1
|
Zhang B, Yang H, Cai G, Nie Q, Sun Y. The interactions between the host immunity and intestinal microorganisms in fish. Appl Microbiol Biotechnol 2024; 108:30. [PMID: 38170313 DOI: 10.1007/s00253-023-12934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of pathogenic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms tune host immunity. This review will offer theoretical references for the development, application, and commercialization of intestinal functional microorganisms in fish. KEY POINTS: • The interactions between the intestinal microorganisms and host immunity in zebrafish • Fish immunity senses and shapes the microbiota • Intestinal microbes tune host immunity in fish.
Collapse
Affiliation(s)
- Biyun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Hongling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Guohe Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Qingjie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
2
|
Berggren H, Yıldırım Y, Nordahl O, Larsson P, Dopson M, Tibblin P, Lundin D, Pinhassi J, Forsman A. Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes. Mol Ecol 2024; 33:e17496. [PMID: 39161196 DOI: 10.1111/mec.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Pavić D, Geček S, Miljanović A, Grbin D, Bielen A. Characterization of Bacterial Communities on Trout Skin and Eggs in Relation to Saprolegnia parasitica Infection Status. Microorganisms 2024; 12:1733. [PMID: 39203577 PMCID: PMC11357440 DOI: 10.3390/microorganisms12081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
We have investigated the changes in the microbial communities on the surface of trout eggs and the skin of adult trout in relation to the presence of Saprolegnia parasitica. This pathogen causes saprolegniosis, a disease responsible for significant losses in salmonid farms and hatcheries. It is known from other disease systems that the host-associated microbiome plays a crucial role in the defence against pathogens, but if the pathogen predominates, this can lead to dysbiosis. However, analyses of the effects of S. parasitica on the diversity, composition, and function of microbial communities on fish skin and eggs are scarce. Thus, we have collected skin swabs from injured and healthy trout (N = 12), which differed in S. parasitica load, from three different fish farms in Croatia (Kostanjevac, Radovan, and Solin), while trout egg samples (N = 12) were infected with S. parasitica in the laboratory. Illumina sequencing of the V4 region of the 16S rRNA marker gene showed that infection with S. parasitica reduced the microbial diversity on the surface of the eggs, as evidenced by decreased Pielou's evenness and Shannon's indices. We further determined whether the bacterial genera with a relative abundance of >5.0% in the egg/skin samples were present at significantly different abundances in relation to the presence of S. parasitica. The results have shown that some genera, such as Pseudomonas and Flavobacterium, decreased significantly in the presence of the pathogen on the egg surface. On the other hand, some bacterial taxa, such as Acinetobacter and Janthinobacterium, as well as Aeromonas, were more abundant on the diseased eggs and the injured trout skin, respectively. Finally, beta diversity analyses (weighted UniFrac, unweighted UniFrac, Bray-Curtis) have shown that the sampling location (i.e., fish farm), along with S. parasitica infection status, also has a significant influence on the microbial communities' composition on the trout skin and eggs, demonstrating the strong influence of the environment on the shaping of the host surface microbiome. Overall, we have shown that the presence of S. parasitica was associated with changes in the diversity and structure of the trout skin/egg microbiome. The results obtained could support the development of new strategies for the management of saprolegniosis in aquaculture.
Collapse
Affiliation(s)
- Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| | - Dorotea Grbin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (D.P.); (A.M.); (D.G.)
| |
Collapse
|
4
|
Ortega-Kindica RCMH, Padasas-Adalla CS, Tabugo SRM, Martinez JGT, Amparado OA, Moneva CSO, Dalayap R, Lomeli-Ortega CO, Balcazar JL. Shotgun Metagenomics Reveals Taxonomic and Functional Patterns of the Microbiome Associated with Barbour's Seahorse (Hippocampus barbouri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:835-841. [PMID: 38864950 DOI: 10.1007/s10126-024-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour's seahorse (Hippocampus barbouri) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour's seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.
Collapse
Affiliation(s)
- Rose Chinly Mae H Ortega-Kindica
- Department of Biology and Environmental Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines.
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines.
| | - Chinee S Padasas-Adalla
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Department of Biological Sciences, Cavite State University, Don Severino Campus, Indang, 4000, Philippines
| | - Sharon Rose M Tabugo
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Joey Genevieve T Martinez
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Mathematical Biology and Nematology Research Cluster, Complex System Groups, Premier Research Institute of Science and Mathematics (PRISM), MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Olive A Amparado
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Carlo Stephen O Moneva
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Rodelyn Dalayap
- Department of Biology, Sultan Kudarat State University, Tacurong City, Sultan Kudarat, 9800, Philippines
| | - Carlos O Lomeli-Ortega
- Catalan Institute for Water Research (ICRA), Girona, 17003, Spain
- University of Girona, Girona, 17004, Spain
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona, 17003, Spain.
