1
|
Liu Z, Wang J, Li Z, Zhang G. mRNA for Body Fluid and Individual Identification. Electrophoresis 2024. [PMID: 39498727 DOI: 10.1002/elps.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Biological stains are one of the most important pieces of evidence, playing a multifaceted role in forensic investigations. An integral facet of forensic practice involves the identification of body fluids, typically achieved through chemical and enzymatic reactions. In recent decades, the introduction of mRNA markers has been posited as a pivotal advancement to augment the capabilities of body fluid identification (BFID). The mRNA coding region single-nucleotide polymorphisms (cSNPs) also present notable advantages, particularly in the task of individual identification. Here, we review the specificity and stability of mRNA markers in the context of BFID and the prowess of mRNA polymorphism in individual identification. Additionally, innovative methods for mRNA detection are discussed.
Collapse
Affiliation(s)
- Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
2
|
Neis M, Groß T, Schneider H, Schneider PM, Courts C. Comprehensive body fluid identification and contributor assignment by combining targeted sequencing of mRNA and coding region SNPs. Forensic Sci Int Genet 2024; 73:103125. [PMID: 39182373 DOI: 10.1016/j.fsigen.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Forensic genetic analyses aim to retrieve as much information as possible from biological trace material recovered from crime scenes. While standard short tandem repeat (STR) profiling is essential to individualize biological traces, its significance is diminished in crime scenarios where the presence of a suspect's DNA is acknowledged by all parties. In such cases, forensic (m)RNA analysis can provide crucial contextualizing information on the source level about a trace's composition, i.e., body fluids/tissues, and has therefore emerged as a powerful tool for modern forensic investigations. However, the question which of several suspects contributed a specific component (body fluid) to a mixed trace cannot be answered by RNA analysis using conventional methods. This individualizing information is stored within the sequence of the mRNA transcripts. Massively parallel sequencing (MPS) represents a promising alternative, offering not only higher multiplex capacity, but also the typing of individual coding region SNPs (cSNPs) to enable the assignment of contributors to mixture components, thereby reducing the risk of association fallacies. Herein, we describe the development of an extensive mRNA/cSNP panel for targeted sequencing on the IonTorrent S5 platform. Our panel comprises 30 markers for the detection of six body fluids/tissues (blood, saliva, semen, skin, vaginal and menstrual secretion), along with 70 linkage-controlled cSNPs for contributor assignment. It exhibited high reliable detection sensitivity with RNA inputs down to 0.75 ng and a conservatively calculated probability of identity of 0.03 - 6 % for individual body fluid-specific cSNP profiles. Limitations and areas for future work include RNA-related allele imbalances, inclusion of markers to correctly identify rectal mucosa and the optimization of specific markers. In summary, our new panel is intended to be a major step forward to interpret biological evidence at sub-source and source level based on cSNP attribution of a body fluid component to a suspect and victim, respectively.
Collapse
Affiliation(s)
- Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Theresa Groß
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Harald Schneider
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Cornelius Courts
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Zhang J, Yu D, Zhang L, Wang T, Yan J. Environmental microbiota from substrate may interfere with microbiome-based identification of forensically relevant body fluids: A pilot study. Forensic Sci Int Genet 2024; 74:103170. [PMID: 39509997 DOI: 10.1016/j.fsigen.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
The microbiome is a promising tool for identifying body fluids which can be deposited on various substrates at a crime scene. Body fluids collected from crime scenes are not entirely free from substrate microbes whose effects on the microbiome-based identification of body fluids are not well understood. In this study, five body fluids (peripheral blood, menstrual blood, nasal secretions, saliva, and semen) were deposited on sterile swabs, bedspreads, and floors under indoor exposure conditions for 7 days. The microbial communities in the samples were characterized using amplicon sequencing targeted V4 region of 16S rRNA gene. The results showed that the microbial communities of fresh samples deposited on sterile swabs clustered together according to the type of body fluid. The microbial composition of the body fluids deposited on the bedspread and floor is significant different from those deposited on sterile swabs. The microbial communities of mock body fluids were a mixture of microbes from pure body fluids and environmental microbes. FEAST analysis showed that the microbes of mock saliva samples were mainly from pure body fluids (51.53 % and 63.04 % on the bedspread and floor, respectively), but not from substrates (25.70 % and 18.92 % on the bedspread and floor, respectively). Contrary results were observed in peripheral blood, mock nasal secretion, and semen samples. All samples were mainly clustered based on the substrate, but not on the type of body fluid in the PCoA visualization. PERMANOVA results showed that the substrate accounted for more of the variance (R2 = 0.211, P < 0.001) than the type of body fluid (R2 = 0.152, P < 0.001). MicroDecon was used to remove contamination by microbes from the substrate of mock body fluid samples. PCoA and PERMANOVA were performed using decontaminated data. The results showed that samples were no longer clustered based on the substrate, and the type of body fluid (R2 = 0.240, P < 0.001) accounted for more of the variance in the microbial communities of samples than the substrate (R2 = 0.108, P < 0.001). Our results suggest that environmental microbiota from substrates may interfere with the microbiome-based identification of forensically relevant body fluids. To some extent, decontamination could decrease the effects of the substrate on the microbial communities of the samples and enhance the ability to distinguish between the types of body fluids. This pilot study will be valuable in promoting the application of microbiome-based stain analysis in forensics.
Collapse
Affiliation(s)
- Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Liwei Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China.
| |
Collapse
|
4
|
Kim BM, Park SU, Lee HY. Comparative analysis of SNaPshot and massively parallel sequencing for body fluid-specific DNA methylation markers. Electrophoresis 2024; 45:1805-1819. [PMID: 39119735 DOI: 10.1002/elps.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The identification of tissue-specific differentially methylated regions has significantly contributed to the field of forensic genetics, particularly in body fluid identification crucial for linking evidence to crimes. Among the various approaches to analyzing DNA methylation, the SNaPshot assay has been popularly studied in numerous researches. However, there is a growing interest in exploring alternative methods such as the use of massively parallel sequencing (MPS), which can process a large number of samples simultaneously. This study compares SNaPshot and MPS multiplex assays using nine cytosine-phosphate-guanine markers for body fluid identification. As a result of analyzing 112 samples, including blood, saliva, vaginal fluid, menstrual blood, and semen, both methods demonstrated high sensitivity and specificity, indicating their reliability in forensic investigations. A total of 92.0% samples were correctly identified by both methods. Although both methods accurately identified all blood, saliva, and semen samples, some vaginal fluid samples showed unexpected methylation signals at nontarget loci in addition to the target loci. In the case of menstrual blood samples, due to their complexity, independent typing criteria were applied, and successful menstrual blood typing was possible, whereas a few samples showed profiles similar to vaginal fluid. The MPS method worked better in vaginal fluid samples, and the SNaPshot method performed better in menstrual blood samples. This study offers valuable insights into body fluid identification based on the characteristics of the SNaPshot and MPS methods, which may help in more efficient forensic applications.
