1
|
Adline FA, Shanthi R, Sivakumar MR, Roshni K, Sowmiya S. In vitro immune analysis of serum from the hemolymph of the anomuran crab Albunea symmysta (Linnaeus, 1758) displayed diversified reactions. J Invertebr Pathol 2024; 204:108098. [PMID: 38580075 DOI: 10.1016/j.jip.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The present investigation aims to substantiate that serum from the hemolymph of anomuran crab Albunea symmysta encompasses multiple immunological reactions in in vitro condition. The serum highly agglutinated human O erythrocytes in the presence of Ba2+. Distinct and unique sugar binding capacity of serum towards laminarin, N-acetyl sugars and higher binding specificity towards a glycoprotein, fetuin was inferred. In vitro enhancement of melanin synthesis due to enhanced oxidation of 3, 4-dihydroxy-dl-phenylalanine (dl-DOPA) by preincubation of nonself molecules with serum phenoloxidase (PO) was documented. Similarly, dl-DOPA oxidation by serum PO was reduced when preincubated with chemical inhibitors and copper chelators. Further, the crab serum lysed the vertebrate erythrocytes with maximum hemolysis against chicken and it unveiled dependency on divalent cation, serum concentration, ionic strength, pH, temperature and time interval. Occurrence of maximum hemolysis at a concentration of 30 µl, pH 8.0, temperature 37 °C and time interval of 60 min in the presence of Ba2+ were documented. Interestingly, serum hemolysis was reduced by different osmoprotectants suggesting a colloid-osmotic mechanism involving in hemolysis. It was observed that A. symmysta serum had antimicrobial activity against Gram-positive Staphylococcus aureus and fungal pathogen Candida albicans. The serum showed higher glycan content, potent lysozyme and free radical scavenging activity suggesting the existence of potential immune molecules of therapeutic use. These results clearly demonstrated the diversified immunogenicity of A. symmysta serum confirming a highly conserved non-specific immunity of crustaceans.
Collapse
Affiliation(s)
- Francis Abisha Adline
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Rangasamy Shanthi
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | | | - Kandasamy Roshni
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Sundararajan Sowmiya
- Laboratory of Crustacean Biology, Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
2
|
Widanarni W, Gustilatov M, Ekasari J, Julyantoro PGS, Waturangi DE, Sukenda S. Unveiling the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing and virulence gene expression and enhancing immunity. JOURNAL OF FISH DISEASES 2024; 47:e13932. [PMID: 38373053 DOI: 10.1111/jfd.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to evaluate and unveil the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing (QS) and virulence gene expression and enhancing shrimp's immunity. The shrimp with an average body weight of 0.50 ± 0.09 g were reared in containers with a volume of 2.5 L, 21 units, and a density of 20 shrimp L-1. The shrimp were cultured for 5 days, with each treatment including biofloc system maintenance with a C/N ratio of 10 and a control treatment without biofloc, followed by a challenge test through immersion using V. parahaemolyticus at densities of 103, 105, and 107 CFU mL-1 initially. The results of the in vitro experiment showed that biofloc suspension can inhibit and disperse biofilm formation, as well as reduce the exo-enzyme activity (amylase, protease, and chitinase) of V. parahaemolyticus. Furthermore, the biofloc treatment significantly reduced the expression of the QS regulatory gene OpaR, the PirB toxin gene, and the virulence factor genes T6SS1 and T6SS2 in both in vitro and in vivo. The biofloc system also increased the expression of shrimp immunity-related genes (LGBP, proPO, SP, and PE) and the survival rate of white shrimp challenged with V. parahaemolyticus.
Collapse
Affiliation(s)
- Widanarni Widanarni
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Muhamad Gustilatov
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Julie Ekasari
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, Indonesia
| | | | - Sukenda Sukenda
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| |
Collapse
|
3
|
Li Q, Zhang M, Qin S, Wen J, Shen X, Du Z. Dual oxidase 2 (duox 2) participates in the intestinal antibacterial innate immune responses of Procambarus clarkii by regulating ROS levels. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105116. [PMID: 38101716 DOI: 10.1016/j.dci.2023.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Dual oxidase (Duox) a member of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) family can induce the production of reactive oxygen species (ROS). In vertebrates, the duox gene was indicated to be associated with the mucosal immunity. The roles of the duox gene in invertebrates were mainly studied in insects for the function of maintaining intestinal flora balance. In recent years, some studies have reported that Duox is involved in regulating the production of ROS and plays an important role in defending against the intestinal pathogen infection. However, the molecular mechanism has not been fully illuminated. In this study, a duox 2 involved in the production of H2O2 was identified for the first time in P. clarkii. Mature Pc-Duox 2 is a 7-transmembrane protein molecule that includes PHD, FAD, and NAD domains. Pc-duox 2 was mainly expressed in hemocytes and intestinal tissue. Its expression levels were obviously upregulated after intramuscular or oral infection with V. harveyi. In the RNAi assay, the upregulated trends of H2O2 and total ROS levels in crayfish intestine were significantly suppressed when Pc-duox 2 was knocked down. Compared with the slightly affected SOD activity, the upregulated CAT activity was suppressed more obviously in the crayfish intestine. Furthermore, Pc-duox 2 had an important effect on the maintenance of the structural stability of crayfish the intestine. Further research revealed that the knockdown of Pc-duox 2 could cause an obvious suppression in the upregulated levels of Toll signalling pathway-related genes, including Pc-toll 1, Pc-toll 3, Pc-dorsal, Pc-ALF 5, Pc-crustin 1, and Pc-lysozyme. Ultimately, these changes triggered the accelerated death of crayfish. Overall, we speculated that Pc-duox 2 played an important role in antibacterial innate immunity in the crayfish intestine by regulating the total ROS level.
