1
|
Xu FF, Deng ZY, Sheng JJ, Zhu B. The HSP70 and IL-1β of Nile tilapia as molecular adjuvants can enhance the immune protection of DNA vaccine against Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2024; 47:e14002. [PMID: 39075840 DOI: 10.1111/jfd.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Globally, streptococcal disease caused by Streptococcus agalactiae is known for its high mortality rate, which severely limits the development of the tilapia breeding industry. As a third-generation vaccine, DNA vaccines have shown great application prospects in the prevention and control of aquatic diseases, but their low immunogenicity limits their development. The combination of DNA vaccines and molecular adjuvants proved to be an effective method for inducing protective immunity. This study constructed recombinant plasmids encoding tilapia HSP70 and IL-1β genes (pcHSP70 and pcIL-1β) to verify their effectiveness as molecular adjuvants for S. agalactiae DNA vaccine (pcSIP) in the immunized tilapia model. The results revealed that serum-specific IgM production, enzyme activities, and immune-related gene expression in tilapia immunized with pcSIP plus pcHSP70 or pcIL-1β were significantly higher than those in tilapia immunized with pcSIP alone. It is worth noting that combination with molecular adjuvants improved the immune protection of DNA vaccines, with a relative percentage survival (RPS) of 51.72% (pcSIP plus pcHSP70) and 44.83% (pcSIP plus pcIL-1β), respectively, compared with that of pcSIP alone (24.14%). Thus, our study indicated that HSP70 and IL-1β in tilapia are promising molecular adjuvants of the DNA vaccine in controlling S. agalactiae infection.
Collapse
Affiliation(s)
- Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhu-Yang Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun-Jie Sheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Lan NGT, Dong HT, Shinn AP, Vinh NT, Senapin S, Salin KR, Rodkhum C. Review of current perspectives and future outlook on bacterial disease prevention through vaccination in Asian seabass (Lates calcarifer). JOURNAL OF FISH DISEASES 2024; 47:e13964. [PMID: 38798108 DOI: 10.1111/jfd.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Asian seabass, Lates calcarifer, is an important aquatic species in mariculture. Intensive farming of this species has faced episodes of bacterial diseases, including those due to vibriosis, scale drop, and muscle necrosis disease, big belly disease, photobacteriosis, columnaris, streptococcosis, aeromoniasis, and tenacibaculosis. Vaccination is one of the most efficient, non-antibiotic, and eco-friendly strategies for protecting fish against bacterial diseases, contributing to aquaculture expansion and ensuring food security. As of now, although numerous vaccines have undergone laboratory research, only one commercially available inactivated vaccine, suitable for both immersion and injection administration, is accessible for preventing Streptococcus iniae. Several key challenges in developing vaccines for Asian seabass must be addressed, such as the current limited understanding of immunological responses to vaccines, the costs associated with vaccine production, forms, and routes of vaccine application, and how to increase the adoption of vaccines by farmers. The future of vaccine development for the Asian seabass industry, therefore, is discussed with these key critical issues in mind. The focus is on improving our understanding of Asian seabass immunity, including maternal immunity, immunocompetence, and immune responses post-vaccination, as well as developing tools to assess vaccine effectiveness. The need for an alignment of fish vaccines with state-of-the-art vaccine technologies employed in human and terrestrial animal healthcare is also discussed. This review also discusses the necessity of providing locally-produced autogenous vaccines, especially for immersion and oral vaccines, to benefit small-scale fish farmers, and the potential benefits that might be extended through changes to current husbandry practices such as the vaccination of broodstock and earlier life stages of their off-spring.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | | | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Geng Y, Gai Y, Zhang Y, Zhao S, Jiang A, Li X, Deng K, Zhang F, Tan L, Song L. Genome-Wide Identification and Interaction Analysis of Turbot Heat Shock Protein 40 and 70 Families Suggest the Mechanism of Chaperone Proteins Involved in Immune Response after Bacterial Infection. Int J Mol Sci 2024; 25:7963. [PMID: 39063205 PMCID: PMC11277129 DOI: 10.3390/ijms25147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.