Collapse
Affiliation(s)
- Bo Min Kim
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Un Park
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Zhang J, Yu D, Wang T, Gao N, Shi L, Wang Y, Huo Y, Ji Z, Li J, Zhang X, Zhang L, Yan J. Body fluids should be identified before estimating the time since deposition (TsD) in microbiome-based stain analyses for forensics. Microbiol Spectr 2024; 12:e0248023. [PMID: 38470485 PMCID: PMC10986545 DOI: 10.1128/spectrum.02480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Identification and the time since deposition (TsD) estimation of body fluid stains from a crime scene could provide valuable information for solving the cases and are always difficult for forensics. Microbial characteristics were considered as a promising biomarker to address the issues. However, changes in the microbiota may damage the specific characteristics of body fluids. Correspondingly, incorrect body fluid identification may result in inaccurate TsD estimation. The mutual influence is not well understood and limited the codetection. In the current study, saliva, semen, vaginal secretion, and menstrual blood samples were exposed to indoor conditions and collected at eight time points (from fresh to 30 days). High-throughput sequencing based on the 16S rRNA gene was performed to characterize the microbial communities. The results showed that a longer TsD could decrease the discrimination of different body fluid stains. However, the accuracies of identification still reached a quite high value even without knowing the TsD. Correspondingly, the mean absolute error (MAE) of TsD estimation significantly increased without distinguishing the types of body fluids. The predictive TsD of menstrual blood reached a quite low MAE (1.54 ± 0.39 d). In comparison, those of saliva (6.57 ± 1.17 d), semen (6.48 ± 1.33 d), and vaginal secretion (5.35 ± 1.11 d) needed to be further improved. The great effect of individual differences on these stains limited the TsD estimation accuracy. Overall, microbial characteristics allow for codetection of body fluid identification and TsD estimation, and body fluids should be identified before estimating TsD in microbiome-based stain analyses.IMPORTANCEEmerged evidences suggest microbial characteristics could be considered a promising tool for identification and time since deposition (TsD) estimation of body fluid stains. However, the two issues should be studied together due to a potential mutual influence. The current study provides the first evidence to understand the mutual influence and determines an optimal process for codetection of identification and TsD estimation for unknown stains for forensics. In addition, we involved aged stains into our study for identification of body fluid stains, rather than only using fresh stains like previous studies. This increased the predictive accuracy. We have preliminary verified that individual differences in microbiotas limited the predictive accuracy of TsD estimation for saliva, semen, and vaginal secretion. Microbial characteristics could provide an accurate TsD estimation for menstrual blood. Our study benefits the comprehensive understanding of microbiome-based stain analyses as an essential addition to previous studies.
Collapse
Affiliation(s)
- Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Linyu Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Yaya Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Zhimin Ji
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Junli Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Liwei Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| |
Collapse
|
6
|
Wang S, Jiang T, Yuan C, Wu L, Zhen X, Lei Y, Xie B, Tao R, Li C. An mRNA profiling assay incorporating coding region InDels for body fluid identification and the inference of the donor in mixed samples. Forensic Sci Int Genet 2024; 69:102979. [PMID: 38043150 DOI: 10.1016/j.fsigen.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tingting Jiang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Yuan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Liming Wu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Xiaoyuan Zhen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Baoyan Xie
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China; Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Dawnay N, Sheppard K. From crime scene to courtroom: A review of the current bioanalytical evidence workflows used in rape and sexual assault investigations in the United Kingdom. Sci Justice 2023; 63:206-228. [PMID: 36870701 DOI: 10.1016/j.scijus.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Sexual assault casework requires the collaboration of multiple agency staff to formalise an investigative pipeline running from crime scene to court. While the same could be said of many other forensic investigations, few require the additional support of health care staff and the combined forensic involvement of body-fluid examiners, DNA experts and analytical chemists. The sheer amount of collaborative effort between agencies is laid out through a detailed examination of the investigative workflow from crime scene to courtroom with each step in the pipelines detailed and discussed. Beginning with a review of sexual assault legislation in the United Kingdom this article details how sexual assault investigations are initiated by police and supported by sexual assault referral centre (SARC) staff who are often the first responders providing primary healthcare and patient support to victims while simultaneously collecting and assessing forensic evidence. Detailing the myriad of evidential material that can be documented and collected at the SARC, the review identifies and categorises key forensic tests to first detect and identify body-fluids recovered from evidence through to the secondary analysis of DNA to help identify the suspect. This review also focusses on the collection and analysis of biological material used to support the allegation that the sexual activity was non-consensual and provides a breakdown of common marks and trauma as well as a review of common analytical methods used to infer Drug Facilitated Sexual Assault (DFSA). The culmination of the investigative pipeline is discussed by reviewing the Rape and Serious Sexual Assault (RASSO) workflow used by the Crown Prosecution Service before providing our thoughts on the future of forensic analysis and possible changes to the described workflows.
Collapse
Affiliation(s)
- Nick Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom.
| | - Kayleigh Sheppard
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
9
|
Hanson E, Dørum G, Zamborlin M, Wang S, Gysi M, Ingold S, Lagace R, Roth C, Haas C, Ballantyne J. Targeted S5 RNA sequencing assay for the identification and direct association of common body fluids with DNA donors in mixtures. Int J Legal Med 2023; 137:13-32. [PMID: 36333511 DOI: 10.1007/s00414-022-02908-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The evidentiary value of DNA profiles varies depending upon the context in which the DNA was found. Linking a DNA profile to a particular cellular phenotype in mixtures may aid in assessing its evidentiary relevance and value. We report the development of two dual-function high-resolution messenger RNA (mRNA) sequencing assays that can each identify the presence of 6 body fluids/tissues (blood, semen, saliva, vaginal secretions, menstrual blood, skin) and, via coding region SNPs (cSNPs) present in the body fluid-specific mRNA transcripts, directly associate particular body fluids with their specific DNA donors in mixtures. The original blood, semen, and saliva (BSS) assay contains 23 cSNPs for blood, semen, and saliva, while the expanded 6F (all 6 fluids/tissues) assay encompasses the BSS assay and also contains 23 additional cSNPs for vaginal secretions, menstrual blood, and skin. Software tools were developed to infer the identity of the body fluids present as well as providing the corresponding cSNP genotypes. Concomitant genomic DNA assays (BSS-d and 6F-d), required to genotype the same cSNPs from persons of interest/inferred contributors to the body fluid mixture, were also developed. Body fluid specificity was demonstrated by the ability to identify the body fluid origin of single-source and two-fluid admixtures. The discriminatory power (European Caucasians) for all body fluids is 0.957-0.997, with linkage disequilibrium considered. Reciprocal body fluid admixtures (mixture pairs with the same two donors but reversed body fluid types) were used to demonstrate the ability to identify the body fluid source of origin as well as associate the donor of each of the two fluids.
Collapse
Affiliation(s)
- Erin Hanson
- Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, FL, 32816-2367, USA.,National Center for Forensic Science, Orlando, FL, USA
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Manuel Zamborlin
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Shouyu Wang
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Mario Gysi
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sabrina Ingold
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Robert Lagace
- Life Sciences/HID, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Chantal Roth
- Life Sciences/HID, Thermo Fisher Scientific, San Francisco, CA, USA
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jack Ballantyne
- Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, FL, 32816-2367, USA. .,National Center for Forensic Science, Orlando, FL, USA.
