1
|
Midtbø HMD, Borchel A, Morton HC, Paley R, Monaghan S, Haugland GT, Øvergård AC. Cell death induced by Lepeophtheirus salmonis labial gland protein 3 in salmonid fish leukocytes: A mechanism for disabling host immune responses. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109992. [PMID: 39481500 DOI: 10.1016/j.fsi.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The salmon louse (Lepeophtheirus salmonis) is an ectoparasite feeding on mucus, skin, and blood of salmonids. On parasitised fish erosions and, at later lice stages, ulcerations appear at the louse feeding site. In susceptible species like Atlantic salmon (Salmo salar) with a limited rejection of lice, only a mild inflammatory response with minor influx of immune cells is seen at these lesions, as the salmon louse secrete proteins that can dampen immune responses. In a previous study, Lepeophtheirus salmonis labial gland protein 3 (LsLGP3) was suggested to dampen cellular responses, and the present study aimed at increasing our understanding of its mode of action. LsLGP3 was found to be secreted on to the host skin, and both in vivo and in vitro experiments were performed to elucidate its function. Histological analysis of the louse attachment site revealed an epidermal and dermal influx of mainly macrophages and granulocytes after 5 days post infestation. The immune cell influx was deeper in the dermis throughout the louse infestation, and LsLGP3 may be involved in dampening this response. Enriched populations of Atlantic salmon B-cells, T-cells, granulocytes, and monocytes were exposed to recombinant LsLGP3 (recLGP3) in vitro, resulting in a significant decrease in cell viability compared to non-exposed controls. An apoptotic cell morphology with "beads-on-a-string" like protrusions was seen in all leukocyte cell fractions after recLGP3 exposure, but not in erythrocytes or keratocytes. A decreased viability was also detected in pink salmon leucocytes, which was not in leucocytes from non-salmonid species. These functional insights suggest that LsLGP3 specifically induces apoptosis of salmonid leukocytes and is likely a key protein secreted by the lice that disables the Atlantic salmon ability to mount an adequate immune response towards the salmon louse. In vivo LsLGP3 knock down studies indicated that the effect is localised primarily at the lice feeding site, without affecting immune cells that are not situated adjacent to the lice-inflicted lesion. The findings from this study could significantly aid in the development of new immune based anti-salmon louse prophylactic measures and treatments.
Collapse
Affiliation(s)
| | - Andreas Borchel
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Richard Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, DT4 8UB, United Kingdom
| | - Sean Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Gyri Teien Haugland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020, Bergen, Norway
| |
Collapse
|
2
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Etayo A, Bjørgen H, Hordvik I, Øvergård AC. Possible transport routes of IgM to the gut of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109583. [PMID: 38657879 DOI: 10.1016/j.fsi.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Fish rely on mucosal surfaces as their first defence barrier against pathogens. Maintaining mucosal homeostasis is therefore crucial for their overall well-being, and it is likely that secreted immunoglobulins (sIg) play a pivotal role in sustaining this balance. In mammals, the poly-Ig receptor (pIgR) is an essential component responsible for transporting polymeric Igs across mucosal epithelia. In teleost fish, a counterpart of pIgR has been identified and characterized, exhibiting structural differences and broader mRNA expression patterns compared to mammals. Despite supporting evidence for the binding of Igs to recombinant pIgR proteins, the absence of a joining chain (J-chain) in teleosts challenges the conventional understanding of Ig transport mechanisms. The transport of IgM to the intestine via the hepatobiliary route is observed in vertebrates and has been proposed in a few teleosts. Investigations on the stomachless fish, ballan wrasse, revealed a significant role of the hepatobiliary route and interesting possibilities for alternative IgM transport routes that might include pancreatic tissue. These findings highlight the importance of gaining a thorough understanding of the mechanisms behind Ig transport to the gut in various teleosts. This review aims to gather existing information on pIgR-mediated transport across epithelial cells and immunoglobulin transport pathways to the gut lumen in teleost fish. It provides comparative insights into the hepatobiliary transport of Igs to the gut, emphasizing the current understanding in teleost fish while exploring potential alternative pathways for Ig transport to the gut lumen. Despite significant progress in understanding various aspects, there is still much to uncover, especially concerning the diversity of mechanisms across different teleost species.
