1
|
Holland JG, Prior KF, O'Donnell AJ, Reece SE. Testing the evolutionary drivers of malaria parasite rhythms and their consequences for host-parasite interactions. Evol Appl 2024; 17:e13752. [PMID: 39006006 PMCID: PMC11246599 DOI: 10.1111/eva.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Undertaking certain activities at the time of day that maximises fitness is assumed to explain the evolution of circadian clocks. Organisms often use daily environmental cues such as light and food availability to set the timing of their clocks. These cues may be the environmental rhythms that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or are used simply to maintain internal synchrony. While many pathogens/parasites undertake rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light, food or both, and assessed the fitness implications for parasites, and the consequences for hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but only when the host possess a functional canonical circadian clock. Because parasites in clock-disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit, our results suggest cue(s) from host food act as a proxy rather than being a key selective driver of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting the proxies or the selective factors driving them without impacting host health.
Collapse
Affiliation(s)
- Jacob G. Holland
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
| | | | | | - Sarah E. Reece
- Institute of Ecology and EvolutionUniversity of EdinburghEdinburghUK
- Institute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| |
Collapse
|
2
|
Wang W, Liu Z, Wang X, Zhang F, Ma C, Zhao M, Ma K, Ma L. Feeding rhythm of the zoea larvae of Scylla paramamosain: The dynamic feeding rhythm is not completely synchronized with photoperiod. Heliyon 2024; 10:e29826. [PMID: 38681660 PMCID: PMC11053271 DOI: 10.1016/j.heliyon.2024.e29826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
The feeding rhythm is one of the key factors determining the success of artificial breeding of S. paramamosain. To understand the feeding rhythm of the different zoea larva developmental stages of S. paramamosain, the feeding rate, digestive enzyme activity, and expression of metabolism-related genes were investigated in the present study. The results showed that the S. paramamosain feeding rate has strong diurnal feeding rhythm, being significantly higher at 10:00-14:00 from stages ZI to ZIV. While the feeding rate peaked at 14:00 on Days 10 and 11, the peak shifted to 18:00 on Day 12. The activity of digestive enzymes amylase, pepsin and lipase decreased at night but increased in the daytime, showing a single-phase rhythm similar to that of the feeding rate, suggesting that the digestive enzyme activity was closely associated with the feeding rate during the larval development. Compared to pepsin and lipase, the activity of amylase was the most consistent with feeding rate. In particular, amylase activity peaked at 18:00 on Day 12. Due to its synchronicity with feeding activity, the activity of amylase could provide a potential reference for determining the best feeding time during zoea stages in S. paramamosain breeding. Moreover, the relative mRNA expression of metabolism-related genes SpCHH and SpFAS at most tested points was lower from 10:00 to 14:00, but higher at 18:00 to 6:00 of the next day. On the other hand, the expression patterns of SpHSL and SpTryp were converse to those of SpCHH and SpFAS. Our findings revealed that the S. paramamosain zoea has an obvious feeding rhythm, and the most suitable feeding time was 10:00-18:00 depending on different stages. The feeding rhythm is a critical aspect in aquaculture, influencing a series of physiological functions in aquatic animals. This study provides insights into the feeding rhythm during the zoea development of S. paramamosain, making a significant contribution to optimizing feeding strategy, improving aquafeed utilization, and reducing the impact of residual feed on water environment.
Collapse
Affiliation(s)
| | | | - Xueyang Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Yangpu Area, Shanghai 200090, PR China
| |
Collapse
|
3
|
Chen Y, Wu X, Liu X, Lai J, Gong Q. Comparative transcriptome analysis provides insights into the TDG supersaturation stress response of Schizothorax davidi. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109618. [PMID: 37004899 DOI: 10.1016/j.cbpc.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In the dam discharge season, the supersaturation of total dissolved gas (TDG) in the downstream channel can seriously affect the survival of aquatic organisms. However, few studies have revealed the mechanism by which TDG supersaturation affects the physiology of fish thus far. The present study was conducted to study the mechanism of the effect of TDG supersaturation on Schizothorax davidi, a species that is very sensitive to gas bubble disease. S. davidi was exposed to 116 % TDG supersaturation stress for 24 h. Serum biochemical tests showed that the aspartate aminotransferase and alanine aminotransferase levels after TDG supersaturation exposure were significantly decreased compared to those in the control group, while superoxide dismutase activity was significantly increased. RNA-Seq of gill tissues identified 1890 differentially expressed genes (DEGs), which consisted of 862 upregulated genes and 1028 downregulated genes, in the TDG supersaturation group vs. the control group. Pathway enrichment analysis revealed that the cell cycle, apoptosis and immune signaling pathways were affected by TDG stress. The results of this study may contribute to our understanding of the underlying molecular mechanism of environmental stress in fish.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
4
|
Xu Y, Zhang B, Yu C, Hung Z, Hu N, Cai Y, Li Y. Comparative transcriptome analysis reveals the effects of different feeding times on the hepatopancreas of Chinese mitten crabs. Chronobiol Int 2023:1-12. [PMID: 36927299 DOI: 10.1080/07420528.2023.2189481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Feeding rhythms affect a range of physiological functions in crustaceans. To investigate their effect on the physiological functions of Eriocheir sinensis, herein, we analyzed the influence of different feeding times on the hepatopancreas transcriptome via high-throughput sequencing. We harvested the hepatopancreas of crabs at 12:00 on day 11 of the experiment. We weighted the crabs before and after the experiment and found that those in the 06:00 group had the highest weight gain rate. In addition, 512 differentially expressed genes (DEGs) were grouped into nine distinct clusters. Functional enrichment analysis of DEGs showed that E. sinensis metabolic and immune processes were affected by the feeding time. Furthermore, we mapped the DEGs involved in retinol metabolism and the lysosome pathway. To our knowledge, this is the first comparative transcriptomic analysis of the hepatopancreas of E. sinensis based on different feeding times, which provides multi-level information to reveal the mechanism underlying the regulation of feeding rhythms in E. sinensis.