| |
Collapse
|
10
|
Establishment of a co-analysis system for personal identification and body fluid identification: a preliminary report. Int J Legal Med 2022; 136:1565-1575. [PMID: 36076078 DOI: 10.1007/s00414-022-02886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Analysis of genetic markers can provide clues for case investigation. Short tandem repeat (STR) detection and analysis are widely used for both personal identification and parentage testing. However, DNA analysis currently cannot provide sufficient information for body fluid identification. Tissue or cell sources of samples can be identified by detecting body fluid-specific mRNA markers, which have been studied thoroughly. Integrating STR profiling and mRNA expression patterns can provide more information than conventional methods for investigations and the reconstruction of crime scenes; this can be achieved by DNA/RNA co-extraction technology, which is economical, efficient, and suitable for low-template samples. Here, we propose a co-analysis system based on the PowerPlex 16 kit. This system can simultaneously amplify 25 markers, including 15 STRs, one non-STR amelogenin, and nine mRNA markers (three blood-specific, two saliva-specific, two semen-specific, and two housekeeping gene markers). The specificity and sensitivity of the co-analysis system were determined and aged and degraded samples were used to validate the stability of the co-analysis system. Finally, different DNA/RNA ratios and various carriers were evaluated. The results showed that the DNA/RNA co-analysis system correctly identified different types of body fluid stains. The STR profiles obtained using the co-analysis system were identical to those obtained using the PP16 kit, which demonstrates that the mRNA primers used did not affect STR profiling. Complete STR and mRNA profiles could be obtained from 1/8 portions of buccal swabs, 1/16 portions of swabs of blood and semen samples, 0.1 cm2 of blood samples, 0.25 cm2 of semen samples, and 1.0 cm2 saliva samples. Additionally, our findings indicate that complete STR and mRNA profiles can be obtained with this system from blood and semen samples when the DNA/RNA ratio is 1:1/32. This study suggests that the co-analysis system could be used for simultaneous personal identification and body fluid identification.
Collapse
|
11
|
Gill P, Bleka Ø, Fonneløp AE. Limitations of qPCR to estimate DNA quantity: An RFU method to facilitate inter-laboratory comparisons for activity level, and general applicability. Forensic Sci Int Genet 2022; 61:102777. [DOI: 10.1016/j.fsigen.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
|
12
|
Dørum G, Bleka Ø, Gill P, Haas C. Source level interpretation of mixed biological stains using coding region SNPs. Forensic Sci Int Genet 2022; 59:102685. [DOI: 10.1016/j.fsigen.2022.102685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
|
13
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Toothbrushes as a Source of DNA for Gender and Human Identification-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111182. [PMID: 34769701 PMCID: PMC8583683 DOI: 10.3390/ijerph182111182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Background: Few studies have reported the use of toothbrushes as a reliable source of DNA for human or gender identification. The present systematic review with the available information was conducted to answer the focus question “Is a toothbrush a reliable source of DNA for human or gender identification?”. Methods: The keyword combination “Toothbrush” and “DNA” was used to search databases including MEDLINE, Scopus, and Web of Science along with a manual search of reference lists of relevant articles. Duplicates and irrelevant articles were excluded, and the remaining articles were fully read for the final selection of articles. The risk of bias of the included studies was evaluated using the Appraisal tool for Cross-Sectional Studies (AXIS tool). Results: Of the 130 articles obtained, 122 duplicates or irrelevant articles were eliminated. Following the full-text reading of eight articles, five articles were selected based on eligibility criteria. The five studies reported that a toothbrush is a good source of DNA irrespective of the time interval. In a few studies some samples were not sufficient for complete DNA profiling due to factors such as the method of DNA extraction. Conclusion: Although a toothbrush is an excellent source of DNA for human and gender identification, future studies with a larger sample size, appropriate control group, and standardized technique of DNA extraction need to be conducted. Additionally, factors influencing the quantity and quality of DNA in toothbrushes need to be determined with standardized techniques.
Collapse
|
15
|
Wang S, Shanthan G, Bouzga MM, Thi Dinh HM, Haas C, Fonneløp AE. Evaluating the performance of five up-to-date DNA/RNA co-extraction methods for forensic application. Forensic Sci Int 2021; 328:110996. [PMID: 34592582 DOI: 10.1016/j.forsciint.2021.110996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
The importance of RNA evidence is growing with new developments in RNA profiling methods and purposes. As forensic samples often can be of small quantity, extraction methods with high yields of both DNA and RNA are desirable. In order to identify the optimal DNA/RNA co-extraction workflow for forensic samples, we evaluated the performance of three frequently-used methods, two new approaches for DNA/RNA co-extraction and a manual phenol/chloroform RNA-only extraction method on blood and saliva samples. Based on a comprehensive analysis of the RNA and DNA quantities, as well as the STR genotyping and mRNA profiling results, we conclude that the two frequently-used co-extraction methods, combining commercially available DNA and RNA extraction kits, achieved the best performance. However, not any combination of commercially available DNA and RNA extraction kits works well and extensive optimization is necessary, as seen in the poor results of the two new approaches.
Collapse
Affiliation(s)
- Shouyu Wang
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland; Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | | | | | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
16
|
Li Z, Chen D, Wang Q, Tian H, Tan M, Peng D, Tan Y, Zhu J, Liang W, Zhang L. mRNA and microRNA stability validation of blood samples under different environmental conditions. Forensic Sci Int Genet 2021; 55:102567. [PMID: 34403952 DOI: 10.1016/j.fsigen.2021.102567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/10/2023]
Abstract
RNA molecules, including mRNAs and microRNAs (miRNAs), have been used for forensic body fluid identification. Specific body fluids present unique mRNA expression patterns, while miRNAs identifying body fluids are mainly differentially expressed. miRNAs are thought to be more stable than mRNAs, although this lacks adequate supporting data. In this study, we addressed perceived concerns regarding the stability of miRNAs and mRNAs in blood samples. The samples used in this study involved three groups. First, environmentally-degraded blood stain samples were exposed to a range of environmental conditions over 1-360 days to degrade naturally. Second, simulated-degraded samples were prepared using RNase A or high temperature (80 °C). Furthermore, two authentic casework samples that were proven to be degraded from short tandem repeat (STR) profiles were analyzed. mRNAs and miRNAs present in the same blood samples were simultaneously detected through reverse transcriptase qPCR (RT-qPCR). Furthermore, mRNAs expression was determined by an mRNA multiplex PCR system. Our results showed that both mRNAs and miRNAs were stable in dry environments. The stability of miRNAs was relatively higher than that of mRNAs in humid environments or at high temperature. RNase A had the most serious impact on RNA stability, both mRNA profiles and miRNAs expression patterns were altered. The results of this study provide data and support to demonstrate that miRNAs represent more stable RNA molecules in body fluid identification compared to mRNAs.
Collapse
Affiliation(s)
- Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dezhi Chen
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan Tian
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Tan
- Department of Obstetric and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Zhu
- Department of Criminal Science and Technology, Sichuan Police College, Luzhou, Sichuan 646000, P.R. China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China; Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
17
|
Tian H, Huang S, Bai P, Xiao X, Peng D, Zhao H, Liu Y, Feng Q, Liao M, Li F, Liang W. The effect of infertile semen on the mRNA-based body fluid identification. Electrophoresis 2021; 42:1614-1622. [PMID: 34233021 DOI: 10.1002/elps.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 11/08/2022]
Abstract
In the past decade, mRNA markers have been well demonstrated as promising molecular markers in forensic body fluid identification (BFI), and successfully used in wide applications. Several studies have assessed the performance of semen-specific mRNA markers in distinguishing semen from other common body fluids at the crime scene. Infertility has been reported as a global health problem that is affecting approximately 15% of couples worldwide. Therefore, it is important for forensic researchers to consider the impact of infertility on semen identification. This study aimed to explore the effect of semen from infertile men (hereinafter "infertile semen") on BFI and to identify semen-specific mRNAs that can efficiently and accurately distinguish normal and infertile semen samples from other body fluids. Results showed that the selected five mRNAs (KLK3, TGM4, SEMG1, PRM1, and PRM2) performed a significantly high semen specificity in normal semen. Moreover, KLK3 was slightly influenced by infertile semen samples with over 98% positive results in all semen samples. The accuracy to predict normal semen reached up to 96.6% using the discrimination function Y1 with KLK3 and PRM1. However, when the infertile semen samples were included in discrimination function (function Y2 with KLK3), the accuracy rate of semen identification (including the normal and infertile semen) was down to 89.5%. Besides, the sensitivity of multiplex assay could reach down to 50pg. Our results suggest that it is important to consider the presence of infertile semen when using mRNAs to identify semen samples, which would have a far-reaching impact in forensic identification.