Collapse
Affiliation(s)
- Angela Etayo
- Institute of Marine Research, Bergen, Norway; Fish Health group, Department of Biological sciences, University of Bergen, Norway.
| | - Håvard Bjørgen
- Anatomy Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ivar Hordvik
- Fish Health group, Department of Biological sciences, University of Bergen, Norway
| | | |
Collapse
|
4
|
Midtbø HMD, Eichner C, Hamre LA, Dondrup M, Flesland L, Tysseland KH, Kongshaug H, Borchel A, Skoge RH, Nilsen F, Øvergård AC. Salmon louse labial gland enzymes: implications for host settlement and immune modulation. Front Genet 2024; 14:1303898. [PMID: 38299097 PMCID: PMC10828956 DOI: 10.3389/fgene.2023.1303898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Salmon louse (Lepeophtheirus salmonis) is a skin- and blood-feeding ectoparasite, infesting salmonids. While feeding, labial gland proteins from the salmon louse may be deposited on the Atlantic salmon (Salmo salar) skin. Previously characterized labial gland proteins are involved in anti-coagulation and may contribute to inhibiting Atlantic salmon from mounting a sufficient immune response against the ectoparasite. As labial gland proteins seem to be important in the host-parasite interaction, we have, therefore, identified and characterized ten enzymes localized to the labial gland. They are a large group of astacins named L. salmonis labial gland astacin 1-8 (LsLGA 1-8), one serine protease named L. salmonis labial gland serine protease 1 (LsLGSP1), and one apyrase named L. salmonis labial gland apyrase 1 (LsLGAp1). Protein domain predictions showed that LsLGA proteins all have N-terminal ShK domains, which may bind to potassium channels targeting the astacins to its substrate. LsLGA1 and -4 are, in addition, expressed in another gland type, whose secrete also meets the host-parasite interface. This suggests that LsLGA proteins may have an anti-microbial function and may prevent secondary infections in the wounds. LsLGAp1 is predicted to hydrolyze ATP or AMP and is, thereby, suggested to have an immune dampening function. In a knockdown study targeting LsLGSP1, a significant increase in IL-8 and MMP13 at the skin infestation site was seen under LsLGSP1 knockdown salmon louse compared to the control, suggesting that LsLGSP1 may have an anti-inflammatory effect. Moreover, most of the identified labial gland proteins are expressed in mature copepodids prior to host settlement, are not regulated by starvation, and are expressed at similar or higher levels in lice infesting the salmon louse-resistant pink salmon (Oncorhynchus gorbuscha). This study, thereby, emphasizes the importance of labial gland proteins for host settlement and their immune dampening function. This work can further contribute to anti-salmon louse treatment such as vaccine development, functional feed, or gene-edited salmon louse-resistant Atlantic salmon.
Collapse
Affiliation(s)
| | - Christiane Eichner
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Lars Are Hamre
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Sea Lice Research Centre, Department of Informatics, University of Bergen, Bergen, Norway
| | - Linn Flesland
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Borchel
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Renate Hvidsten Skoge
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Stølen Ugelvik M, Mennerat A, Mæhle S, Dalvin S. Repeated exposure affects susceptibility and responses of Atlantic salmon ( Salmo salar) towards the ectoparasitic salmon lice ( Lepeophtheirus salmonis). Parasitology 2023; 150:990-1005. [PMID: 37705306 PMCID: PMC10941223 DOI: 10.1017/s0031182023000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Atlantic salmon (Salmo salar) is repeatedly exposed to and infected with ectoparasitic salmon lice (Lepeophtheirus salmonis) both in farms and in nature. However, this is not reflected in laboratory experiments where fish typically are infected only once. To investigate if a previous lice infection affects host response to subsequent infections, fish received 4 different experimental treatments; including 2 groups of fish that had previously been infected either with adult or infective salmon lice larvae (copepodids). Thereafter, fish in all treatment groups were infected with either a double or a single dose of copepodids originating from the same cohort. Fish were sampled when lice had developed into the chalimus, the pre-adult and the adult stage, respectively. Both the specific growth rate and cortisol levels (i.e. a proxy for stress) of the fish differed between treatments. Lice success (i.e. ability to infect and survive on the host) was higher in naïve than in previously infected fish (pre-adult stage). The expression of immune and wound healing transcripts in the skin also differed between treatments, and most noticeable was a higher upregulation early in the infection in the group previously infected with copepodids. However, later in the infection, the least upregulation was observed in this group, suggesting that previous exposure to salmon lice affects the response of Atlantic salmon towards subsequent lice infections.
Collapse
Affiliation(s)
- Mathias Stølen Ugelvik
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Adele Mennerat
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Stig Mæhle
- Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|