Collapse
Affiliation(s)
- Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | - Ziwei Hung
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Nan Hu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuqiao Cai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Chen Y, Wu X, Liu X, Lai J, Liu Y, Song M, Li F, Gong Q. Biochemical, transcriptomic and metabolomic responses to total dissolved gas supersaturation and their underlying molecular mechanisms in Yangtze sturgeon (Acipenser dabryanus). ENVIRONMENTAL RESEARCH 2023; 216:114457. [PMID: 36183788 DOI: 10.1016/j.envres.2022.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of hydropower facility construction, the total dissolved gas (TDG) generated by dam discharge is seriously threatening the survival of fish and has become an ecological environmental issue of global concern. However, how TDG affects fish physiology and the underlying molecular mechanism remain poorly known. In this study, Acipenser dabryanus, an ancient living fossil that is a flagship species of the Yangtze River, was exposed to water supersaturated with TDG at a level of 116% for 48 h. A comprehensive analysis was performed to study the effect of TDG supersaturation stress on A. dabryanus, including histopathological, biochemical, transcriptomic and metabolomic analyses. The histopathological results showed that mucosal-associated lymphoid tissues were seriously damaged after TDG supersaturation stress. Plasma catalase levels increased significantly under TDG supersaturation stress, while superoxide dismutase levels decreased significantly. Transcriptomic analysis revealed 289 upregulated genes and 162 downregulated genes in gill tissue and 535 upregulated and 104 downregulated genes in liver tissue. Metabolomic analysis revealed 63 and 164 differentially abundant metabolites between the control group and TDG group in gill and liver, respectively. The majority of heat shock proteins and genes related to ubiquitin and various immune-related pathways were significantly upregulated by TDG supersaturation stress. Integrated transcriptomic and metabolomic analyses revealed the upregulation of amino acid metabolism and glycometabolism pathways under TDG supersaturation stress. Glycerophospholipid metabolism was increased which might be associated with maintaining cell membrane integrity. This is the first study revealing the underlying molecular mechanisms of effects of TDG supersaturation on fish. Our results suggested that acute TDG supersaturation stress could enhance immune and antioxidative functions and activate energy metabolic pathways as an adaptive mechanism in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Xiaoqing Liu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
6
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Integrated biochemical, transcriptomic and metabolomic analyses provide insight into heat stress response in Yangtze sturgeon (Acipenser dabryanus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114366. [PMID: 36508793 DOI: 10.1016/j.ecoenv.2022.114366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
7
|
Xu Y, Huang Z, Zhang B, Yu C, Li L, Li X, Li Y. Intestinal bacterial community composition of juvenile Chinese mitten crab Eriocheir sinensis under different feeding times in lab conditions. Sci Rep 2022; 12:22206. [PMID: 36564429 PMCID: PMC9789113 DOI: 10.1038/s41598-022-26785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Feeding time is an important factor affecting the physiological activity and feeding rhythm of crustaceans. However, little is known about the factors and mechanisms contributing to variations in feeding time in aquatic species or their impacts. Moreover, the gut microbiome largely affects host physiology and is associated with diet. To investigate the effects of different feeding times on the composition of intestinal bacterial communities, high-throughput 16S rRNA sequencing was used to monitor the gut bacteria of the Chinese mitten crab Eriocheir sinensis over a 10-day period under different feeding times: 06:00 h, 12:00 h, 18:00 h, and 24:00 h. Weight gain of the day-fed groups was significantly higher than that of the night-fed groups. Two probiotics, Akkermansia muciniphila and Faecalibacterium prausnitzii, were detected in the intestines of crabs in the 12:00 group. In addition, the diversity and richness of the flora in the 12:00 group were slightly higher than those in the other treatment groups. These results collectively indicate that different feeding times change the intestinal flora composition of Chinese mitten crabs, and further identified specific feeding times associated with a more significant weight gain effect. Our findings provide important insights into improving farming strategies for Chinese mitten crabs.
Collapse
Affiliation(s)
- Yingkai Xu
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Ziwei Huang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Baoli Zhang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Changyue Yu
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Lisong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Xiaodong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Yingdong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| |
Collapse
|