) of akirin1 is 570 bp, encoding 189 amino acids. There was one predicted nuclear localization signal (NLS) and two predicted α- helix domains. The CDS of akirin2 is 558 bp, encoding 185 amino acids. There were two predicted NLSs and two predicted α-helix domains. Tissue-specific expression analysis showed that akirins are widely detected in grass carp tissues. akirin1 was highly detected in the brain, kidneys, heart, spleen, and gonads, while akirin2 was highly detected in the brain, liver, gonads, kidneys, spleen, and heart. The mRNA levels of akirins were promoted after treatment with poly (I:C), LPS, and A. hydrophila. Recombinant akirin proteins were produced in Escherichia coli (E. coli). il-1β, ifnγ, il-6, tnfα, il-4, iκbα, and nfκb were markedly increased in grass carp HKLs by treatment with the akirin protein. These results suggest that akirins play a role in the immunological regulation of grass carp.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jianing Gu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Hao Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Boya Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
| | - Shikun Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; (G.Y.); (J.G.); (H.W.); (B.Y.); (S.F.); (Y.Z.); (X.Z.); (X.C.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Hanchapola HACR, Liyanage DS, Omeka WKM, Lim C, Kim G, Jeong T, Lee J. Thioredoxin domain-containing protein 12 (TXNDC12) in red spotted grouper (Epinephelus akaara): Molecular characteristics, disulfide reductase activities, and immune responses. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108449. [PMID: 36436687 DOI: 10.1016/j.fsi.2022.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Thioredoxins are small ubiquitous redox proteins that are involved in many biological processes. Proteins with thiol-disulfide bonds are essential regulators of cellular redox homeostasis and diagnostic markers for redox-dependent diseases. Here, we identified and characterized the thioredoxin domain-containing protein 12 (EaTXNDC12) gene in red spotted grouper (Epinephelus akaara), evaluated transcriptional responses, and investigated the activity of the recombinant protein using functional assays. EaTXNDC12 is a 19.22-kDa endoplasmic reticulum (ER)-resident protein with a 522-bp open reading frame and 173 amino acids, including a signal peptide. We identified a conserved active motif (66WCGAC70) and ER retention motif (170GDEL173) in the EaTXNDC12 amino acid sequence. Relative EaTXNDC12 mRNA expression was analyzed using 12 different tissues, with the highest expression seen in brain tissue, while skin tissue showed the lowest expression level. Furthermore, mRNA expression in response to immune challenges was analyzed in the head kidney, blood, and gill tissues. EaTXNDC12 was significantly modulated in response to bacterial endotoxin lipopolysaccharide (LPS), nervous necrosis virus (NNV), and polyinosinic:polycytidylic acid (poly(I:C)) challenges in all of the tested tissues. Recombinant EaTXNDC12 (rEaTXNDC12) displayed antioxidant ability in an insulin reductase assay, and a capacity for free radical inhibition in a 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. In addition, a DNA nicking assay revealed that purified rEaTXNDC12 exhibited concentration-dependent DNA protection activity, while results from 2-hydroxyethyl disulfide and L-dehydroascorbic assays indicated that rEaTXNDC12a possesses reducing ability. Furthermore, fathead minnow (FHM) cells transfected with EaTXNDC12-pcDNA demonstrated significantly upregulated cell survival against H2O2-induced apoptosis. Collectively, the results of this study strengthen our knowledge of EaTXNDC12 with respect to cellular redox hemostasis and immune regulation in Epinephelus akaara.