Collapse
Affiliation(s)
- Qianqian Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Mingda Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Shiyu Qin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Jing Wen
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Xiuli Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Zhiqiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China.
| |
Collapse
|
4
|
Khanjani MH, Sharifinia M, Emerenciano MGC. A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108796. [PMID: 37149233 DOI: 10.1016/j.fsi.2023.108796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
The innate immunity of invertebrates serves as a critical trait that provides a valuable foundation for studying the common biological responses to environmental changes. With the exponential growth of the human population, the demand for protein has soared, leading to the intensification of aquaculture. Regrettably, this intensification has resulted in the overuse of antibiotics and chemotherapeutics, which have led to the emergence of resistant microbes or superbugs. In this regard, biofloc technology (BFT) emerges as a promising strategy for disease management in aquaculture. By harnessing the power of antibiotics, probiotics, and prebiotics, BFT offers a sustainable and eco-friendly approach that can help mitigate the negative impacts of harmful chemicals. By adopting this innovative technology, we can enhance the immunity and promote the health of aquatic organisms, thereby ensuring the long-term viability of the aquaculture industry. Using a proper carbon to nitrogen ratio, normally adding an external carbon source, BFT recycles waste in culture system with no water exchange. Heterotrophic bacteria grow along with other key microbes in the culture water. Heterotrophs play a major role in assimilating ammonia from feed and fecal waste, crucial pathway to form suspended microbial aggregates (known as 'biofloc'); while chemoautotrophs (e.g. nitrifying bacteria) oxidize ammonia into nitrite, and nitrite into nitrate promoting a healthy farming conditions. By using a highly aerated media and an organic substrates that contain carbon and nitrogen, protein-rich microbes are able to flocculate in culture water. Several types of microorganisms and their cell components have been studied and applied to aquatic animals as probiotics or immunostimulants (lipopolysaccharide, peptidoglycan, and 1-glucans) to enhance their innate immunity and antioxidant status, thereby enhancing their resistance to disease. In recent years, many studies have been conducted on the application of BFT for different farmed aquatic species and it has been observed as a promising method for the development of sustainable aquaculture, especially due to less use of water, increased productivity and biosecurity, but also an enhancement of the health status of several aquaculture species. This review analyses the immune status, antioxidant activity, blood and biochemical parameters, and level of resistance against pathogenic agents of aquatic animals farmed in BFT systems. This manuscript aims to gather and showcase the scientific evidences related to biofloc as a 'health promoter' in a unique document for the industry and academia.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran.
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, 75169-89177, Iran.
| | | |
Collapse
|
5
|
Wu J, Chen Y, Xu X, Ren W, Zhang X, Cai X, Huang A, Zeng Y, Long H, Xie Z. Screening of bioflocculant and cellulase-producing bacteria strains for biofloc culture systems with fiber-rich carbon source. Front Microbiol 2022; 13:969664. [PMID: 36504821 PMCID: PMC9729547 DOI: 10.3389/fmicb.2022.969664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The biofloc technology (BFT) system has been widely applied in the shrimp and fish culture industry for its advantages in water-saving, growth improvement, and water quality purification. However, The BFT system usually takes a long time to establish, and the extra carbon source input increases the maintenance cost of the system. In this study, we aimed to develop a low-cost and high-efficient BFT system for Litopenaeus vannamei by applying bacteria that could promote the formation of BFT and utilize cheap carbon sources. Three bioflocculant-producing bacteria strains (M13, M15, and M17) have been screened from a cellulolytic strain collection. All three strains have been identified as Bacillus spp. and can use sugarcane bagasse (SB) as a carbon source, which is a cheap byproduct of the sucrose industry in the tropic area of China. Compared to sucrose, the addition of SB and the three strains could improve the biofloc formation rate, biofloc size distribution, ammonia removal rate, and the growth performance of the shrimps. These results suggest that the bioflocculant and cellulase-producing bacteria strains could promote the biofloc formation and the growth of shrimps by using SB as an economic substitute carbon source in the BFT shrimp culture system.
