1
|
Cortez T, Sonoda GG, Santos CA, Andrade SCDS. Assessing Mechanisms of Potential Local Adaptation Through a Seascape Genomic Approach in a Marine Gastropod, Littoraria flava. Genome Biol Evol 2024; 16:evae194. [PMID: 39235041 DOI: 10.1093/gbe/evae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 09/06/2024] Open
Abstract
Understanding the combined effects of environmental heterogeneity and evolutionary processes on marine populations is a primary goal of seascape genomic approaches. Here, we utilized genomic approaches to identify local adaptation signatures in Littoraria flava, a widely distributed marine gastropod in the tropical West Atlantic population. We also performed molecular evolution analyses to investigate potential selective signals across the genome. After obtaining 6,298 and 16,137 single nucleotide polymorphisms derived from genotyping-by-sequencing and RNA sequencing, respectively, 69 from genotyping-by-sequencing (85 specimens) and four from RNA sequencing (40 specimens) candidate single nucleotide polymorphisms were selected and further evaluated. The correlation analyses support different evolutionary pressures over transcribed and non-transcribed regions. Thus, single nucleotide polymorphisms within transcribed regions could account for the genotypic and possibly phenotypic divergences in periwinkles. Our molecular evolution tests based on synonymous and non-synonymous ratio (kN/kS) showed that genotype divergences containing putative adaptive single nucleotide polymorphisms arose mainly from synonymous and/or UTR substitutions rather than polymorphic proteins. The distribution of genotypes across different localities seems to be influenced by marine currents, pH, and temperature variations, suggesting that these factors may impact the species dispersion. The combination of RNA sequencing and genotyping-by-sequencing derived datasets provides a deeper understanding of the molecular mechanisms underlying selective forces responses on distinct genomic regions and could guide further investigations on seascape genomics for non-model species.
Collapse
Affiliation(s)
- Thainá Cortez
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel G Sonoda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
| | - Camilla A Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
2
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
3
|
Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. Potential pathway and mechanisms underlining the immunotoxicity of benzo[a]pyrene to Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97128-97146. [PMID: 37582894 DOI: 10.1007/s11356-023-29016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The long-distance migration of polycyclic aromatic hydrocarbons (PAHs) promotes their release into the marine environment, posing a serious threat to marine life. Studies have shown that PAHs have significant immunotoxicity effects on bivalves, but the exact mechanism of immunotoxicity remains unclear. This paper aims to investigate the effects of exposure to 0.4, 2, and 10 μg/L of benzo(a)pyrene (B[a]P) on the immunity of Chlamys farreri under environmental conditions, as well as the potential molecular mechanism. Multiple biomarkers, including phagocytosis rate, metabolites, neurotoxicity, oxidative stress, DNA damage, and apoptosis, were adopted to assess these effects. After exposure to 0.4, 2, and 10 μg/L B[a]P, obvious concentration-dependent immunotoxicity was observed, indicated by a decrease in the hemocyte index (total hemocyte count, phagocytosis rate, antibacterial and bacteriolytic activity). Analysis of the detoxification metabolic system in C. farreri revealed that B[a]P produced B[a]P-7,8-diol-9,10-epoxide (BPDE) through metabolism, which led to an increase in the expression of protein tyrosine kinase (PTK). In addition, the increased content of neurotransmitters (including acetylcholine, γ -aminobutyric acid, enkephalin, norepinephrine, dopamine, and serotonin) and related receptors implied that B[a]P might affect immunity through neuroendocrine system. The changes in signal pathway factors involved in immune regulation indicated that B[a]P interfered with Ca2+ and cAMP signal transduction via the BPDE-PTK pathway or neuroendocrine pathway, resulting in immunosuppression. Additionally, B[a]P induced the increase in reactive oxygen species (ROS) content and DNA damage, as well as an upregulation of key genes in the mitochondrial pathway and death receptor pathway, leading to the increase of apoptosis rate. Taken together, this study comprehensively investigated the detoxification metabolic system, neuroendocrine system, and cell apoptosis to explore the toxic mechanism of bivalves under B[a]P stress.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Hou L, Qiao X, Li Y, Jin Y, Liu R, Wang S, Zhou K, Wang L, Song L. A RAC-alpha serine/threonine-protein kinase (CgAKT1) involved in the synthesis of CgIFNLP in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 127:129-139. [PMID: 35709896 DOI: 10.1016/j.fsi.2022.