Collapse
Affiliation(s)
- Yuanwei Geng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Yuxuan Gai
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanping Zhang
- College of Entrepreneurship and Innovation, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengwei Zhao
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Anlan Jiang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Xueqing Li
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Kaiqing Deng
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Fuxuan Zhang
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lingling Tan
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
| | - Lin Song
- School of Life Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (Y.G.)
- Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Caña-Bozada VH, Huerta-Ocampo JÁ, Bojórquez-Velázquez E, Elizalde-Contreras JM, May ER, Morales-Serna FN. Proteomic analysis of Neobenedenia sp. and Rhabdosynochus viridisi (Monogenea, Monopisthocotylea): Insights into potential vaccine targets and diagnostic markers for finfish aquaculture. Vet Parasitol 2024; 329:110196. [PMID: 38763120 DOI: 10.1016/j.vetpar.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Monogeneans are parasitic flatworms that represent a significant threat to the aquaculture industry. Species like Neobenedenia melleni (Capsalidae) and Rhabdosynochus viridisi (Diplectanidae) have been identified as causing diseases in farmed fish. In the past years, molecular research on monogeneans of the subclass Monopisthocotylea has focused on the generation of genomic and transcriptomic information and the identification in silico of some protein families of veterinary interest. Proteomic analysis has been suggested as a powerful tool to investigate proteins in parasites and identify potential targets for vaccine development and diagnosis. To date, the proteomic dataset for monogeneans has been restricted to a species of the subclass Polyopisthocotylea, while in monopisthocotyleans there is no proteomic data. In this study, we present the first proteomic data on two monopisthocotylean species, Neobenedenia sp. and R. viridisi, obtained from three distinct sample types: tissue, excretory-secretory products (ESPs), and eggs. A total of 1691 and 1846 expressed proteins were identified in Neobenedenia sp. and R. viridisi, respectively. The actin family was the largest protein family, followed by the tubulin family and the heat shock protein 70 (HSP70) family. We focused mainly on ESPs because they are important to modulate the host immune system. We identified proteins of the actin, tubulin, HSP70 and HSP90 families in both tissue and ESPs, which have been recognized for their antigenic activities in parasitic flatworms. Furthermore, our study uncovered the presence of proteins within ESPs, such as annexin, calcium-binding protein, fructose bisphosphate aldolase, glutamate dehydrogenase, myoferlin, and paramyosin, that are targets for immunodiagnostic and vaccine development and hold paramount relevance in veterinary medicine. This study expands our knowledge of monogeneans and identified proteins that, in other platyhelminths are potential targets for vaccines and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Eliel Ruiz May
- Instituto de Ecología, A.C., Xalapa, Veracruz 91070, Mexico
| | - Francisco N Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa 82040, Mexico
| |
Collapse
|
5
|
Islam SI, Mahfuj S, Baqar Z, Asadujjaman M, Islam MJ, Alsiwiehri N, Almehmadi M, Sanjida S, Ahammad F. Bacterial diseases of Asian sea bass ( Lates calcarifer): A review for health management strategies and future aquaculture sustainability. Heliyon 2024; 10:e29793. [PMID: 38707314 PMCID: PMC11068540 DOI: 10.1016/j.heliyon.2024.e29793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of aquaculture has been one of the most significant shifts in world food supply during the last century. Aquaculture has rapidly expanded and become a global food industry, spurred by population expansion, increased seafood consumption, and decreased captured fisheries. Nonetheless, the exponential growth of aquaculture has emerged as a significant contributor to anthropogenic changes. Unexpectedly, the result has focused in the emergence and spread of new diseases. The Asian sea bass (Lates calcarifer) is an economically important species in aquaculture, contributing significantly to the global seafood market. However, bacterial diseases have emerged as a major concern, affecting both wild and cultured populations of this species. The most prevalent bacterial pathogens are streptococcus, vibriosis, nocardiosis, tenacibaculosis, and pot-belly disease. Therefore, this review aims to comprehensively analyze both emerging and non-emerging bacterial diseases affecting L. calcarifer and explore potential management approaches for their control. Through an extensive literature survey and critical evaluation of research findings, this review highlights the current understanding of bacterial diseases in L. calcarifer and proposes strategies for better disease management. In addition, this review looks at the rise and characteristics of aquaculture, the major bacterial pathogens of L. calcarifer and their effects, and the specific attributes of disease emergence in an aquatic rather than terrestrial context. It also considers the potential for future disease emergence in L. calcarifer due to aquaculture expansion and climate changes.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarower Mahfuj
