1
|
Liu M, Li Z, Li J, Yan G, Liu C, Yin Q, Liu Y, Xu X. Chitosan oligosaccharide alleviates DON-induced liver injury via suppressing ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117530. [PMID: 39674026 DOI: 10.1016/j.ecoenv.2024.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Chitosan oligosaccharide (COS), a water-soluble derivative of chitin, has been recognized for its diverse biological properties. Deoxynivalenol (DON) is a prevalent mycotoxin, causing extreme liver damage. However, the mechanism whereby COS alleviates DON-induced liver injury remains unclear. In the present study, C57BL/6 mice were randomly divided into four groups: control (CON), DON (1.0 mg/d/kg BW DON), COS (200 mg/d/kg BW COS), and COS+DON (200 mg/d/kg BW COS + 1.0 mg/d/kg BW DON), with a period of 28 days. The results indicated that COS effectively reversed DON-induced weight loss, elevated liver index, and liver hemorrhage and swelling in mice. Moreover, COS significantly reduced liver reactive oxygen species (ROS) levels, malondialdehyde (MDA) content, and lactate dehydrogenase (LDH) release in DON-exposed mice, while restoring the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC). Further investigations revealed that COS modulated the expressions of pro-inflammatory cytokines and anti-apoptotic proteins through stimulation of the Nrf2/HO-1 signaling pathway and suppression of the NF-κB signaling pathway. Additionally, COS inhibited ferroptosis by modulating the SLC7A11/GSH/GPX4 pathway and the expression of FTH1 and FLC proteins, thereby reducing lipid peroxidation accumulation and iron overload. In summary, this research showed that COS mitigated DON-induced liver injury in mice by alleviating DON-induced oxidative stress, inflammation, apoptosis, and ferroptosis via modulating the Nrf2/HO-1/NF-κB and GPX4 signaling pathways. These results offer a theoretical basis for the development and application of COS as a novel liver protectant and propose innovative therapeutic strategies for combating DON-induced liver damage.
Collapse
Affiliation(s)
- Mengjie Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenlin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Guorong Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
2
|
Xie J, Yin Y, Lin B, Li X, Li Q, Tang X, Pan L, Xiong X. Autophagy and PPARs/NF-κB-associated inflammation are involved in hepatotoxicity induced by the synthetic phenolic antioxidant 2,4-di-tert-butylphenol in common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116937. [PMID: 39226863 DOI: 10.1016/j.ecoenv.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The synthetic phenolic antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) is an emergent contaminant and can disrupt the delicate balance of aquatic ecosystems. This study aimed to investigate 2,4-DTBP-induced hepatotoxicity in common carp and the underlying mechanisms involved. Sixty common carp were divided into four groups and exposed to 0 mg/L, 0.01 mg/L, 0.1 mg/L or 1 mg/L 2,4-DTBP for 30 days. Here, we first demonstrated that 2,4-DTBP exposure caused liver damage, manifested as hepatocyte nuclear pyknosis, inflammatory cell infiltration and apoptosis. Moreover, 2,4-DTBP exposure induced hepatic reactive oxygen species (ROS) overload and disrupted antioxidant capacity, as indicated by the reduced activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In addition, transmission electron microscopy revealed that 2,4-DTBP exposure induced autophagosome accumulation in the liver of common carp. Western blot analysis further revealed that 2,4-DTBP exposure significantly decreased the protein levels of mTOR and increased the LC3II/LC3I ratio. Furthermore, 2,4-DTBP exposure inhibited lysozyme (LZM) and alkaline phosphatase (AKP) activity; decreased immunoglobulin M (IgM), complement 3 (C3), and complement 4 (C4) levels in the serum; increased the mRNA levels of proinflammatory cytokines (NF-κB, TNF-α, IL-1β and IL-6); and increased the mRNA levels of three types of proliferator-activated receptors (PPARs) (α, β/δ and γ). Molecular docking revealed that 2,4-DTBP directly binds to the internal active pocket of PPARs. Overall, we concluded that 2,4-DTBP exposure in aquatic systems could induce hepatotoxicity in common carp by regulating autophagy and controlling inflammatory responses. The present study provides new insights into the hepatotoxicity mechanism induced by 2,4-DTBP in aquatic organisms and furthers our understanding of the effects of 2,4-DTBP on public health and ecotoxicology.
