1
|
Jin XY, Zhang HQ, Feng Z, Liu H, Wang XY, Luo HB, Li XP, Sun YY, Li MF. Complement-activated fragment Ba functions as an antibacterial protein and mediates immune responses in lower vertebrates. J Biol Chem 2025; 301:108278. [PMID: 39922488 PMCID: PMC11929084 DOI: 10.1016/j.jbc.2025.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
The complement system plays an important role in antibacterial infection and immune regulation. Ba, an important complement component, is produced and released by the cleavage of complement factor B during complement activation. However, the immune functions of Ba are unclear. In this study, we reported that recombinant Ba exerted direct bactericidal and immune regulatory effects. Recombinant Paralichthys olivaceus Ba (rPoBa) bound bacteria via interaction with the bacterial wall component lipopolysaccharide, resulting in bacterial membrane permeabilization and bacterial death. Furthermore, rPoBa exhibited bactericidal activity against Gram-negative bacteria in a manner that depended on concentration, time, temperature, pH, and metal ions. Structure prediction analysis showed that PoBa contained three distinct complement control protein (CCP) domains. CCP1 was mainly responsible for binding to lipopolysaccharide, and both CCP1 and CCP3 might be required for bacterial membranous permeabilization. The bactericidal effects of Ba were observed only in lower vertebrates, with no such effects observed in mammals. In addition, rPoBa could protect P. olivaceus against Vibrio harveyi infection both in vitro and in vivo by significantly improving the immune activity of peripheral blood leukocytes and reducing tissue bacterial loads. Consistently, when PoCFB expression in P. olivaceus was knocked down, the PoBa production and complement activity were decreased, and bacterial replication was significantly enhanced. In conclusion, this study revealed that the complement-activated recombinant Ba fragment improved the immune defense against bacterial infection and provided a potential strategy to control disease in lower vertebrates.
Collapse
Affiliation(s)
- Xiao-Yan Jin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Zhe Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Heng Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xuan-Yue Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Hao-Bin Luo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
2
|
Wang X, Zhu L, Du Z, Li H, Hou L, Li C, Jiang X, Zhang J, Pei C, Li L, Kong X. Host-derived Pediococcus acidilactici B49: A promising probiotic for immunomodulation and disease control in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110148. [PMID: 39848418 DOI: 10.1016/j.fsi.2025.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Finding effective alternatives to antibiotics is crucial for sustainable aquaculture. Host-derived probiotics have great potential as a promising alternative to antibiotics for immune regulation and disease control in fish farming. However, limited research exists regarding the application of native probiotics in largemouth bass (Micropterus salmoides). This study aims to evaluate the potential of the endogenous strain Pediococcus acidilactici B49 as a probiotic in modulating host immunity and disease control through in vitro and in vivo experiments. The results demonstrated that P. acidilactici B49 exhibited no hemolytic activity and displayed susceptibility to most tested antibiotics. It successfully survived and colonized in the intestinal tract of the largemouth bass. Furthermore, this strain showed remarkable antibacterial activity against common aquatic pathogens, including gram-positive and gram-negative bacteria, and also exhibited resistance against Aeromonas hydrophila on the head kidney leukocytes of largemouth bass in vitro. Following an 8-week feeding trial, P. acidilactici B49 improved host immunity by increasing intestinal lysozyme activity, enhancing IL-8 expression, reducing TGF-β expression, and enhancing IgM levels in both serum and intestinal mucus. It also potentiated the phagocytic activity of peripheral blood lymphocytes. In addition, the B49 feeding group showed a significant increase in intestinal villus height. The challenge test with A. hydrophila demonstrated that the administration of P. acidilactici B49 effectively maintained intestinal barrier integrity, reduced gut inflammation, decreased pathogen load in the spleen, and improved survival rates in largemouth bass. In conclusion, the host-derived strain P. acidilactici B49 exhibited broad-spectrum antibacterial ability, biosafety, and intestinal colonization in largemouth bass. It effectively improved immune function, intestinal health, and resistance against A. hydrophila in the host. Therefore, P. acidilactici B49 is a promising probiotic for immunomodulation and disease control in largemouth bass aquaculture.