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zulqarnain Baqar
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Md Asadujjaman
- Department of Aquaculture, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Jakiul Islam
- Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Naif Alsiwiehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
6
|
Nguyen PTD, Giovanni A, Maekawa S, Pham TH, Wang PC, Chen SC. An Integrated in silico and in vivo study of nucleic acid vaccine against Nocardia seriolae infection in orange-spotted grouper Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109202. [PMID: 37913891 DOI: 10.1016/j.fsi.2023.109202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Nocardiosis in aquatic animals caused by Nocardia seriolae is a frequently occurring serious infection that has recently spread to many countries. In this study, DNA vaccines containing potential bacterial antigens predicted using the reverse vaccinology approach were developed and evaluated in orange-spotted groupers. In silico analysis indicated that proteins including cholesterol oxidase, ld-transpeptidase, and glycosyl hydroxylase have high immunogenicity and are potential vaccine candidates. In vitro assays revealed the mature and biological configurations of these proteins. Importantly, when compared to a control PBS injection, N. seriolae DNA-based vaccines showed significantly higher expression of IL1β, IL17, and IFNγ at 1 or 2 days, in line with higher serum antibody production and expression of other cellular immune-related genes, such as MHCI, CD4, and CD8, at 7 days post-immunization. Remarkably, enhanced immune responses and strong protective efficacy against a highly virulent strain of N. seriolae were recorded in DNA vaccine-cholesterol oxidase (pcD::Cho) injected fish, with a relative survival rate of 73.3%. Our results demonstrate that the reverse vaccinology approach is a valid strategy for screening vaccine candidates and pcD::Cho is a promising candidate that can boost both innate and adaptive immune responses and confer considerable protection against N. seriolae infection.
Collapse
Affiliation(s)
- Phuong T D Nguyen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Andre Giovanni
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Shun Maekawa
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Trung Hieu Pham
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
7
|
Vinh NT, Dong HT, Lan NGT, Sangsuriya P, Salin KR, Chatchaiphan S, Senapin S. Immunological response of 35 and 42 days old Asian seabass (Lates calcarifer, Bloch 1790) fry following immersion immunization with Streptococcus iniae heat-killed vaccine. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108802. [PMID: 37178986 DOI: 10.1016/j.fsi.2023.108802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Early disease prevention by vaccination requires understanding when fry fish develop specific immunity to a given pathogen. In this research, we explored the immune responses of Asian seabass (Lates calcarifer) at the stages of 35- and 42- days post-hatching (dph) to an immersive heat-killed Streptococcus iniae (Si) vaccine to determine whether fish can produce specific antibodies against the pathogen. The vaccinated fish of each stage (V35 and V42) were immersed with the Si vaccine at 107 CFU/ml for 3 h, whereas the control groups (C35 and C42) were immersed with tryptic soy broth (TSB) in the same manner. Specific antibodies were measured by enzyme-linked immunosorbent assay (ELISA) before and post-immunization (i.e., 0, 7, and 14 days post-immunization, dpi). Expression of innate (TNFα and IL-1β) and adaptive (MHCI, MHCII, CD4, CD8, IgM-like, IgT-like, and IgD-like) immune-related genes were evaluated at the same time points with the addition of 1 dpi. The results showed that a subset of immunized fish from both V35 and V42 fry could elicit specific antibodies (IgM) against Si at 14 dpi. All tested innate and adaptive immune genes upregulated at 7 dpi among fish in V35 group. Interestingly, 42 dph fish appeared to respond to the Si vaccine faster than that of 35 dph, as a significant increase in transcripts was observed in CD4, IL-1β, IgM-like, and IgD-like at 1 dpi; and specific antibody titers of some fish, although not all, were higher than a threshold (p = 0.05) since 7 dpi. In conclusion, this study reveals that 35-42 dph Asian seabass fry can elicit specific immunity to Si immersion vaccine, suggesting that early vaccination of 35 dph fry Asian seabass is feasible.