Collapse
Affiliation(s)
- Huan Tian
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Sicheng Huang
- Institute of Forensic Science, Chengdu Public Security Bureau, Chengdu, Sichuan, P. R. China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xiao Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Duo Peng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Huan Zhao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yuqing Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qian Feng
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, P. R. China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
18
|
Bamberg M, Dierig L, Kulstein G, Kunz SN, Schmidt M, Hadrys T, Wiegand P. Development and validation of an mRNA-based multiplex body fluid identification workflow and a rectal mucosa marker pilot study. Forensic Sci Int Genet 2021; 54:102542. [PMID: 34098418 DOI: 10.1016/j.fsigen.2021.102542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023]
Abstract
Molecular identification of body fluids and tissues is crucial in order to understand the circumstances of crimes. For that reason, molecular investigations used to identify body fluids/tissues have increasingly been examined recently. Various studies have proved that messenger RNA (mRNA) profiling is a sensitive and robust method for body fluid/tissue identification. The forensically relevant body fluids/tissues blood, semen, saliva, vaginal secretion, menstrual blood and skin have all been detected successfully by applying suitable mRNA assay. However, rectal mucosa, which can be found as evidence in sexual assault cases, has been neglected in forensic investigations. So far there is no mRNA marker to detect rectal mucosa, although anal penetration occurs in a large number of sexual assaults (23.2% of female victims and 50% of male victims). In this study, specific and sensitive mRNA markers for forensically relevant body fluids were adapted and validated in an mRNA multiplex assay for routine casework. This included the implementation of a DNA/RNA re-extraction method for automated extraction that can be integrated into casework without loss of DNA. This re-extraction method and the mRNA multiplex assay were tested using casework samples. PCR-primers were designed for the identification of rectal mucosa and the more effective marker MUC12 was integrated into an extended multiplex assay. The result of our study is a highly specific and sensitive mRNA multiplex assay plus an automated DNA/RNA re-extraction method, that can be integrated into casework and identify rectal mucosa for the first time.
Collapse
Affiliation(s)
- Malte Bamberg
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Lisa Dierig
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Sebastian N Kunz
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Max Schmidt
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Thorsten Hadrys
- Bavarian State Criminal Police Office, Institute of Forensic Sciences, DNA Department, Maillingerstr. 15, 80636 Munich, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
19
|
Salzmann AP, Russo G, Kreutzer S, Haas C. Degradation of human mRNA transcripts over time as an indicator of the time since deposition (TsD) in biological crime scene traces. Forensic Sci Int Genet 2021; 53:102524. [PMID: 34015741 DOI: 10.1016/j.fsigen.2021.102524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Knowledge about the age of a stain, also termed as time since deposition (TsD), would provide law-enforcing authorities with valuable information for the prosecution of criminal offenses. Yet, there is no reliable method for the inference / assessment of TsD available. The aim of this study was to gain further insight into the RNA degradation pattern of forensically relevant body fluids and to find candidate markers for TsD estimation. Blood, menstrual blood, saliva, semen and vaginal secretion samples were exposed to indoor (dark, room temperature) and outdoor (exposed to sun, wind, etc. but protected from rain) conditions for up to 1.5 years. Based on expression and degradation analyses, we were able to identify body fluid specific signatures and RNA degradation patterns. The indoor samples showed a marked drop in RNA integrity after 6 months, while the outdoor samples were difficult to interpret and therefore excluded for some of the analyses. Up to 4 weeks, indoor samples showed more stable and less degrading transcripts than outdoor samples. Stable transcripts tended to be significantly shorter than degrading ones or transcripts, which are neither degrading nor stable. We reinforced the body fluid specific and the housekeeping gene nature of previously reported markers. With an unbiased approach, we selected stable and degrading genes for each body fluid in the short term and assessed their integrity during extended storage. We identified several stable and degrading gene transcripts, which could be tested in a targeted assay to assess the TsD interval e.g. by analyzing the ratio of degrading vs stable transcripts. In conclusion, we were able to detect RNA degradation patterns in samples being aged up to 1.5 years and identified several candidate markers, which could be evaluated for TsD estimation.
Collapse
Affiliation(s)
| | - Giancarlo Russo
- Functional Genomics Centre Zurich (FGCZ), University of Zurich/ETH Zurich, Switzerland
| | - Susanne Kreutzer
- Functional Genomics Centre Zurich (FGCZ), University of Zurich/ETH Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| |
Collapse
|
20
|
Haas C, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci Int Genet 2021; 52:102486. [PMID: 33657509 DOI: 10.1016/j.fsigen.2021.102486] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The application of transcriptome analyses in forensic genetics has experienced tremendous growth and development in the past decade. The earliest studies and main applications were body fluid and tissue identification, using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have been identified for the forensically most relevant body fluids and tissues and the method has been successfully used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, the estimation of the post-mortem interval and to post mortem death investigations.
Collapse
Affiliation(s)
- Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Andrea Patrizia Salzmann
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA; Department of Chemistry, National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| |
Collapse
|
21
|
Liu J, Cheng X, Liu F, Hao T, Wang J, Guo J, Li J, Liu Z, Li W, Shi J, Zhang X, Li J, Yan J, Zhang G. Identification of coding region SNPs from specific and sensitive mRNA biomarkers for the deconvolution of the semen donor in a body fluid mixture. Forensic Sci Int Genet 2021; 52:102483. [PMID: 33610949 DOI: 10.1016/j.fsigen.2021.102483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
mRNA markers provide a very promising method for the identification of human body fluids or tissues in the context of forensic investigations. Previous studies have shown that different body fluids can be distinguished from each other according to their specific mRNA biomarkers. In this study, we evaluated eight semen-specific mRNA markers (KLK3, NKX3-1, CKB, KLK2, PRAC1, SEMG1, TGM4, and SORD) that encompass 12 coding single nucleotide polymorphisms (cSNPs) to identify the semen contributor in a mixed stain. Five highly specific and sensitive mRNA markers for blood, menstrual blood, saliva, vaginal secretions, and skin were also incorporated into the PCR system as body fluid-positive controls. Reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR and SNaPshot mini-sequencing assays were established for the identification of semen-specific mRNA. The amplicon size ranged from 133 to 337 bp. The semen-specific system was examined against blood, menstrual blood, saliva, vaginal secretions, and skin swabs. The eight mRNA biomarkers were semen-specific and could be successfully typed in laboratory-generated mixtures composed of different body fluids supplemented with 1 ng of semen cDNA. This system possessed a high sensitivity that ranged from 1:10-1:100 for detecting trace amounts of semen in semen-containing body fluid mixtures. Additionally, our results demonstrated that the cSNPs polymorphisms included in the mRNA markers were concordant with genomic DNA (gDNA). Despite the presence of other body fluids, the system exhibited high sensitivity and specificity to the semen in the mixture. In future studies, we will add other cSNPs from the semen-specific genes using massively parallel sequencing to further improve our system.