Collapse
Affiliation(s)
- Jinping Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yifeng Chen
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Xueni Xu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Wei Ren
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Xiang Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Xiaoni Cai
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Aiyou Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China,*Correspondence: Hao Long, ; Zhenyu Xie,
| | - Zhenyu Xie
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China,*Correspondence: Hao Long, ; Zhenyu Xie,
| |
Collapse
|
6
|
Le Xuan C, Wannavijit S, Outama P, Montha N, Lumsangkul C, Tongsiri S, Chitmanat C, Hoseinifar SH, Van Doan H. Effects of dietary rambutan (Nephelium lappaceum L.) peel powder on growth performance, immune response and immune-related gene expressions of striped catfish (Pangasianodon hypophthalmus) raised in biofloc system. FISH & SHELLFISH IMMUNOLOGY 2022; 124:134-141. [PMID: 35367378 DOI: 10.1016/j.fsi.2022.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the effects of rambutan peel powder (RP) on growth, skin mucosal and serum immunities, and immune-related gene expression of striped catfish (Pangasianodon hypophthalmus) reared in a biofloc system. Three hundred fingerlings (17.14 ± 0.12 g fish-1) were randomly selected and assigned to five treatments corresponding to five diets: 0 g kg-1 (control - RP0); 10 g kg-1 (RP10); 20 g kg-1 (RP20); 40 g kg-1 (RP40), and 80 g kg-1 (RP80) for 8 weeks. At weeks 4 and 8 post-feeding, growth, skin mucus, and serum immunity parameters were determined, whereas immune-related gene expressions were performed at the end of the feeding trial. Based on the results, skin mucus lysozyme (SML) and skin mucus peroxidase (SMP) were significantly higher in fish fed the RP diets compared to the control diet (P < 0.05). The highest SML and SMP levels were observed in fish fed RP40 diet, followed by RP20, RP80, RP10, and RP0. Fish-fed RP diets had higher serum lysozyme and serum peroxidase activities, with the highest value found in the RP40 diet (P < 0.05), followed by RP20, RP80, and RP10. Similarly, immune-related gene expressions (IFN2a, IFN2b, and MHCII) in the liver were significantly up-regulated in fish fed RP40. Up-regulation (P < 0.05) of IL-1, IFN2a, IFN2b, and MHCII genes was also observed in fish intestines, with the highest values observed in fish fed RP40 diet, followed by RP10, RP20, RP80, and RP0. Fish-fed diet RP diets also showed enhanced growth and FCR compared to the control, with the highest values observed in fish fed diet RP40. However, no significant differences in survival rates were found among diets. In conclusion, dietary inclusion of RP at 40 g kg-1 resulted in better growth performance, immune response, and immune related gene expressions of striped catfish (Pangasianodon hypophthalmus).
Collapse
Affiliation(s)
- Chinh Le Xuan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyatida Outama
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sudaporn Tongsiri
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Xuan CL, Wannavijit S, Outama P, Lumsangkul C, Tongsiri S, Chitmanat C, Doan HV. Dietary inclusion of rambutan (Nephelium lappaceum L.) seed to Nile tilapia (Oreochromis niloticus) reared in biofloc system: Impacts on growth, immunity, and immune-antioxidant gene expression. FISH & SHELLFISH IMMUNOLOGY 2022; 122:215-224. [PMID: 35063605 DOI: 10.1016/j.fsi.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
An eight-week feeding trial was carried out to determine the effects of rambutan seed (RS) as a feed additive on the growth, skin mucus, serum immune parameters, and gene expression of Nile tilapia (Oreochromis niloticus) raised under a biofloc system. Nile tilapia fingerlings (14.77 ± 0.80 g fish-1) were fed five experimental diets containing 0, 5, 10, 20, and 40 g kg-1 of RS, corresponding to five treatments (RS0, RS5, RS10, RS20, and RS40) with three replications per treatment. The results showed that fish consuming the RS10 and RS20 diets presented a substantial (P < 0.05) improvement in specific growth rate (SGR), weight gain (WG), and feed conversion ratio (FCR) after eight weeks. The highest values were recorded in the RS10 diet; however, there were no significant (P > 0.05) differences exhibited in the fish survival rates between treatments. The RS supplementation diets demonstrated greater immunological parameters, particularly skin mucus and serum immune responses (P < 0.05), than that of the control after eight the eight-week feeding trial. The highest level was seen in fish fed the RS10; followed by the RS20, RS40 (P > 0.05), and RS5 diets. Regarding gene expressions, IL1, IL8, LBP, GSTa, and GSR genes were significantly up-regulated in fish provided the RS10 diet in comparison to the control and other supplemented diets (P < 0.05). However, no significant up-regulation was found in these genes among the RS0, RS5, RS20, and RS40 diets, with the exception of the GPX gene. Similarly, up-regulation of IL-8, LBP, GSTa, GPX, and GSR were noted in fish fed the RS10 diet (P < 0.05). Notably, no significant differences were evident in these genes among the RS5, RS20, and RS40 diets. In conclusion, fish fed RS10 (10 g kg-1) significantly enhanced growth, skin mucus, serum immunities, and immune-antioxidants related gene expressions of Nile tilapia raised under biofloc system.
Collapse
Affiliation(s)
- Chinh Le Xuan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyatida Outama
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sudaporn Tongsiri
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|