- University of Girona, Girona, 17004, Spain.
| |
Collapse
|
5
|
Padasas-Adalla CS, Ortega-Kindica RCM, Dalayap R, Martinez JG, Amparado O, Moneva CS, Lomelí-Ortega CO, Tabugo SR, Balcázar JL. Deciphering taxonomic and functional patterns of microbial communities associated with the tiger tail seahorse ( Hippocampus comes). Physiol Genomics 2024; 56:590-595. [PMID: 38975795 DOI: 10.1152/physiolgenomics.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Gaining insight into the diversity, structure, and metabolic functions of microbial communities is essential for understanding their roles in host health and ecosystem dynamics. However, research on the seahorse-associated microbiome remains limited, despite these threatened fish facing increasing human pressures worldwide. Here, we explored the microbial diversity and metabolic functions of the skin and gut of the tiger tail seahorse (Hippocampus comes) and its surrounding environment using shotgun metagenomics and bioinformatics. Members of the Pseudomonadota phylum were dominant in the skin microbiome, whereas Bacteroidota was dominant in the gut. Bacillota, Actinomycetota, and Planctomycetota were also detected in the seahorse-associated microbiome. Statistical analysis revealed significant differences (P < 0.01) in species diversity between skin and gut microbiomes, with members belonging to the Moraxellaceae family being dominant on the skin and the Bacteroidaceae family in the gut. Moreover, the surrounding environment (water or sediment) did not have a direct effect on the seahorse microbiome composition. The skin microbiome exhibited a higher abundance of functional genes related to energy, lipid, and amino acid metabolism as well as terpenoids and polyketides metabolism, xenobiotics biodegradation, and metabolism compared with the gut. Despite differences among classes, the total abundance of bacteriocins was similar in both gut and skin microbiomes, which is significant in shaping microbial communities due to their antimicrobial properties. A better knowledge of seahorse microbiomes benefits conservation and sustainable aquaculture efforts, offering insights into habitat protection, disease management, and optimizing aquaculture environments, thereby promoting seahorse health and welfare while minimizing environmental impact and enhancing aquaculture sustainability.NEW & NOTEWORTHY To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in the tiger tail seahorse. These findings have the potential to significantly enhance our understanding of the seahorse-associated microbiome, thereby contributing to the prediction and control of bacterial infections in seahorses, which are a leading cause of high mass mortality rates in seahorse aquaculture and other fish species.
Collapse
Affiliation(s)
- Chinee Surita Padasas-Adalla
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
- Department of Biological Sciences, College of Arts and Sciences, Cavite State University - Main Campus, Cavite, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
| | - Rose Chinly Mae Ortega-Kindica
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
- Department of Biology and Environmental Science, University of the Philippines Cebu, Cebu City, Philippines
| | - Rodelyn Dalayap
- Department of Biology, Sultan Kudarat State University, Tacurong City, Philippines
| | - Joey Genevieve Martinez
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
- Complex Systems Group, Premier Research Institute of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
| | - Olive Amparado
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
| | - Carlo Stephen Moneva
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
| | | | - Sharon Rose Tabugo
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan, Philippines
| | - José Luis Balcázar
- Catalan Institute for Water Research, Girona, Spain
- University of Girona, Girona, Spain
| |
Collapse
|
6
|
Bell AG, McMurtrie J, Bolaños LM, Cable J, Temperton B, Tyler CR. Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome. FEMS Microbiol Ecol 2024; 100:fiae021. [PMID: 38366921 PMCID: PMC10903987 DOI: 10.1093/femsec/fiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
The skin of fish contains a diverse microbiota that has symbiotic functions with the host, facilitating pathogen exclusion, immune system priming, and nutrient degradation. The composition of fish skin microbiomes varies across species and in response to a variety of stressors, however, there has been no systematic analysis across these studies to evaluate how these factors shape fish skin microbiomes. Here, we examined 1922 fish skin microbiomes from 36 studies that included 98 species and nine rearing conditions to investigate associations between fish skin microbiome, fish species, and water physiochemical factors. Proteobacteria, particularly the class Gammaproteobacteria, were present in all marine and freshwater fish skin microbiomes. Acinetobacter, Aeromonas, Ralstonia, Sphingomonas and Flavobacterium were the most abundant genera within freshwater fish skin microbiomes, and Alteromonas, Photobacterium, Pseudoalteromonas, Psychrobacter and Vibrio were the most abundant in saltwater fish. Our results show that different culturing (rearing) environments have a small but significant effect on the skin bacterial community compositions. Water temperature, pH, dissolved oxygen concentration, and salinity significantly correlated with differences in beta-diversity but not necessarily alpha-diversity. To improve study comparability on fish skin microbiomes, we provide recommendations for approaches to the analyses of sequencing data and improve study reproducibility.
Collapse
Affiliation(s)
- Ashley G Bell
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Luis M Bolaños
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Ben Temperton
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- College of Life and Environmental Sciences, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
- Sustainable Aquaculture Futures, The University of Exeter, Exter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
7
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|