Collapse
Affiliation(s)
- Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| | - Nguyen Giang Thu Lan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Viet Nam; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
9
|
Schizothorax prenanti Heat Shock Protein 27 Gene: Cloning, Expression, and Comparison with Other Heat Shock Protein Genes after Poly (I:C) Induction. Animals (Basel) 2022; 12:ani12162034. [PMID: 36009624 PMCID: PMC9404436 DOI: 10.3390/ani12162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
We identified and cloned cDNA encoding the heat shock protein (Hsp) 27 gene from Schizothorax prenanti (SpHsp27), and compared its expression with that of SpHsp60, SpHsp70, and SpHsp90 in the liver, head kidney, hindgut, and spleen of S. prenanti that were injected with polyinosinic-polycytidylic acid [Poly (I:C)]. The SpHsp27 partial cDNA (sequence length, 653 bp; estimated molecular mass, 5.31 kDa; theoretical isoelectric point, 5.09) contained an open reading frame of 636 bp and a gene encoding 211 amino acids. The SpHsp27 amino acid sequence shared 61.0−92.89% identity with Hsp27 sequences from other vertebrates and SpHsp27 was expressed in seven S. prenanti tissues. Poly (I:C) significantly upregulated most SpHsps genes in the tissues at 12 or 24 h (p < 0.05) compared with control fish that were injected with phosphate-buffered saline. However, the intensity of responses of the four SpHsps was organ-specifically increased. The expression of SpHsp27 was increased 163-fold in the head kidney and 26.6-fold SpHsp27 in the liver at 24 h after Poly (I:C) injection. In contrast, SpHsp60 was increased 0.97−1.46-fold in four tissues and SpHsp90 was increased 1.21- and 1.16-fold in the liver and spleen at 12 h after Poly (I:C) injection. Our findings indicated that Poly (I:C) induced SpHsp27, SpHsp60, SpHsp70, and SpHsp90 expression and these organ-specific SpHsps are potentially involved in S. prenanti antiviral immunity or mediate pathological process.
Collapse
|
10
|
Transcriptome Profiling Revealed Basis for Growth Heterosis in Hybrid Tilapia (Oreochromis niloticus ♀ × O. aureus ♂). FISHES 2022. [DOI: 10.3390/fishes7010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hybrid tilapia were produced from hybridization of Nile tilapia (Oreochromis niloticus) and blue tilapia (O. aureus). Comparative transcriptome analysis was carried out on the liver of hybrid tilapia and their parents by RNA sequencing. A total of 2319 differentially expressed genes (DEGs) were identified. Trend co-expression analysis showed that non-additive gene expression accounted for 67.1% of all DEGs. Gene Ontology and KEGG enrichment analyses classified the respective DEGs. Gene functional enrichment analysis indicated that most up-regulated genes, such as FASN, ACSL1, ACSL3, ACSL6, ACACA, ELOVL6, G6PD, ENO1, GATM, and ME3, were involved in metabolism, including fatty acid biosynthesis, unsaturated fatty acid biosynthesis, glycolysis, pentose phosphate pathway, amino acid metabolism, pyruvate metabolism, and the tricarboxylic acid cycle. The expression levels of a gene related to ribosomal biosynthesis in eukaryotes, GSH-Px, and those associated with heat shock proteins (HSPs), such as HSPA5 and HSP70, were significantly down-regulated compared with the parent tilapia lineages. The results revealed that the metabolic pathway in hybrid tilapia was up-regulated, with significantly improved fatty acid metabolism and carbon metabolism, whereas ribosome biosynthesis in eukaryotes and basal defense response were significantly down-regulated. These findings provide new insights into our understanding of growth heterosis in hybrid tilapia.