Collapse
Affiliation(s)
- Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiaojuan Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Feng Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Ting Hao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangling Guo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jintao Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Wenyan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jie Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiuying Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jing Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
22
|
Salzmann AP, Bamberg M, Courts C, Dørum G, Gosch A, Hadrys T, Hadzic G, Neis M, Schneider PM, Sijen T, den Berge MV, Wiegand P, Haas C. mRNA profiling of mock casework samples: Results of a FoRNAP collaborative exercise. Forensic Sci Int Genet 2020; 50:102409. [PMID: 33220528 DOI: 10.1016/j.fsigen.2020.102409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
In recent years, forensic mRNA profiling has increasingly been used to identify the origin of human body fluids. By now, several laboratories have implemented mRNA profiling and also use it in criminal casework. In 2018 the FoRNAP (Forensic RNA Profiling) group was established among a number of these laboratories with the aim of sharing experiences, discussing optimization potential, identifying challenges and suggesting solutions with regards to mRNA profiling and casework. To compare mRNA profiling methods and results a collaborative exercise was organized within the FoRNAP group. Seven laboratories from four countries received 16 stains, comprising six pure body fluid / tissue stains and ten mock casework samples. The laboratories were asked to analyze the provided stains with their in-house method (PCR/CE or MPS) and markers of choice. Five laboratories used a DNA/RNA co-extraction strategy. Overall, up to 11 mRNA markers per body fluid were analyzed. We found that mRNA profiling using different extraction and analysis methods as well as different multiplexes can be applied to casework-like samples. In general, high input samples were typed with high accuracy by all laboratories, regardless of the method used. Irrespective of the analysis strategy, samples of low input or mixed stains were more challenging to analyze and interpret since, alike to DNA profiling, a higher number of markers dropped out and/or additional unexpected markers not consistent with the cell type in question were detected. It could be shown that a plethora of different but valid analysis and interpretation strategies exist and are successfully applied in the Forensic Genetics community. Nevertheless, efforts aiming at optimizing and harmonizing interpretation approaches in order to achieve a higher consistency between laboratories might be desirable in the future. The simultaneous extraction of DNA alongside RNA showed to be an effective approach to identify not only the body fluid present but also to identify the donor(s) of the stain. This allows investigators to gain valuable information about the origin of crime scene samples and the course of events in a crime case.
Collapse
Affiliation(s)
| | - Malte Bamberg
- Institute of Legal Medicine, University Hospital, University of Ulm, Germany
| | - Cornelius Courts
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Guro Dørum
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Annica Gosch
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Thorsten Hadrys
- Bavarian State Criminal Police Office, Institute of Forensic Sciences, Munich, Germany
| | | | - Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University Hospital, University of Cologne, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University Hospital, University of Cologne, Germany
| | - Titia Sijen
- Netherlands Forensic Institute, The Hague, the Netherlands
| | | | - Peter Wiegand
- Institute of Legal Medicine, University Hospital, University of Ulm, Germany
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.
| |
Collapse
|
23
|
Liu Z, Gao Z, Wang J, Shi J, Liu J, Chen D, Li W, Guo J, Cheng X, Hao T, Li Z, Li Y, Yan J, Zhang G. A method of identifying the blood contributor in mixture stains through detecting blood‐specific mRNA polymorphism. Electrophoresis 2020; 41:1364-1373. [DOI: 10.1002/elps.202000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Zidong Liu
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Zhe Gao
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jiaqi Wang
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jie Shi
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jinding Liu
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Deqing Chen
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Wenyan Li
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jiangling Guo
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Xiaojuan Cheng
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Ting Hao
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Zeqin Li
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Yanhua Li
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Jiangwei Yan
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| | - Gengqian Zhang
- School of Forensic MedicineShanxi Medical University Jinzhong Shanxi P. R. China
| |
Collapse
|
24
|
Liu B, Yang Q, Meng H, Shao C, Jiang J, Xu H, Sun K, Zhou Y, Yao Y, Zhou Z, Li H, Shen Y, Zhao Z, Tang Q, Xie J. Development of a multiplex system for the identification of forensically relevant body fluids. Forensic Sci Int Genet 2020; 47:102312. [PMID: 32480323 DOI: 10.1016/j.fsigen.2020.102312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Currently, mRNA profiling is widely investigated for forensic body fluid identification, while it is still required to advance the approach for those casework samples of limited quantity or low quality. The inclusion of circular RNAs (circRNAs) can facilitate the detection of mRNA markers in forensic body fluid identification. In this study, a multiplex assay for forensic body fluid identification (F18plex assay) was developed by incorporating 14 tissue-specific mRNA markers with circRNAs expression, 2 mRNA markers with high abundance and 2 housekeeping markers for the discrimination of the most common forensic body fluids, including blood, menstrual blood, saliva, vaginal secretion, semen and urine. The markers employed in the F18plex assay show similar specificity to previous reports. Additionally, even if all linear transcripts were completely erased, the expected markers in target biofluids could still be identified, which should help the discrimination of those aged biological stains. Results from sensitivity testing and the detection of mixtures demonstrate good sensitivity of the multiplex assay. Generally, full biomarker profiles could be obtained with ≥1 μl of blood, saliva, or semen, and ≥1 ng of total RNAs from menstrual blood, vaginal secretion, or urine samples, respectively, using this multiplex assay under the established conditions. Collectively, the newly established multiplex assay can assist in determining the biological origin of forensic stains.
Collapse
Affiliation(s)
- Baonian Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qinrui Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hang Meng
- Shanghai Key Laboratory of Crime Scene Evidence, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, Shanghai, 200083, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieqing Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongmei Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kuan Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxiang Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, Shanghai, 200083, China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Gill P, Hicks T, Butler JM, Connolly E, Gusmão L, Kokshoorn B, Morling N, van Oorschot RA, Parson W, Prinz M, Schneider PM, Sijen T, Taylor D. DNA commission of the International society for forensic genetics: Assessing the value of forensic biological evidence - Guidelines highlighting the importance of propositions. Part II: Evaluation of biological traces considering activity level propositions. Forensic Sci Int Genet 2020; 44:102186. [DOI: 10.1016/j.fsigen.2019.102186] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 01/27/2023]
|
26
|
Salzmann AP, Russo G, Aluri S, Haas C. Transcription and microbial profiling of body fluids using a massively parallel sequencing approach. Forensic Sci Int Genet 2019; 43:102149. [DOI: 10.1016/j.fsigen.2019.102149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
|
27
|
Wang S, Wang Z, Tao R, Wang M, Liu J, He G, Yang Y, Xie M, Zou X, Hou Y. Expression profile analysis of piwi-interacting RNA in forensically relevant biological fluids. Forensic Sci Int Genet 2019; 42:171-180. [DOI: 10.1016/j.fsigen.2019.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
|
28
|
Díez López C, Vidaki A, Ralf A, Montiel González D, Radjabzadeh D, Kraaij R, Uitterlinden AG, Haas C, Lao O, Kayser M. Novel taxonomy-independent deep learning microbiome approach allows for accurate classification of different forensically relevant human epithelial materials. Forensic Sci Int Genet 2019; 41:72-82. [PMID: 31003081 DOI: 10.1016/j.fsigen.2019.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Correct identification of different human epithelial materials such as from skin, saliva and vaginal origin is relevant in forensic casework as it provides crucial information for crime reconstruction. However, the overlap in human cell type composition between these three epithelial materials provides challenges for their differentiation and identification when using previously proposed human cell biomarkers, while their microbiota composition largely differs. By using validated 16S rRNA gene massively parallel sequencing data from the Human Microbiome Project of 1636 skin, oral and vaginal samples, 50 taxonomy-independent deep learning networks were trained to classify these three tissues. Validation testing was performed in de-novo generated high-throughput 16S rRNA gene sequencing data using the Ion Torrent™ Personal Genome Machine from 110 test samples: 56 hand skin, 31 saliva and 23 vaginal secretion specimens. Body-site classification accuracy of these test samples was very high as indicated by AUC values of 0.99 for skin, 0.99 for oral, and 1 for vaginal secretion. Misclassifications were limited to 3 (5%) skin samples. Additional forensic validation testing was performed in mock casework samples by de-novo high-throughput sequencing of 19 freshly-prepared samples and 22 samples aged for 1 up to 7.6 years. All of the 19 fresh and 20 (91%) of the 22 aged mock casework samples were correctly tissue-type classified. Moreover, comparing the microbiome results with outcomes from previous human mRNA-based tissue identification testing in the same 16 aged mock casework samples reveals that our microbiome approach performs better in 12 (75%), similarly in 2 (12.5%), and less good in 2 (12.5%) of the samples. Our results demonstrate that this new microbiome approach allows for accurate tissue-type classification of three human epithelial materials of skin, oral and vaginal origin, which is highly relevant for future forensic investigations.