Collapse
Affiliation(s)
- Jiaqi Xie
- Hunan Food and Drug Vocational College, Changsha, Hunan Province 410208, China
| | - Yuxiang Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Bixiao Lin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xinlian Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Qiuyue Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Xiaoqing Tang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000,, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Xuan Xiong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
3
|
Wang X, Chen H, Jiang J, Ma J. Hesperidin Alleviates Hepatic Injury Caused by Deoxynivalenol Exposure through Activation of mTOR and AKT/GSK3β/TFEB Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14349-14363. [PMID: 38869217 DOI: 10.1021/acs.jafc.4c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3β/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3β/TFEB pathway, thereby reducing liver injury.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, P. R. China
| |
Collapse
|
4
|
Chen H, Xin W, Jiang J, Shan A, Ma J. Low-dose deoxynivalenol exposure inhibits hepatic mitophagy and hesperidin reverses this phenomenon by activating SIRT1. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133854. [PMID: 38401214 DOI: 10.1016/j.jhazmat.2024.133854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Deoxynivalenol (DON) is by far the most common mycotoxin contaminating cereal foods and feeds. Furthermore, cleaning up DON from contaminated cereal items is challenging. Low-dose DON consumption poses a danger to humans and agricultural animals. The benefits of hesperidin (HDN) include liver protection, anti-oxidative stress, nontoxicity, and a broad range of sources. The study used immunoblotting, immunofluorescence, and transmission electron microscopy to identify factors associated with mitophagy in vitro and in vivo. We demonstrated that low-dose DON exposure inhibited mitophagy in the liver tissue of mice. SIRT1 was a crucial regulator of mitophagy. Moreover, DON stimulated the dephosphorylation of SIRT1 and the acetylation-regulated FOXO3 protein, which resulted in the transcriptional inhibition of FOXO3-driven BNIP3 and compromised the stability of the PINK1 protein mediated by BNIP3. Moreover, HDN's effect was comparable to that of a SIRT1 agonist, which led to a significant decrease in the level of mitophagy inhibition caused by low-dose DON exposure. When combined, these findings suggested that HDN might be a useful treatment approach for liver damage brought on by low-dose DON exposure. Above all, this research will offer fresh perspectives on a viable approach that will encourage further research into risk reduction initiatives for low-dose DON exposure.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wang Xin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Lv H, Wang J, Geng Y, Xu T, Han F, Gao XJ, Guo MY. Green tea polyphenols inhibit TBBPA-induced lung injury via enhancing antioxidant capacity and modulating the NF-κB pathway in mice. Food Funct 2024; 15:3411-3419. [PMID: 38470815 DOI: 10.1039/d4fo00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1β, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.
Collapse
Affiliation(s)
- Hongli Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Jingjing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Tianchao Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Fuxin Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Jiang J, Ruan Y, Liu X, Ma J, Chen H. Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6660-6671. [PMID: 38501926 DOI: 10.1021/acs.jafc.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Deoxynivalenol (DON) contamination, pervasive throughout all stages of food production and processing, presents a significant threat to human health. The degradation of ferritin mediated by nuclear receptor coactivator 4 (NCOA4), termed ferritinophagy, plays a crucial role in maintaining iron homeostasis and regulating ferroptosis. Aim: This study aims to elucidate the role of ferritinophagy and ferroptosis in DON-induced liver injury. Methods: Male mice and AML12 cells were subjected to varying doses of DON, serving as in vivo and in vitro models, respectively. Protein expression was assessed by using immunofluorescence and western blot techniques. Co-immunoprecipitation was employed to investigate the protein-protein interactions. Results: Our findings demonstrate that DON triggers hepatocyte ferroptosis in a ferritinophagy-dependent manner. Specifically, DON impedes the activation of the mammalian target of rapamycin complex 1 (mTORC1) by inhibiting RAC1's binding to mTOR, thereby ultimately inducing autophagy. Concurrently, DON amplifies NCOA4's affinity for ferritin by facilitating NCOA4 phosphorylation through the ataxia-telangiectasia mutated kinase (ATM), thus promoting the autophagy-dependent degradation of ferritin. Both autophagy inhibition and NCOA4 expression suppression ameliorate DON-induced ferroptosis. Conclusion: Our study concludes that DON facilitates NCOA4-mediated ferritinophagy via the ATM-NCOA4 pathway, subsequently inducing ferroptosis in the liver.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, P. R. China
| | - Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
7
|
Ji X, Guo J, Ma Y, Zhang S, Yang Z, Li Y, Ping K, Xin Y, Dong Z. Quercetin alleviates the toxicity of difenoconazole to the respiratory system of carp by reducing ROS accumulation and maintaining mitochondrial dynamic balance. Toxicol Appl Pharmacol 2024; 484:116860. [PMID: 38342444 DOI: 10.1016/j.taap.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Difenoconazole (DFZ) is a fungicidal pesticide extensively employed for the management of fungal diseases in fruits, vegetables, and cereal crops. However, its potential environmental impact cannot be ignored, as DFZ accumulation is able to lead to aquatic environment pollution and harm to non-target organisms. Quercetin (QUE), a flavonoid abundant in fruits and vegetables, possesses antioxidant and anti-inflammatory properties. In this article, carp were exposed to 400 mg/kg QUE and/or 0.3906 mg/L DFZ for 30 d to investigate the effect of QUE on DFZ-induced respiratory toxicity in carp. Research shows that DFZ exposure increases reactive oxygen species (ROS) production in the carp's respiratory system, leading to oxidative stress, inflammation, and damage to gill tissue and tight junction proteins. Further research demonstrates that DFZ induces mitochondrial dynamic imbalance and gill cell apoptosis. Notably, QUE treatment significantly reduces ROS levels, alleviates oxidative stress and inflammation, and mitigates mitochondrial dynamics imbalance and mitochondrial apoptosis. This study emphasizes the profound mechanism of DFZ toxicity to the respiratory system of common carp and the beneficial role of QUE in mitigating DFZ toxicity. These findings contribute to a better understanding of pesticide risk assessment in aquatic systems and provide new insights into strategies to reduce their toxicity.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajia Guo
- Lianyungang Higher Vocational College of Traditional Chinese Medicine, Lianyungang 222000, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zuwang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
8
|
Huang Y, Zou S, Zhan P, Hao Z, Lu Q, Jing W, Li Y, Xu Y, Wang H. Dinotefuran induces oxidative stress and autophagy on Bombyx mori silk gland: Toxic effects and implications for nontarget organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122470. [PMID: 37657723 DOI: 10.1016/j.envpol.2023.122470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Dinotefuran, a third-generation neonicotinoid insecticide, is widely utilized in agriculture for pest control; however, its environmental consequences and risks to non-target organisms remain largely unknown. Bombyx mori is an economically important insect and a good toxic detector for environmental assessments. In this study, ultrastructure analysis showed that dinotefuran exposure caused an increase in autophagic vesicles in the silk gland. Dinotefuran exposure triggered elevated levels of oxidative stress in silk glands. Reactive oxygen species, oxidized glutathione disulfide, glutathione peroxidase, the activities of UDP glucuronosyl-transferase and carboxylesterase were induced in the middle silk gland, while malondialdehyde, reactive oxygen species, superoxide dismutase , oxidized glutathione disulfide were increased in the posterior silk gland. Global transcription patterns revealed the physiological responses were induced by dinotefuran. Dinotefuran exposure substantially induced the expression levels of many genes involved in the mTOR and PI3K - Akt signaling pathways in the middle silk gland, whereas many differentially expressed genes involved in fatty acid and pyrimidine metabolism were found in the posterior silk gland. Additionally, functional, ultrastructural, and transcriptomic analysis indicate that dinotefuran exposure induced an increase of autophagy in the silk gland. This study illuminates the toxicity effects of dinotefuran exposure on silkworms and provides new insights into the underlying molecular toxicity mechanisms of dinotefuran to nontarget organisms.