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The RAC-alpha serine/threonine-protein kinase (AKT) is one of the most important protein kinases involved in many biological processes in eukaryotes. In the present study, a novel AKT homologue named CgAKT1 was identified from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgAKT1 cDNA was of 1482 bp encoding a peptide with 493 amino acid residues. There were classical domains in the predicted CgAKT1 protein, including an N-terminal pleckstrin homology domain, a central catalytic domain and a C-terminal hydrophobic domain. The mRNA transcripts of CgAKT1 were detected in all the examined tissues of C. gigas with higher level in gills (8.24-fold of that in mantle, p < 0.05) and haemocytes (3.62-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the mRNA expression of CgAKT1 decreased significantly in haemocytes from 3 h (0.44-fold of that in the control group, p < 0.001) to 24 h (0.20-fold of that in the control group, p < 0.001), and then increased significantly at 48 h (3.65-fold of that in the control group, p < 0.05). The expression level of CgAKT1 mRNA increased significantly at 6 h after rCgIFNLP stimulation, which was 3.60-fold of that in the control group (p < 0.001). The Alexa Fluor 488 positive signals of CgAKT1 protein were found to be distributed in the cytoplasm and cell membrane of haemocytes, while those in the cytoplasm became weaker after poly (I:C) stimulation. In CgAKT1-RNAi oysters, the mRNA expression of cyclic GMP-AMP synthase (CgcGAS) and TANK-binding kinase 1 (CgTBK1) did not change significantly, but the mRNA expression level of stimulator of interferon gene (CgSTING), interferon regulatory factor-1 (CgIRF-1), interferon regulatory factor-8 (CgIRF-8) and IFN-like protein (CgIFNLP) increased significantly, which was 1.40-fold, 1.53-fold, 1.72-fold and 1.99-fold of that in EGFP-RNAi oysters (p < 0.05), respectively. In CgIFNLP-RNAi oysters, the transcripts of CgAKT1 decreased significantly compared to those in EGFP-RNAi oysters (0.16-fold, p < 0.01). Moreover, the expression of p-CgTBK1, CgSTING and CgIFNLP at the protein level in the oysters treated with p-AKT1 activator (SC-79) was significantly suppressed after poly (I:C) stimulation. After the transfection of CgAKT1, the expression of p-cGAS protein in HEK293T cells increased significantly, while the cyclic GMP-AMP in the cells and the interferon (IFN-β) in the cell culture fluid decreased significantly compared with that in the control group. These results indicated that CgAKT1 might play a negative role in antiviral immunity of oyster by regulating the synthesis of CgIFNLP.
Collapse
Affiliation(s)
- Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ranyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Kai Zhou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Li X, Chen T, Wu X, Jiang X, Luo P, E Z, Hu C, Ren C. Apoptosis-Inducing Factor 2 (AIF-2) Mediates a Caspase-Independent Apoptotic Pathway in the Tropical Sea Cucumber ( Holothuria leucospilota). Int J Mol Sci 2022; 23:ijms23063008. [PMID: 35328428 PMCID: PMC8954137 DOI: 10.3390/ijms23063008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Apoptosis, also known as programmed cell death, is a biological process that is critical for embryonic development, organic differentiation, and tissue homeostasis of organisms. As an essential mitochondrial flavoprotein, the apoptosis-inducing factor (AIF) can directly mediate the caspase-independent mitochondrial apoptotic pathway. In this study, we identified and characterized a novel AIF-2 (HlAIF-2) from the tropical sea cucumber Holothuria leucospilota. HlAIF-2 contains a conserved Pyr_redox_2 domain and a putative C-terminal nuclear localization sequence (NLS) but lacks an N-terminal mitochondrial localization sequence (MLS). In addition, both NADH- and FAD-binding domains for oxidoreductase function are conserved in HlAIF-2. HlAIF-2 mRNA was ubiquitously detected in all tissues and increased significantly during larval development. The transcript expression of HlAIF-2 was significantly upregulated after treatment with CdCl2, but not the pathogen-associated molecular patterns (PAMPs) in primary coelomocytes. In HEK293T cells, HlAIF-2 protein was located in the cytoplasm and nucleus, and tended to transfer into the nucleus by CdCl2 incubation. Moreover, there was an overexpression of HlAIF-2-induced apoptosis in HEK293T cells. As a whole, this study provides the first evidence for heavy metal-induced apoptosis mediated by AIF-2 in sea cucumbers, and it may contribute to increasing the basic knowledge of the caspase-independent apoptotic pathway in ancient echinoderm species.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Xiaofen Wu
- Institute for Integrative Biology of the Cell, University of Paris-Saclay, 91198 Paris, France;
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Zixuan E
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (X.L.); (T.C.); (X.J.); (P.L.); (Z.E.); (C.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
- Correspondence:
| |
Collapse
|