Collapse
|
11
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. Immunological responses and anti-tumor effects of HPV16/18 L1-L2-E7 multiepitope fusion construct along with curcumin and nanocurcumin in C57BL/6 mouse model. Life Sci 2021; 285:119945. [PMID: 34516991 DOI: 10.1016/j.lfs.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
AIMS Human papillomavirus (HPV) L1, L2 and E7 proteins were used as target antigens for development of preventive and therapeutic vaccines. Moreover, linkage of antigens to heat shock proteins (HSPs) could enhance the potency of vaccines. Curcumin and nanocurcumin compounds were suggested as the chemopreventive and chemotherapeutic agents against cancer. In this study, two multiepitope DNA and peptide-based vaccine constructs (L1-L2-E7 and HSP70-L1-L2-E7) were used along with curcumin and nanocurcumin to evaluate immune responses, and protective/therapeutic effects in tumor mouse model. MAIN METHODS At first, the multiepitope L1-L2-E7 and HSP70-L1-L2-E7 fusion genes were subcloned in eukaryotic and prokaryotic expression vectors. The recombinant multiepitope peptides were generated in E. coli strain. Then, the cytotoxic effects of curcumin and nanocurcumin were evaluated on HEK-293 T non-cancerous and C3 cancerous cells. Finally, mice vaccination was performed using different regimens. Curcumin and nanocurcumin compounds were administered alone or along with different vaccine constructs. KEY FINDINGS Our data indicated that the use of nanocurcumin along with the multiepitope HSP70-L1-L2-E7 vaccine construct could completely protect mice against HPV-related C3 tumor cells, and eradicate tumors in a therapeutic test. Furthermore, nanocurcumin showed higher protection than curcumin alone. Generally, curcumin and nanocurcumin compounds could reduce tumor growth synergistically with the multiepitope vaccine constructs, but they did not influence the immune responses in different regimens. SIGNIFICANCE These data demonstrated that the designed multiepitope vaccine constructs along with curcumin and nanocurcumin can be used as a promising method for HPV vaccine development.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Capsid Proteins/administration & dosage
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cloning, Molecular
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Escherichia coli
- Female
- Genetic Vectors
- HEK293 Cells
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- Humans
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Oncogene Proteins, Viral/administration & dosage
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins/administration & dosage
- Papillomavirus E7 Proteins/genetics
- Papillomavirus E7 Proteins/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/therapy
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Mice
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Pham TH, Rao S, Cheng TC, Wang PC, Chen SC. The moonlighting protein fructose 1,6-bisphosphate aldolase as a potential vaccine candidate against Photobacterium damselae subsp. piscicida in Asian sea bass (Lates calcarifer). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104187. [PMID: 34186149 DOI: 10.1016/j.dci.2021.104187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Vaccination is the most effective, safe, and environmentally friendly method to prevent the outbreak of Photobacterium damselae subsp. piscicida (Phdp), a dangerous pathogen in aquaculture worldwide. Here, recombinant proteins of catalase, superoxide dismutase, isocitrate dehydrogenase, fructose 1,6-bisphosphate aldolase (Fba), and a mixture of all four proteins were investigated for their immunoprotective effects against photobacteriosis in Asian sea bass (Lates calcarifer). After immunization, experimental fish showed an increase in specific antibody levels and lysozyme activities, especially the Fba group. After a lethal challenge with Phdp strain AOD105021, the Fba group achieved the highest relative percentage of survival rate (70.21%) and a significantly lower bacterial load in the spleens than other groups 3 days after infection. The results suggest that Fba is a good candidate for subunit vaccine development against photobacteriosis in fish.
Collapse
Affiliation(s)
- Trung Hieu Pham
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Ta-Chih Cheng
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|