Collapse
Affiliation(s)
- Celia Díez López
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arwin Ralf
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Sterling S, Mason KE, Anex DS, Parker GJ, Hart B, Prinz M. Combined
DNA
Typing and Protein Identification from Unfired Brass Cartridges,,,. J Forensic Sci 2019; 64:1475-1481. [DOI: 10.1111/1556-4029.14042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Katelyn E. Mason
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Deon S. Anex
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | | | - Bradley Hart
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Mechthild Prinz
- John Jay College of Criminal Justice 524 W. 59th St. New York NY 10019
| |
Collapse
|
30
|
The potential use of Piwi-interacting RNA biomarkers in forensic body fluid identification: A proof-of-principle study. Forensic Sci Int Genet 2019; 39:129-135. [DOI: 10.1016/j.fsigen.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|
31
|
Characterization of tissue-specific biomarkers with the expression of circRNAs in forensically relevant body fluids. Int J Legal Med 2019; 133:1321-1331. [PMID: 30810820 DOI: 10.1007/s00414-019-02027-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Messenger RNA (mRNA) markers have been extensively investigated for the identification of forensically relevant body fluids and tissues based on their expression profiles among cell types. As products of the backsplicing of pre-mRNAs, circular RNAs (circRNAs) share exonic sequences with their linear counterparts. The inclusion of circRNAs in mRNA profiling is shown to facilitate the detection of biomarkers in the identification of body fluids. In this study, we identified the expression of circRNAs of 14 out of 45 biomarkers from five body fluid types using outward-facing primer sets and revealed the ratio of circular to total transcripts of biomarkers by RNase R treatment. Furthermore, our results of qPCR analysis show that the inclusion of circRNAs in the detection of biomarkers, including HBA and ALAS2 for blood; MMP7 and MMP10 for menstrual blood; HTN3 for saliva; SPINK5, SERPINB3, ESR1, and CYP2B7P1 for vaginal secretions; TGM4, KLK3, and PRM2 for semen; and SLC22A6 and MIOX for urine, does not impair the specificity of these biomarkers. Additionally, a high copy number of targets from linear transcripts could be employed to increase the detection sensitivity of TGM4 and KLK3 with a low expression level of circRNAs in urine samples. Altogether, these results will help with the development of robust multiplex assays for body fluid identification.
Collapse
|
32
|
Specific microbes of saliva and vaginal fluid of Guangdong Han females based on 16S rDNA high-throughput sequencing. Int J Legal Med 2019; 133:699-710. [DOI: 10.1007/s00414-018-1986-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023]
|
33
|
van Oorschot RA, Szkuta B, Meakin GE, Kokshoorn B, Goray M. DNA transfer in forensic science: A review. Forensic Sci Int Genet 2019; 38:140-166. [DOI: 10.1016/j.fsigen.2018.10.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
34
|
Tao R, Wang S, Zhang J, Zhang J, Yang Z, Sheng X, Hou Y, Zhang S, Li C. Separation/extraction, detection, and interpretation of DNA mixtures in forensic science (review). Int J Legal Med 2018; 132:1247-1261. [PMID: 29802461 DOI: 10.1007/s00414-018-1862-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
Interpreting mixed DNA samples containing material from multiple contributors has long been considered a major challenge in forensic casework, especially when encountering low-template DNA (LT-DNA) or high-order mixtures that may involve missing alleles (dropout) and unrelated alleles (drop-in), among others. In the last decades, extraordinary progress has been made in the analysis of mixed DNA samples, which has led to increasing attention to this research field. The advent of new methods for the separation and extraction of DNA from mixtures, novel or jointly applied genetic markers for detection and reliable interpretation approaches for estimating the weight of evidence, as well as the powerful massively parallel sequencing (MPS) technology, has greatly extended the range of mixed samples that can be correctly analyzed. Here, we summarized the investigative approaches and progress in the field of forensic DNA mixture analysis, hoping to provide some assistance to forensic practitioners and to promote further development involving this issue.
Collapse
Affiliation(s)
- Ruiyang Tao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiashuo Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China.,Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, People's Republic of China
| | - Jingyi Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China.,Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, People's Republic of China
| | - Zihao Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China.,Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Xiang Sheng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China.,Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, People's Republic of China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China.
| | - Chengtao Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People's Republic of China. .,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Sciences, Shanghai, 200063, People's Republic of China.
| |
Collapse
|
35
|
Akutsu T, Watanabe K, Takamura A, Sakurada K. Evaluation of skin- or sweat-characteristic mRNAs for inferring the human origin of touched contact traces. Leg Med (Tokyo) 2018; 33:36-41. [PMID: 29777949 DOI: 10.1016/j.legalmed.2018.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
The source of small amounts of touch DNA, which is transferred from the skin to an object when it is handled or touched, could be an issue in the forensic analysis of criminal cases. Here, we performed an extended evaluation of skin- or sweat-characteristic mRNAs to investigate their usability to infer whether an object has been handled or touched by someone. First, we compared the expression levels of candidate genes between skin swabs and other body fluids by quantitative RT-PCR analysis. Among the analyzed genes, corneodesmosin (CDSN), late cornified envelope 1C (LCE1C), filaggrin (FLG), desmocollin 1, and dermcidin were selected for further analysis on the basis of their specificities and sensitivities. Then, we tried to detect these genes from mock casework samples. As a result, CDSN, LCE1C, and FLG could be good markers because of their detectability. Finally, we determined the correlation between the expression of these genes and DNA yield of skin swabs to assess their adaptability as a screening test for touch DNA samples. However, the detectability of these genes was not correlated with the DNA yield of skin swab samples. In conclusion, gene expression analysis of the skin- or sweat-characteristic mRNAs CDSN, LCE1C, and FLG could be useful for inferring the skin origin of touched contact traces, but the use of the expression levels of these mRNAs for the prediction of DNA yield is problematic. To develop a screening test for touch DNA samples, other markers that have a well-correlated sensitivity with DNA analysis should be investigated.
