1
|
Deng Y, Zhan W, Xie S, Peng H, Cao H, Tang Z, Tian Y, Zhu T, Sun P, Jin M, Zhou Q. Multi-omics analysis revealed the effects of different astaxanthin sources on the antioxidant properties of Scylla paramamosain. Food Chem 2025; 478:143470. [PMID: 40049124 DOI: 10.1016/j.foodchem.2025.143470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 04/06/2025]
Abstract
Astaxanthin, a carotenoid present in many organisms, has antioxidant, coloration, and anti-inflammatory benefits, making it a safe and effective feed additive. In this study, Scylla paramamosain fed diets with 100 mg/kg synthetic astaxanthin and 25 mg/kg Haematococcus pluvialis exhibited the best growth performance. Increased astaxanthin levels in the feed also resulted in red coloration of the carapace. Transcriptomic and metabolomic analysis showed that synthetic astaxanthin promoted the metabolism of arachidonic acid (phosphatidycholine (PC, 35:3) and 20-hydroxyarachidonic acid through negative feedback regulation of carotenoids such as adh (alcohol dehydrogenase) and cyp2c (cytochrome p450 2c), thereby improving the antioxidant capacity such as sod1 (Cu/Zn superoxide dismutase), gsh-px (glutathione peroxidase), and bbox1 (gamma-butyrobetaine hydroxylase 1). Nature astaxanthin (Haematococcus Pluvialis) activates mitochondrial energy metabolism (ND2, ND4 and COX1, COX2, COX3) through negative feedback regulation of carotenoids (bcmo1, β-carotene-15,15'-monooxygenase 1), thereby improving the antioxidant capacity of crabs (sod1, fth1 (ferritin heavy chain) and bbox1).
Collapse
Affiliation(s)
- Yao Deng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenhao Zhan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Haiqing Cao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheng Tang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yinqiu Tian
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Díaz N, Muñoz S, Medina A, Riquelme C, Lozano-Muñoz I. Microchloropsis gaditana as a Natural Antimicrobial with a One Health Approach to Food Safety in Farmed Salmon. Life (Basel) 2025; 15:455. [PMID: 40141798 PMCID: PMC11943575 DOI: 10.3390/life15030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Sustainably farmed Atlantic salmon could drive global food system solutions by contributing essential nutrients to the human diet while delivering high-quality protein. One of the biggest obstacles to sustainable salmon aquaculture in Chile is the prevalence of piscirickettsiosis disease caused by the Gram-negative bacteria Piscirickettsia salmonis and the excessive amount of antibiotics used to eradicate this disease. Farmed salmon products can be consumed without prior processing and therefore present a substantial risk for the transfer of resistant pathogens to humans. Antibiotics also carry the risk of antibiotic residues and damage to the environment. An alternative to antibiotics is the use of natural antimicrobials without the negative influence on the consumer's microbiome. Here, we evaluate the potential antimicrobial activity against P. salmonis of the marine microalgae Microchloropsis gaditana. A non-genetically modified M. gaditana was grown with nitrogen deprivation to improve the synthesis of the eicosapentaenoic fatty acid (EPA). A spray-dried M. gaditana concentrate (Mg) was elaborated and given to Atlantic salmon for a period of 49 days, and serum and fillet samples were collected. Our results showed a significant increase in the nutritional quality improving the levels of EPA+ Docosapentaenoic acid (DPA) (23%) and Vitamin D3 (106%) of the fillets treated with Mg. Fish fed serum were challenged with P. salmonis, and serum antibacterial activity was measured. Sera from fish fed Mg-enriched diets showed a significant increase in antibacterial activity (85.68%) against P. salmonis. Our results indicate that Mg can be used as a viable alternative to address the critical problem of microbial resistance and to assure consumers that farm-raised Atlantic salmon is safe.
Collapse
Affiliation(s)
- Nelson Díaz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820000, Chile; (N.D.); (S.M.)
| | - Susana Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820000, Chile; (N.D.); (S.M.)
| | - Alberto Medina
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de los Lagos, Alberto Hertha Fuchslocher 1305, Osorno 5380000, Chile;
| | - Carlos Riquelme
- Centro de Bioinnovación, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Angamos 601, Antofagasta 1270300, Chile;
| | - Ivonne Lozano-Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820000, Chile; (N.D.); (S.M.)
| |
Collapse
|
3
|
Islam SM, Willora FP, Sørensen M, Rbbani G, Siddik MAB, Zatti K, Gupta S, Carr I, Santigosa E, Brinchmann MF, Thompson KD, Vatsos IN. Mucosal barrier status in Atlantic salmon fed rapeseed oil and Schizochytrium oil partly or fully replacing fish oil through winter depression. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109549. [PMID: 38599365 DOI: 10.1016/j.fsi.2024.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.
Collapse
Affiliation(s)
- Sm Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Golam Rbbani
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Kyla Zatti
- Biomar, Havnegata 9, 7010, Trondheim, Norway
| | | | - Ian Carr
- Veramaris, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Ester Santigosa
- DSM Nutritional Products, Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
4
|
Mardi A, Kamran A, Pourfarzi F, Zare M, Hajipour A, Doaei S, Abediasl N, Hackett D. Potential of macronutrients and probiotics to boost immunity in patients with SARS-COV-2: a narrative review. Front Nutr 2023; 10:1161894. [PMID: 37312883 PMCID: PMC10259402 DOI: 10.3389/fnut.2023.1161894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-COV-2) may cause inflammation and increased cytokine secretion. Dietary factors may play an important role in enhancing the immune responses against infectious diseases such as SARS-COV-2. This narrative review aims to determine the effectiveness of macronutrients and probiotics to improve immunity in SARS-COV-2 patients. Dietary proteins may boost pulmonary function in SARS-COV-2 patients through inhibitory effects on the Angiotensin-converting enzyme (ACE) and reduce Angiotensin (ANG-II). Moreover, omega-3 fatty acids may improve oxygenation, acidosis, and renal function. Dietary fiber may also produce anti-inflammatory effects by reducing the level of high-sensitivity C-Reactive Protein (hs-CRP), Interleukin (IL-6), and Tumor necrosis factor (TNF-α). In addition, some evidence indicates that probiotics significantly improve oxygen saturation which may enhance survival rate. In conclusion, the consumption of a healthy diet including adequate macronutrients and probiotic intake may decrease inflammation and oxidative stress. Following this dietary practice is likely to strengthen the immune system and have beneficial effects against SARS-COV-2.
Collapse
Affiliation(s)
- Afrouz Mardi
- Department of Public Health, School of Health, Ardabil University of Medical Science, Ardabil, Iran
| | - Aziz Kamran
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Zare
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Abediasl
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Daniel Hackett
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Lidcombe, NSW, Australia
| |
Collapse
|
5
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|