1
|
Li Z, Bao X, Liu X, Wang Y, Zhu X, Zhang Y, Wang Z, Maslennikov S, Whiteside M, Wang W, Xu X, Li B, Luo Q, Li Y, Wang S, Hu B, Yang J. Transcriptome analysis provides preliminary insights into the response of Sepia esculenta to high salinity stress. AGRICULTURE COMMUNICATIONS 2024; 2:100064. [DOI: 10.1016/j.agrcom.2024.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Cho Y, Hanif MA, Hossen S, Kim SC, Han JD, Cho DH, Kho KH. The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation. BIOLOGY 2024; 13:944. [PMID: 39596899 PMCID: PMC11591584 DOI: 10.3390/biology13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Perlucin is a shell matrix protein that plays a significant role in regulating shell biomineralization. This study aimed to isolate and characterize the perlucin gene and analyze its expression to explore its role in shell formation, regeneration, and responses to thermal stress and starvation in Pacific abalone. The isolated full-length cDNA sequence of Hdh-Perlucin is 1002 bp long, encoding a 163-amino-acid polypeptide with a signal peptide. The mature peptide of Hdh-Perlucin contains a C-type lectin domain with signature motif and six conserved cysteine residues. Gene Ontology analysis suggests that Hdh-Perlucin exhibits carbohydrate-binding activity. Significantly higher expression of Hdh-Perlucin was observed during the juvenile, veliger, and trochophore stages, compared with cell division stage during early development. Upregulated expression was recorded from slow to rapid growth phases and during shell biomineralization, while downregulated expression was noted during starvation. Under thermal stress, expression peaked at 30 °C and 25 °C for 6 and 12 h, respectively, while consistently higher levels were observed at 15 °C throughout the experiment. This study provides the first comprehensive structural and expression analysis of Hdh-Perlucin, highlighting its roles in metamorphosis, shell formation and regeneration, and responses to heat stress and starvation in abalone.
Collapse
Affiliation(s)
- Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (S.C.K.); (J.D.H.)
| | - Ji Do Han
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (S.C.K.); (J.D.H.)
| | - Doo Hyun Cho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea; (Y.C.); (M.A.H.); (S.H.); (D.H.C.)
| |
Collapse
|
3
|
Rowley AF, Baker-Austin C, Boerlage AS, Caillon C, Davies CE, Duperret L, Martin SAM, Mitta G, Pernet F, Pratoomyot J, Shields JD, Shinn AP, Songsungthong W, Srijuntongsiri G, Sritunyalucksana K, Vidal-Dupiol J, Uren Webster TM, Taengchaiyaphum S, Wongwaradechkul R, Coates CJ. Diseases of marine fish and shellfish in an age of rapid climate change. iScience 2024; 27:110838. [PMID: 39318536 PMCID: PMC11420459 DOI: 10.1016/j.isci.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions. A changing climate can adversely influence the host and environment, while augmenting pathogen characteristics simultaneously, thereby favoring disease outbreaks. Herein, we use a series of case studies covering some of the world's most cultured aquatic species (e.g., salmonids, penaeid shrimp, and oysters), and the pathogens (viral, fungal, bacterial, and parasitic) that afflict them, to illustrate the magnitude of disease-related problems linked to climate change.
Collapse
Affiliation(s)
- Andrew F Rowley
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Annette S Boerlage
- Centre for Epidemiology and Planetary Health (CEPH), SRUC School of Veterinary Medicine, Inverness, Scotland, UK
| | - Coline Caillon
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Charlotte E Davies
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Léo Duperret
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guillaume Mitta
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - Fabrice Pernet
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Jarunan Pratoomyot
- Institute of Marine Science, Burapha University, Chonburi 20131, Thailand
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Andrew P Shinn
- INVE Aquaculture (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Gun Srijuntongsiri
- School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jeremie Vidal-Dupiol
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Tamsyn M Uren Webster
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | | | - Christopher J Coates
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Chen S, Du F, Shang K, Chen H, Guo R, Liao C, Jia Y, Yu Z, Li J, Zhang C, Ding K. Colonization Mediated by T6SS-ClpV Disrupts Host Gut Microbiota and Enhances Virulence of Salmonella enterica serovar Typhimurium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19155-19166. [PMID: 39161106 DOI: 10.1021/acs.jafc.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common foodborne enteric pathogen that infects humans or mammals and colonizes the intestinal tract primarily by invading the host following ingestion. Meanwhile, ClpV is a core secreted protein of the bacterial type VI secretion system (T6SS). Because elucidating ClpV's role in the pathogenesis of T6SS is pivotal for revealing the virulence mechanism of Salmonella, in our study, clpV gene deletion mutants were constructed using a λ-red-based recombination system, and the effect of clpV mutation on SL1344's pathogenicity was examined in terms of stress resistance, motility, cytokine secretion, gut microbiota, and a BALB/c mouse model. Among the results, ClpV affected SL1344's motility and was also involved in cell invasion, adhesion, and intracellular survival in the MDBK cell model but did not affect invasion or intracellular survival in the RAW264.7 cell model. Moreover, clpV gene deletion significantly reduced the transcription levels of GBP2b, IFNB1, IL-6, NLRP3, NOS2, and TNF-α proinflammatory factor levels but significantly increased transcription levels of IL-4 and IL-10 anti-inflammatory factors. Last, ClpV appeared to closely relate to the pathogenicity of S. Typhimurium in vivo, which can change the gut environment and cause dysbiosis of gut microbiota. Our findings elucidate the functions of ClpV in S. Typhimurium and illustrating interactions between T6SS and gut microbiota help to clarify the mechanisms of the pathogenesis of foodborne diseases.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450000, China