Collapse
Affiliation(s)
- Tomoko Akutsu
- National Research Institute of Police Science, Chiba, Japan.
| | - Ken Watanabe
- National Research Institute of Police Science, Chiba, Japan
| | - Ayari Takamura
- National Research Institute of Police Science, Chiba, Japan
| | - Koichi Sakurada
- Department of Forensic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
36
|
Dørum G, Ingold S, Hanson E, Ballantyne J, Snipen L, Haas C. Predicting the origin of stains from next generation sequencing mRNA data. Forensic Sci Int Genet 2018; 34:37-48. [DOI: 10.1016/j.fsigen.2018.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/30/2017] [Accepted: 01/05/2018] [Indexed: 01/27/2023]
|
37
|
Hanson E, Ingold S, Haas C, Ballantyne J. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing. Forensic Sci Int Genet 2018; 34:206-221. [DOI: 10.1016/j.fsigen.2018.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/16/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
|
38
|
Ingold S, Dørum G, Hanson E, Berti A, Branicki W, Brito P, Elsmore P, Gettings K, Giangasparo F, Gross T, Hansen S, Hanssen E, Kampmann ML, Kayser M, Laurent FX, Morling N, Mosquera-Miguel A, Parson W, Phillips C, Porto M, Pośpiech E, Roeder A, Schneider P, Schulze Johann K, Steffen C, Syndercombe-Court D, Trautmann M, van den Berge M, van der Gaag K, Vannier J, Verdoliva V, Vidaki A, Xavier C, Ballantyne J, Haas C. Body fluid identification using a targeted mRNA massively parallel sequencing approach – results of a EUROFORGEN/EDNAP collaborative exercise. Forensic Sci Int Genet 2018; 34:105-115. [DOI: 10.1016/j.fsigen.2018.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 11/30/2022]
|
39
|
Stafford-Allen B, Dawnay N, Hanson EK, Ball G, Gupta A, Blackman S, French DJ, Duxbury N, Ballantyne J, Wells S. Development of HyBeacon ® probes for specific mRNA detection using body fluids as a model system. Mol Cell Probes 2017; 38:51-59. [PMID: 29175285 DOI: 10.1016/j.mcp.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
HyBeacons are linear oligonucleotides which incorporate fluorescent dyes covalently linked to internal nucleotides. They have previously been used with PCR and isothermal amplification to interrogate SNPs and STRs in fields as diverse as clinical diagnostics, food authentication, and forensic DNA profiling. This work explores their use for the identification of expressed gene sequences through mRNA profiling. The use of mRNA is becoming increasingly common in forensic casework to identify body fluids on evidence items, as it offers higher specificity and fewer false positives than current chemical presumptive testing methods. The work presented here details the development of a single-step one-tube RT-PCR assay to detect the presence of body fluids of forensic interest (saliva, blood, seminal fluid, vaginal fluid and menstrual blood) using HyBeacon® probes and melt curve analysis. Each assay shows a high degree of specificity to the target body fluid mRNA suggesting there is no requirement to remove genomic DNA prior to analysis. Of the five assays developed, four were able to detect between 10 and 100 copies of target cDNA, the fifth 1000 copies of target. The results presented here demonstrate that such an approach can be optimised for non-expert users and further areas of work are discussed.
Collapse
Affiliation(s)
- Beccy Stafford-Allen
- Product Development Group, LGC Ltd, Culham Science Centre, Abingdon, OX14 3ED, UK.
| | - Nick Dawnay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Erin K Hanson
- National Center for Forensic Science, PO Box 162367, Orlando, FL, 32816-2367, USA
| | - Glyn Ball
- Product Development Group, LGC Ltd, Culham Science Centre, Abingdon, OX14 3ED, UK
| | - Ambika Gupta
- Department of Pharmacy and Forensic Science, King's College London, Faculty of Life Sciences and Medicine, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Stephen Blackman
- Product Development Group, LGC Ltd, Culham Science Centre, Abingdon, OX14 3ED, UK
| | - David J French
- Product Development Group, LGC Ltd, Queens Road, Teddington, TW11 0LY, UK
| | - Nicola Duxbury
- Product Development Group, LGC Ltd, Culham Science Centre, Abingdon, OX14 3ED, UK
| | - Jack Ballantyne
- National Center for Forensic Science, PO Box 162367, Orlando, FL, 32816-2367, USA; Department of Chemistry, University of Central Florida, PO Box 162366, Orlando, FL, 32816-2366, USA
| | - Simon Wells
- Product Development Group, LGC Ltd, Culham Science Centre, Abingdon, OX14 3ED, UK
| |
Collapse
|
40
|
Body fluid prediction from microbial patterns for forensic application. Forensic Sci Int Genet 2017; 30:10-17. [DOI: 10.1016/j.fsigen.2017.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 01/25/2023]
|
41
|
Jung SE, Cho S, Antunes J, Gomes I, Uchimoto ML, Oh YN, Di Giacomo L, Schneider PM, Park MS, van der Meer D, Williams G, McCord B, Ahn HJ, Choi DH, Lee YH, Lee SD, Lee HY. A collaborative exercise on DNA methylation based body fluid typing. Electrophoresis 2016; 37:2759-2766. [DOI: 10.1002/elps.201600256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/01/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Sang-Eun Jung
- Department of Forensic Medicine; Yonsei University College of Medicine; Seoul South Korea
| | - Sohee Cho
- Institute of Forensic Science; Seoul National University College of Medicine; Seoul South Korea
| | - Joana Antunes
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Iva Gomes
- Institute of Legal Medicine, Faculty of Medicine; University of Cologne; Cologne Germany
| | - Mari L. Uchimoto
- Forensic and Analytical Research Centre; University of Huddersfield; Queensgate Huddersfield West Yorkshire UK
- School of Biomedical and Forensic Science; Anglia Ruskin University, Cambridge Campus; East Road Cambridge UK
| | - Yu Na Oh
- Division of DNA Analysis, Department of Forensic Medicine, Scientific Investigation Laboratory, Criminal Investigation Command; Ministry of National Defense; Seoul South Korea
| | - Lisa Di Giacomo
- Institute of Legal Medicine, Faculty of Medicine; University of Cologne; Cologne Germany
| | - Peter M. Schneider
- Institute of Legal Medicine, Faculty of Medicine; University of Cologne; Cologne Germany
| | - Min Sun Park
- Forensic DNA Division; National Forensic Service; Wonju Gangwon-do South Korea
| | - Dieudonne van der Meer
- Forensic and Analytical Research Centre; University of Huddersfield; Queensgate Huddersfield West Yorkshire UK
| | - Graham Williams
- Forensic and Analytical Research Centre; University of Huddersfield; Queensgate Huddersfield West Yorkshire UK
| | - Bruce McCord
- Department of Chemistry and Biochemistry; Florida International University; Miami FL USA
| | - Hee-Jung Ahn
- Division of DNA Analysis, Department of Forensic Medicine, Scientific Investigation Laboratory, Criminal Investigation Command; Ministry of National Defense; Seoul South Korea
| | - Dong Ho Choi
- Forensic DNA Division; National Forensic Service; Wonju Gangwon-do South Korea
| | - Yang Han Lee
- Forensic DNA Division; National Forensic Service; Wonju Gangwon-do South Korea
| | - Soong Deok Lee
- Institute of Forensic Science; Seoul National University College of Medicine; Seoul South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine; Yonsei University College of Medicine; Seoul South Korea
| |
Collapse
|
42
|
Zou KN, Ren LJ, Ping Y, Ma K, Li H, Cao Y, Zhou HG, Wei YL. Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population. J Forensic Leg Med 2016; 43:126-131. [PMID: 27570236 DOI: 10.1016/j.jflm.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
In recent years, forensic scientists have focused on the discrimination of body fluids using microbial signatures. In this study, we performed PCR-based detection of microbial signatures of vaginal fluid, saliva, and feces in a Han Chinese population. We investigated the 16S rRNA genes of Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus iners, and Atopobium vaginae in vaginal fluid, the 16S rRNA and the glucosyltransferase enzyme genes of Streptococcus salivarius and Streptococcus mutans in saliva, and the 16S rRNA genes of Enterococcus species, the RNA polymerase β-subunit gene of Bacteroides uniformis and Bacteroides vulgatus, and the α-1-6 mannanase gene of Bacteroides thetaiotaomicron in feces. As a result, the detection proportions of L. crispatus, L. gasseri, L. jensenii, L. iners, and A. vaginae were 15/16, 5/16, 8/16, 14/16, and 3/16 in 16 vaginal fluid donors, respectively. L. crispatus and L. jensenii were specifically detected in vaginal fluid; L. gasseri, L. iners, and A. vaginae were also detected in non-vaginal fluid. S. salivarius and S. mutans were not specifically detected in saliva. The detection proportions of Enterococcus species, B. uniformis, B. vulgatus, and B. thetaiotaomicron in 16 feces samples were 16/16, 12/16, 15/16, and 11/16, respectively. B. uniformis and B. thetaiotaomicron were specifically detected in feces. In addition, DNA samples prepared for the identification of body fluid can also be used for individual identification by short tandem repeat typing. The mean detection sensitivities of L. crispatus and L. jensenii were 0.362 and 0.249 pg/uL, respectively. In conclusion, L. crispatus, L. jensenii, B. uniformis, and B. thetaiotaomicron can be used as effective markers for forensic identification of vaginal fluid and feces.