Collapse
Affiliation(s)
- Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengfei Zhan
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Miao Z, Miao Z, Feng S, Xu S. Chlorpyrifos-mediated mitochondrial calcium overload induces EPC cell apoptosis via ROS/AMPK/ULK1. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109053. [PMID: 37661036 DOI: 10.1016/j.fsi.2023.109053] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Chlorpyrifos (CPF) is a typical organophosphate insecticide known to has serious toxicological effects on aquatic animals and causes many environmental contamination problems. To assess the effects of CPF on the epithelioma papulosum cyprini (EPC) cells of the common carps from the point of calcium ion (Ca2+) transport, the CPF-exposed EPC models were primarily established, and both AO/EB staining and Annexin V/PI assay with flow cytometry analysis were subsequently implemented to identify that CPF-induced EPC cell apoptosis, in consistent with the up-regulated expression of BAX, Cyt-c, CASP3 and CASP9, and down-regulated BCL-2 expression. Then, Mag-Fluo-4 AM, Fluo-4 AM and Rhod-2 AM staining probes were co-stained with ER-Tracker Red and Mito-Tracker Green applied to image cellular Ca2+ flux, illuminating Ca2+ depleted from ER and flux into mitochondria, resulting in ER stress and mitochondrial dysfunction. Additionally, 2-Aminoethyl Diphenylborinate (2-APB), 4-Phenylbutyric acid (4-PBA) and Dorsomorphin (Compound C) were performed as the inhibitor of Ca2+ transition, ER stress and AMPK phosphorylation, suggesting CPF-mediated Ca2+ overload triggered ER stress. And the over-generation of Mito-ROS intensified oxidative stress, promoting the phosphorylation of AMPK and deteriorating cell apoptotic death. The results of this study demonstrated Ca2+ overload-dependent mitochondrial dysfunction engages in the CPF-induced apoptosis, providing a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuang Feng
- Large Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
10
|
Li S, Xie J, Bai Y, Jiang Z, Li K, Wu C. Synthetic phenolic antioxidants evoked hepatoxicity in grass carp (Ctenopharyngodon idella) through modulating the ROS-PI3K/mTOR/AKT pathway: Apoptosis-autophagy crosstalk. FISH & SHELLFISH IMMUNOLOGY 2023:108906. [PMID: 37348686 DOI: 10.1016/j.fsi.2023.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are an environmental concern due to their persistence nature and bioaccumulation. However, the hepatoxicity and mechanisms of SPAs in aquatic organisms remain poorly understood. In this study, grass carp were exposed to two representative SPAs (BHA and BHT) at environmentally relevant levels (0.1 μM) for 30 days. We observed that BHA and BHT exposure significantly increased the levels of serum aminotransferase (ALT) and aspartate aminotransferase (AST) in grass carp, accompanied by mild inflammatory cell infiltration and irregularity in the shape of hepatocytes. Dihydro ethylenediamine staining showed that BHA and BHT exposure resulted in elevated levels of superoxide levels, accompanied by increased antioxidant enzyme activities (T-AOC, SOD, CAT, GSH-PX) and MDA levels, which is suggestive of oxidative stress responses in the liver of grass carp. Besides, BHA and BHT could dock into the pocket of phosphatidylinositol 3-kinases (PI3K) and thereby inhibiting PI3K/mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling cascades. Meanwhile, our results clarified that BHA and BHT could promote autophagosome production and increase the expression of key autophagy proteins, likely due to inhibition of PI3K/mTOR/AKT signaling pathway. Moreover, BHA and BHT could induce apoptotic process by upregulating the expression of Bax, Caspase3 and Caspase8 and downregulating Bcl2 expression. Notably, BHT exhibited more hepatoxicity on the indicators of the apoptosis and oxidative stress than BHA. In summary, our findings demonstrated that BHA and BHT exposure could induce liver damage induced via regulating ROS/PI3K-mediated autophagic hyperactivation, which is a crucial step in triggering hepatocyte death. This study provides novel insight into the potential mechanisms underlying liver damage caused by BHA and BHT in aquatic organisms, and offers a new theoretical basis for ecological risk assessment of SPAs.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, PR China
| | - Jiaqi Xie
- Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, PR China; Hunan Food and Drug Vocational College, Changsha 410078, Hunan Province, PR China
| | - Yiang Bai
- Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, PR China
| | - Zhihao Jiang
- Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, PR China
| | - Keman Li
- Xiangya School of Public Health, Central South University, Changsha 410078, Hunan Province, PR China
| | - Chunling Wu
- Gannan Healthcare Vocational College, Ganzhou 341000, Jiangxi Province, PR China; Department of Pathophysiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China.
| |
Collapse
|