Collapse
Affiliation(s)
- H A C R Hanchapola
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
5
|
Madushani KP, Shanaka KASN, Wijerathna HMSM, Lim C, Jeong T, Jung S, Lee J. Molecular characterization and expression analysis of B-cell lymphoma-2 protein in Amphiprion clarkii and its role in virus infections. FISH & SHELLFISH IMMUNOLOGY 2022; 130:206-214. [PMID: 36100068 DOI: 10.1016/j.fsi.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
6
|
Systematic Analysis of Molecular Subtypes and Immune Prediction Based on CD8 T Cell Pattern Genes Based on Head and Neck Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1500493. [PMID: 36059811 PMCID: PMC9436594 DOI: 10.1155/2022/1500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
CD8+ T lymphocytes, also known as cytotoxic T lymphocytes, are the most powerful antitumour cells in the human body. Patients with head and neck squamous cell carcinoma (HNSCC) in whom CD8+ T lymphocyte infiltration is high have a better prognosis. However, the clinical significance and prognostic significance of CD8+ T cell-related regulatory genes in HNSCC remain unclear, and further research is required. In total, 446 CD8+ T cell-related genes were obtained using WGCNA. It was discovered that 111 genes included within the TCGA and GSE65858 datasets were intimately linked to the patient’s prognosis. These genes were included in the subsequent analysis. According to consensus clustering analysis, HNSCC samples were classified into 3 subtypes (IC1, IC2, and IC3). There were substantial differences between the three subtypes in terms of immunological molecules, immune function, and the response to drug treatment. In addition, the 8-gene signature, which was generated premised on CD8+ T cell-related genes, exhibited stable prognostic prediction in the TCGA and GEO datasets and different HNSCC patient subgroups and independently served as a prognostic indicator for HNSCC. More importantly, the 8-gene signature effectively predicted immunotherapy response. We first constructed a molecular subtype of HNSCC based on CD8+ T cell-related genes. Between the three subtypes, there were significant differences in the prognosis, clinical features, immunological molecules, and drug treatment response. The 8-gene signature that was further constructed effectively predicted prognosis and immunotherapy response.
Collapse
|
7
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Kwon H, Choi CY, Lee J. Expression profiling, immune functions, and molecular characteristics of the tetraspanin molecule CD63 from Amphiprion clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104168. [PMID: 34118281 DOI: 10.1016/j.dci.2021.104168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
CD63, a member of the tetraspanin family, is involved in the activation of immune cells, antiviral immunity, and signal transduction. The economically important anemonefishes Amphiprion sp. often face disease outbreaks, and the present study aimed to characterize CD63 in Amphiprion clarkii (denoted AcCD63) to enable better disease management. The in-silico analysis revealed that the AcCD63 transcript is 723 bp long and encodes 240 amino acids. The 26.2 kDa protein has a theoretical isoelectric point of 5.51. Similar to other tetraspanins, AcCD63 consists of four domains: short N-/C-terminal domains and small/large extracellular loops. Pairwise sequence alignment revealed that AcCD63 has the highest identity (100%) and similarity (99.2%) with CD63 from Amphiprion ocellaris. Multiple sequence alignment identified a conserved tetraspanin CCG motif, PXSCC motif, and C-terminal lysosome-targeting GYEVM motif. The quantitative polymerase chain reaction analysis showed that AcCD63 was highly expressed in the spleen and head kidney tissue, with low levels of expression in the liver. Temporal expression patterns of AcCD63 were measured in the head kidney and blood tissue after injection of polyinosinic:polycytidylic acid (poly (I:C)), lipolysacharides (LPS), or Vibrio harveyi (V. harveyi). AcCD63 was upregulated at 12 h post-injection with poly (I:C) or V. harveyi, and at 24 h post-injection with all stimulants in the head kidney. At 24 h post-injection, poly (I:C) and LPS upregulated, whereas V. harveyi downregulated AcCD63 expression in the blood. All viral hemorrhagic septicemia virus transcripts (M, G, N, RdRp, P, and NV) were downregulated in response to AcCD63 overexpression, and removal of viral particles occurred via the involvement of AcCD63. The expression of antiviral genes MX dynamin-like GTPase 1, interferon regulatory factor 3, interferon-stimulated gene 15, interferon-gamma, and viperin in CD63-overexpressing fathead minnow cells was downregulated. Collectively, our findings suggest that AcCD63 is an immunologically important gene involved in the A. clarkii pathogen stress response.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|