Collapse
Affiliation(s)
- Kai-Nan Zou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China; Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China; Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, People's Republic of China
| | - Li-Jie Ren
- The 519th Hospital of the People's Liberation Army, Wenchang, 300457, Hainan, People's Republic of China
| | - Yuan Ping
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Ke Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200083, People's Republic of China
| | - Yu Cao
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China
| | - Huai-Gu Zhou
- Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, People's Republic of China.
| | - Yi-Liang Wei
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, People's Republic of China; Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, People's Republic of China.
| |
Collapse
|
43
|
Manoli P, Antoniou A, Bashiardes E, Xenophontos S, Photiades M, Stribley V, Mylona M, Demetriou C, Cariolou MA. Sex-specific age association with primary DNA transfer. Int J Legal Med 2015; 130:103-12. [DOI: 10.1007/s00414-015-1291-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022]
|
44
|
Song F, Luo H, Hou Y. Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population. J Forensic Leg Med 2015; 35:73-80. [PMID: 26311108 DOI: 10.1016/j.jflm.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
In forensic casework, identification the cellular origin from a biological sample is crucial to the case investigation and reconstruction in crime scene. DNA/RNA co-extraction for STR typing and human body fluids identification has been proposed as an efficient and comprehensive assay for forensic analysis. Several cell-specific messenger RNA (mRNA) markers for identification of the body fluids have been proposed by previous studies. In this study, a novel multiplex mRNA profiling system included 19 markers was developed and performed by reverse transcription endpoint polymerase chain reaction (RT-PCR). The multiplex combined 3 housekeeping gene markers and 16 cell-specific markers that have been used to identify five types of human body fluids: peripheral blood, semen, saliva, vaginal secretions and menstrual blood. The specificity, sensitivity, stability and detectability of the mixture were explored in our study. Majority of the cell-specific mRNA markers showed high specificity, although cross-reactivity was observed sporadically. Specific profiling for per body fluid was obtained. Moreover, the interpretation guidelines for inference of body fluid types were performed according to the A. Lindenbergh et al. The scoring guidelines can be applied to any RNA multiplex, which was based on six different scoring categories (observed, observed and fits, sporadically observed and fits, not observed, sporadically observed, not reliable, and non-specific due to high input). The simultaneous extraction of DNA showed positive full or partial profiling results of all samples. It demonstrated that the approach of combined STR-profiling and RNA profiling was suitable and reliable to detect the donor and origin of human body fluids in Chinese Han population.
Collapse
Affiliation(s)
- Feng Song
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China
| | - Yiping Hou
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University (West China University of Medical Sciences), Chengdu 610041, Sichuan, China.
| |
Collapse
|
45
|
Zubakov D, Kokmeijer I, Ralf A, Rajagopalan N, Calandro L, Wootton S, Langit R, Chang C, Lagace R, Kayser M. Towards simultaneous individual and tissue identification: A proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM. Forensic Sci Int Genet 2015; 17:122-128. [PMID: 25966466 DOI: 10.1016/j.fsigen.2015.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/13/2015] [Accepted: 04/03/2015] [Indexed: 11/26/2022]
Abstract
DNA-based individual identification and RNA-based tissue identification represent two commonly-used tools in forensic investigation, aiming to identify crime scene sample donors and helping to provide links between DNA-identified sample donors and criminal acts. Currently however, both analyses are typically performed separately. In this proof-of-principle study, we developed an approach for the simultaneous analysis of forensic STRs, amelogenin, and forensic mRNAs based on parallel targeted DNA/RNA sequencing using the Ion Torrent Personal Genome Machine(®) (PGM™) System coupled with the AmpliSeq™ targeted amplification. We demonstrated that 9 autosomal STRs commonly used for individual identification (CSF1PO, D16S539, D3S1358, D5S818, D7S820, D8S1179, TH01, TPOX, and vWA), the AMELX/AMELY system widely applied for sex identification, and 12 mRNA markers previously established for forensic tissue identification (ALAS2 and SPTB for peripheral blood, MMP10 and MMP11 for menstrual blood, HTN3 and STATH for saliva, PRM1 and TGM4 for semen, CYP2B7P1 and MUC4 for vaginal secretion, CCL27 and LCE1C for skin) together with two candidate reference mRNA markers (HPRT1 and SDHA) can all be successfully combined. Unambiguous mRNA-based tissue identification was achieved in all samples from all forensically relevant tissues tested, and STR sequencing analysis of the tissue sample donors was 100% concordant with conventional STR profiling using a commercial kit. Successful STR analysis was obtained from 1ng of genomic DNA and mRNA analysis from 10ng total RNA; however, sensitivity limits were not investigated in this proof-of-principle study and are expected to be much lower. Since dried materials with noticeable RNA degradation and small DNA/RNA amplicons with high-coverage sequencing were used, the achieved correct individual and tissue identification demonstrates the suitability of this approach for analyzing degraded materials in future forensic applications. Overall, our study demonstrates the feasibility of simultaneously obtaining multilocus STR, amelogenin, and multilocus mRNA information for combined individual and tissue identification from a small sample of degraded biological material. Moreover, our study marks the first step towards combining many DNA/RNA markers for various forensic purposes to increase the effectiveness of molecular forensic analysis and to allow more forensically relevant information to be obtained from limited forensic material.
Collapse
Affiliation(s)
- D Zubakov
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I Kokmeijer
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A Ralf
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - N Rajagopalan
- Thermo Fisher Scientific/Life Technologies, South San Francisco, CA, USA
| | - L Calandro
- Thermo Fisher Scientific/Life Technologies, South San Francisco, CA, USA
| | - S Wootton
- Thermo Fisher Scientific/Life Technologies, South San Francisco, CA, USA
| | - R Langit
- Thermo Fisher Scientific/Life Technologies, South San Francisco, CA, USA
| | - C Chang
- Thermo Fisher Scientific/Life Technologies, South San Francisco, CA, USA
| | - R Lagace
- Thermo Fisher Scientific/Life Technologies, South San Francisco, CA, USA
| | - M Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|