1
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Comparative phenotype and transcriptome analysis revealed the role of ferric uptake regulator (Fur) in the virulence of Vibrio harveyi isolated from diseased American eel (Anguilla rostrata). JOURNAL OF FISH DISEASES 2024; 47:e13931. [PMID: 38373044 DOI: 10.1111/jfd.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids. Then, a mutant strain, HA_1-Δfur, was constructed through homologous recombination of a suicide plasmid (pCVD442). The HA_1-Δfur mutant exhibited weaker biofilm formation and swarming motility, and 18-fold decrease (5.5%) in virulence to the American eels; compared to the wild-type strain, the mutant strain showed time and diameter differences in growth and haemolysis, respectively. Additionally, the adhesion ability of the mutant strain was significantly decreased. Moreover, there were 15 different biochemical indicators observed between the two strains. Transcriptome analysis revealed that 875 genes were differentially expressed in the Δfur mutant, with 385 up-regulated and 490 down-regulated DEGs. GO and KEGG enrichment analysis revealed that, compared to the wild-type strain, the type II and type VI secretion systems (T2SS and T6SS), amino acid synthesis and transport and energy metabolism pathways were significantly down-regulated, but the ABC transporters and biosynthesis of siderophore group non-ribosomal peptides pathways were up-regulated in the Δfur strain. The qRT-PCR results further confirmed that DEGs responsible for amino acid transport and energy metabolism were positively regulated, but DEGs involved in iron acquisition were negatively regulated in the Δfur strain. These findings suggest that the virulence of the Δfur strain was significantly decreased, which is closely related to phenotype changing and gene transcript regulation.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
2
|
Janda JM, Duman M. Expanding the Spectrum of Diseases and Disease Associations Caused by Edwardsiella tarda and Related Species. Microorganisms 2024; 12:1031. [PMID: 38792860 PMCID: PMC11124366 DOI: 10.3390/microorganisms12051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Edwardsiella, previously residing in the family Enterobacteriaceae and now a member of the family Hafniaceae, is currently composed of five species, although the taxonomy of this genus is still unsettled. The genus can primarily be divided into two pathogenic groups: E. tarda strains are responsible for almost all human infections, and two other species (E. ictaluri, E. piscicida) cause diseases in fish. Human infections predominate in subtropical habitats of the world and in specific geospatial regions with gastrointestinal disease, bloodborne infections, and wound infections, the most common clinical presentations in decreasing order. Gastroenteritis can present in many different forms and mimic other intestinal disturbances. Chronic gastroenteritis is not uncommon. Septicemia is primarily found in persons with comorbid conditions including malignancies and liver disease. Mortality rates range from 9% to 28%. Most human infections are linked to one of several risk factors associated with freshwater or marine environments such as seafood consumption. In contrast, edwardsiellosis in fish is caused by two other species, in particular E. ictaluri. Both E. ictaluri and E. piscicida can cause massive outbreaks of disease in aquaculture systems worldwide, including enteric septicemia in channel catfish and tilapia. Collectively, these species are increasingly being recognized as important pathogens in clinical and veterinary medicine. This article highlights and provides a current perspective on the taxonomy, microbiology, epidemiology, and pathogenicity of this increasingly important group.
Collapse
Affiliation(s)
- J. Michael Janda
- Kern County Public Health Laboratory, Bakersfield, CA 93306, USA
| | - Muhammed Duman
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey;
| |
Collapse
|
3
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
4
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Δfur mutant as a potential live attenuated vaccine (LAV) candidate protects American eels (Anguilla rostrata) from Vibrio harveyi infection. Microb Pathog 2024; 189:106591. [PMID: 38401591 DOI: 10.1016/j.micpath.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
5
|
Chen M, Wan Q, Xu M, Chen Z, Guo S. Transcriptome Analysis of Host Anti-Vibrio harveyi Infection Revealed the Pathogenicity of V. harveyi to American Eel (Anguilla rostrata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:306-323. [PMID: 38367180 DOI: 10.1007/s10126-024-10298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.
Collapse
Affiliation(s)
- Minxia Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China.
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|