1
|
Shi Y, Zhu Z, Li Q, Chen Q, Jiang W, Chen C, Chen X. Molecular characterization of the IgH locus and V(D)J recombination in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109909. [PMID: 39284538 DOI: 10.1016/j.fsi.2024.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
V(D)J recombination is crucial for generating a diverse repertoire of immunoglobulins. Although the V(D)J recombination process has been well characterized in mammals, this process remains largely unexplored in teleosts. In this study, we comprehensively analyzed the IgH locus of a marine fish species large yellow croaker (Larimichthys crocea), and identified 28 V, 19 D, and 8 J gene segments, following a pattern of V-Dζ-Jζ-Cζ-Dμ-Jμ-Cμ1-Cμ2. The V, D, and J gene segments are flanked by consensus recombination signal sequences, with spacer lengths similar to those observed in mammals. The V gene segments are categorized into three distinct families, and exhibited a higher sequence identity compared to those in mammals. Additionally, we designed a set of primers for the examination of the V(D)J recombination in large yellow croaker. RNA-seq analysis showed increased expression of genes related to immunoglobulin production and lymphocyte chemotaxis in IgM + B cells upon Pseudomonas plecoglossicida infection, accompanied by altered expression of V gene segments, suggesting their involvement in the response to P. plecoglossicida infection. Taken together, we identified the IgH locus and V(D)J recombination process of large yellow croaker, which contribute to the understanding of immunoglobulin production and B cell immunity in teleosts, and may provide insights into vaccine development in large yellow croaker.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhuo Zhu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuhua Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuxuan Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenwu Jiang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyi Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
2
|
Ding Y, Zhang Y, Shen Y, Zhang Y, Li Z, Shi Y, Cui Z, Chen X. Aggregation and proliferation of B cells and T cells in MALTs upon Cryptocaryon irritans infection in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109535. [PMID: 38582231 DOI: 10.1016/j.fsi.2024.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.
Collapse
Affiliation(s)
- Yangyang Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yameng Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yibo Shen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yihan Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhangqi Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhengwei Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Shi Y, Zhu Z, Chen Q, Chen X. DNA methylation regulates B cell activation via repressing Pax5 expression in teleost. Front Immunol 2024; 15:1363426. [PMID: 38404580 PMCID: PMC10884147 DOI: 10.3389/fimmu.2024.1363426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
In mammals, the transcription factor Pax5 is a key regulator of B cell development and maturation and specifically expressed in naive/mature B cells but repressed upon B cell activation. Despite the long-standing proposal that Pax5 repression is essential for proper B cell activation, the underlying mechanisms remain largely elusive. In this study, we used a teleost model to elucidate the mechanisms governing Pax5 repression during B cell activation. Treatment with lipopolysaccharide (LPS) and chitosan oligosaccharide (COS) significantly enhanced the antibody secreting ability and phagocytic capacity of IgM+ B cells in large yellow croaker (Larimichthys crocea), coinciding with upregulated expression of activation-related genes, such as Bcl6, Blimp1, and sIgM, and downregulated expression of Pax5. Intriguingly, two CpG islands were identified within the promoter region of Pax5. Both CpG islands exhibited hypomethylation in naive/mature B cells, while CpG island1 was specifically transited into hypermethylation upon B cell activation. Furthermore, treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) prevented the hypermethylation of CpG island1, and concomitantly impaired the downregulation of Pax5 and activation of B cells. Finally, through in vitro methylation experiments, we demonstrated that DNA methylation exerts an inhibitory effect on promoter activities of Pax5. Taken together, our findings unveil a novel mechanism underlying Pax5 repression during B cell activation, thus promoting the understanding of B cell activation process.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuo Zhu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuxuan Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
4
|
Wu H, Fu Q, Teng Y, Mu P, Chen J, Chen X. The identification and expression of an interleukin-21 receptor in large yellow croaker (Larimichthys crocea). Mol Biol Rep 2023; 50:10121-10129. [PMID: 37921979 DOI: 10.1007/s11033-023-08827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND We identified a homologue of IL-21R (LcIL-21R) in large yellow croaker (Larimichthys crocea, Lc). Our investigation focused on understanding the molecular structural features and immune function of LcIL-21R. METHODS We cloned the LcIL-21R gene from the genome of Larimichthys crocea by RT‒PCR, and the molecular and structural characteristics of LcIL-21R were analyzed by a series of protein analysis tools. We used real-time PCR to investigate the tissue distribution of LcIL-21R, and LcIL-21R gene expression regulation was also measured in head kidney leukocytes under trivalent bacterial vaccine or poly (I:C) stimulation. RESULTS The open reading frame (ORF) of the LcIL-21R gene is 1629 bp long and encodes a precursor protein of 542 amino acids (aa), with a 23-aa signal peptide and a 519-aa mature peptide containing four putative N-glycosylation sites. LcIL-21R has two fibronectin type III (FNIII)-like domains (D1 and D2), a transmembrane domain, and a cytoplasmic region. A conserved WSXWS motif was also found in the D2 domain. The predicted structure of the extracellular region of LcIL-21R (LcIL-21R-Ex) is highly similar to that of human IL-21R. LcIL-21R was constitutively expressed in all tissues examined, and LcIL-21R mRNA levels were increased in the head kidney and spleen upon inactivated trivalent bacterial vaccine or poly(I:C) stimulation. CONCLUSIONS Our results suggest that LcIL-21R shares structural and functional properties with IL-21Rs found in other vertebrates, indicating its potential involvement in the IL-21-mediated immune response to pathogenic infections. These findings contribute to our understanding of the evolutionary conservation of IL-21 signaling and its role in the immune system.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Pengfei Mu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Jingjie Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
5
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
6
|
Antczak M, Cañete PF, Chen Z, Belle C, Yu D. Evolution of γ chain cytokines: Mechanisms, methods and applications. Comput Struct Biotechnol J 2022; 20:4746-4755. [PMID: 36147674 PMCID: PMC9465101 DOI: 10.1016/j.csbj.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
The common γ chain family of cytokines and their receptors play fundamental roles in the immune system. Evolutionary studies of γ chain cytokines have elegantly illustrated how the immune system adapts to ever-changing environmental conditions. Indeed, these studies have revealed the uniqueness of cytokine evolution, which exhibits strong positive selection pressure needed to adapt to rapidly evolving threats whilst still conserving their receptor binding capabilities. In this review, we summarise the evolutionary mechanisms that gave rise to the characteristically diverse family of γ chain cytokines. We also speculate on the benefits of studying cytokine evolution, which may provide alternative ways to design novel cytokine therapeutic strategies. Additionally, we discuss current evolutionary models that elucidate the emergence of distinct cytokines (IL-4 and IL-13) and cytokine receptors (IL-2Rα and IL-15Rα). Finally, we address and reflect on the difficulties associated with evolutionary studies of rapidly evolving genes and describe a variety of computational methods that have revealed numerous aspects of cytokine evolution.
Collapse
Affiliation(s)
- Magdalena Antczak
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Pablo F. Cañete
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Clémence Belle
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|