Collapse
Affiliation(s)
- Xinru Wang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Zhengyan Du
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Hao Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Libo Hou
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chen Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xinyu Jiang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Zhang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Pei
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Li Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Zhao KY, Chen GY, Huang H, Jiao XD, Li XP, Zhang J. PoCXCL8, a teleost chemokine, exerts direct bactericidal, chemotactic/phagocytic, and NETs releasing properties, promoting host anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109874. [PMID: 39241818 DOI: 10.1016/j.fsi.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce. In this research, we investigated the antibacterial property and leukocyte activation of PoCXCL8. PoCXCL8 consists of 100 amino acid residues, with a conserved chemokine CXC domain. PoCXCL8 was expressed in various tissues, with the highest level in liver and the lowest level in muscle, and sharply induced by V. harveyi or E. tarda in liver, spleen, and head kidney. In vitro, the recombinant PoCXCL8 (rPoCXCL8) could bind to Bacillus subtilis, Edwardsiella tarda, Escherichia coli, Pseudomonas fluorescens, Vibrio anguillarum, Vibrio harveyi, Staphylococcus aureus, and Micrococcus luteus, affect the growth of E. coli, E. tarda, M. luteus, and P. fluorescens, and have a direct bactericidal effect on E. coli and E. tarda. Moreover, rPoCXCL8 was able to bind the outer membranal protein rPilA of E. tarda. In addition, rPoCXCL8 could bind to PBLs, activating the PBLs activity including chemotaxis, proliferation, phagocytosis, reactive oxygen species, acid phosphatase activity. At same time, rPoCXCL8 could induce neutrophil to generate neutrophil extracellular traps (NETs) and promote the expression of inflammatory genes including IL-1β, IL6, MMP13, TNF-α, and NF-κB. In flounder, the presence of rPoCXCL8 could enhance the in vivo resistance to E. tarda in liver, spleen, and head kidney. Moreover, the PoCXCL8-deficient could attenuate the fish defense against E. tarda infection in in spleen and head kidney. In conclusion, these results provided new insights into the antibacterial properties of CXCL8 in P. olivaceus.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Guan-Yu Chen
- School of Ocean, Yantai University, Yantai, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xu-Dong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
4
|
Zhao KY, Fang Y, Xu RJ, Zhang J, Sun B, Li XP. PoIL8-L, a teleost interleukin-8 like, enhances leukocyte cellular vitality and host defense against bacterial infections in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109876. [PMID: 39236861 DOI: 10.1016/j.fsi.2024.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Interleukin-8 (IL-8), a CXC chemokine, exerts pivotal effect on cell migration, inflammatory response, and immune regulation. In this study, we examined the immunological characteristics of an IL-8 like homologue (PoIL8-L) in Japanese flounder (Paralichthys olivaceus). PoIL8-L contains a conserved chemokine CXC domain and 105 amino acid residues. PoIL8-L expression in tissues was constitutive, and significantly regulated by V. havieri or E. tarda infection. In vitro, rPoIL8-L could bind to eight tested bacteria, exhibited bacteriostatic and bactericidal effects against certain bacteria, and could bind to the targeted bacterial Ⅳ pilin protein rPilA of E. tarda. Furthermore, rPoIL8-L could attach to peripheral blood leukocytes, and enhance their immune genes expression, respiratory burst, chemotaxis, proliferation, acid phosphatase activity, and phagocytic activity. Additionally, rPoIL8-L induce neutrophils to extrude neutrophil extracellular traps. In vivo, rPoIL8-L could promote host resistance to E. tarda infection. In summary, these findings provide fresh perspectives on the immunological antibacterial properties of IL-8 in teleost.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Yue Fang
- School of Ocean, Yantai University, Yantai, China
| | | | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Bin Sun
- School of Ocean, Fujian Polytechnic Normal University, Fuzhou, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
5
|
Du YT, Zhang HQ, Li Y, Li XP, Yuan ZZ, Li MF. Teleost-specific TLR23 in Takifugu rubripes recruits MyD88 to trigger ERK pathway and promotes antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109724. [PMID: 38942251 DOI: 10.1016/j.fsi.2024.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.
Collapse
Affiliation(s)
- Yu-Ting Du
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Yan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Zeng-Zhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Zhao KY, Huang H, Jin Q, Wang L, Jiao XD, Li XP. CsIL-20, a tongue sole interleukin-20, negatively mediates leucocyte activity and antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109325. [PMID: 38154762 DOI: 10.1016/j.fsi.2023.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Interleukin-20 (IL-20), as an essential member of IL-10 family, plays vital roles in mammalian immunological response such as antimicrobial, inflammation, hematopoiesis, and immune diseases. In teleost, the study about immune antimicrobial function of IL-20 is largely scarce. In this article, we revealed the expression profiles and the immunological functions of the IL-20 (CsIL-20) in tongue sole Cynoglossus semilaevis. CsIL-20 is composed of 183 amino acid residues, with seven cysteine residues and a typical IL-10 domain which comprises six α-helices and two β-sheets, and shares 34.4-71.2 % identities with other teleost IL-20. CsIL-20 was constitutively expressed in a variety of tissues and regulated by bacterial invasion, and the recombinant CsIL-20 (rCsIL-20) could bind to different bacteria. In vitro rCsIL-20 could interact with the membrane of peripheral blood leukocytes (PBLs), leading to the attenuation of reactive oxygen species (ROS) production and acid phosphatase activity in PBLs. In line with In vitro results, In vivo rCsIL-20 could obviously suppressed the host immune against bacterial infection. Furthermore, knockdown of CsIL-20 in vivo could markedly enhance the host antibacterial immunity. Collectively, these observations offer new insights into the negative effect of CsIL-20 on antibacterial immunity.
Collapse
Affiliation(s)
- Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Qiu Jin
- School of Ocean, Yantai University, Yantai, China
| | - Lei Wang
- School of Ocean, Yantai University, Yantai, China
| | - Xu-Dong Jiao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|