| | - Fuxi Du
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Huimin Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongxian Guo
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450000, China
| | - Yanyan Jia
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chunjie Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450000, China
| |
Collapse
|
5
|
Zhang X, Zhang Z, Yan Q, Du Z, Zhao L, Qin Y. Amino Acid-Induced Chemotaxis Plays a Key Role in the Adaptation of Vibrio harveyi from Seawater to the Muscle of the Host Fish. Microorganisms 2024; 12:1292. [PMID: 39065061 PMCID: PMC11278769 DOI: 10.3390/microorganisms12071292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Vibrio harveyi is a normal flora in natural marine habitats and a significant opportunistic pathogen in marine animals. This bacterium can cause a series of lesions after infecting marine animals, in which muscle necrosis and ulcers are the most common symptoms. This study explored the adaptation mechanisms of V. harveyi from the seawater environment to host fish muscle environment. The comprehensive transcriptome analysis revealed dramatic changes in the transcriptome of V. harveyi during its adaptation to the host fish muscle environment. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, flagellar assembly, oxidative phosphorylation, bacterial chemotaxis, and two-component systems play crucial roles in V. harveyi's adaptation to host fish muscle. A comparison of biological phenotypes revealed that V. harveyi displayed a significant increase in flagellar length, swimming, twitching, chemotaxis, adhesion, and biofilm formation after induction by host fish muscle, and its dominant amino acids, especially bacterial chemotaxis induced by host muscle, Ala and Arg. It could be speculated that the enhancement of bacterial chemotaxis induced by amino acids plays a key role in the adaptation of V. harveyi from seawater to the muscle of the host fish.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Zhe Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Qingpi Yan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Ziyan Du
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Lingmin Zhao
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| |
Collapse
|
6
|
Chen Y, Zhang W, Chen X, Zhang T, Wei H, Huang J, Fan C, Cai M, Wang Y, Zhang Z. Identification, diversity, and evolution analysis of Commd gene family in Haliotis discus hannai and immune response to biotic and abiotic stresses. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109533. [PMID: 38575039 DOI: 10.1016/j.fsi.2024.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The Commd (Copper Metabolism gene MURR1 Domain) family genes play crucial roles in various biological processes, including copper and sodium transport regulation, NF-κB activity, and cell cycle progression. Their function in Haliotis discus hannai, however, remains unclear. This study focused on identifying and analyzing the Commd genes in H. discus hannai, including their gene structure, phylogenetic relationships, expression profiles, sequence diversity, and alternative splicing. The results revealed significant homology between H. discus hannai's Commd genes and those of other mollusks. Both transcriptome quantitative analysis and qRT-PCR demonstrated the responsiveness of these genes to heat stress and Vibrio parahaemolyticus infection. Notably, alternative splicing analysis revealed that COMMD2, COMMD4, COMMD5, and COMMD7 produce multiple alternative splice variants. Furthermore, sequence diversity analysis uncovered numerous missense mutations, specifically 9 in COMMD5 and 14 in COMMD10. These findings contribute to expanding knowledge on the function and evolution of the Commd gene family and underscore the potential role of COMMD in the innate immune response of H. discus hannai. This research, therefore, offers a novel perspective on the molecular mechanisms underpinning the involvement of Commd genes in innate immunity, paving the way for further explorations in this field.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenxin Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Chen
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tao Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huina Wei
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianpeng Huang
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Fan
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Kim JA, Kim MJ, Choi JY, Park YS, Kim JH, Choi CY. Exposure to bisphenol A and fiber-type microplastics induce oxidative stress and cell damage in disk abalone Haliotis discus hannai: Bioaccumulation and toxicity. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109277. [PMID: 38072138 DOI: 10.1016/j.fsi.2023.109277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Along with environmental pollution caused by rapid economic development and industrialization, plastic waste is emerging as a global concern in relation to marine ecosystems and human health. Among the microplastics, fiber-type microfibers (MF) and bisphenol A (BPA), which are widely used as plasticizers, do not decompose well in the ocean, and tend to accumulate in organisms, generating an increased oxidative stress response. This study investigated the abalones' antioxidant and cell death responses following exposure to the environmental pollutants MF and BPA. Levels of malondialdehyde (MDA) and DNA damage increased over time, demonstrating the degree of lipid peroxidation and DNA damage in abalones exposed to individual and combined environmental conditions of MF and BPA. Compared to the single MF and BPA exposure groups, the combined exposure group showed a higher expression of antioxidant enzymes. A similar pattern was seen in the expression of the apoptosis enzyme caspase-3. Both MF and BPA caused oxidative stress and antioxidant enzymes were expressed to alleviate it, but it is believed that cell damage occurred because the stress level exceeded the allowed range.
Collapse
Affiliation(s)
- Jin A Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Min Ju Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Ji Yong Choi
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|