1
|
Pedroza Matute S, Iyavoo S. Applications and Performance of Precision ID GlobalFiler NGS STR, Identity, and Ancestry Panels in Forensic Genetics. Genes (Basel) 2024; 15:1133. [PMID: 39336724 PMCID: PMC11431077 DOI: 10.3390/genes15091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Short Tandem Repeat (STR) testing via capillary electrophoresis is undoubtedly the most popular forensic genetic testing method. However, its low multiplexing capabilities and limited performance with challenging samples are among the factors pushing scientists towards new technologies. Next-generation sequencing (NGS) methods overcome some of these limitations while also enabling the testing of Single-Nucleotide Polymorphisms (SNPs). Nonetheless, these methods are still under optimization, and their adoption into practice is limited. Among the available kits, Thermo Fisher Scientific (Waltham, MA, USA) produces three Precision ID Panels: GlobalFiler NGS STR, Identity, and Ancestry. A clear review of these kits, providing information useful for the promotion of their use, is, however, lacking. To close the gap, a literature review was performed to investigate the popularity, applications, and performance of these kits. Following the PRISMA guidelines, 89 publications produced since 2015 were identified. China was the most active country in the field, and the Identity Panel was the most researched. All kits appeared robust and useful for low-quality and low-quantity samples, while performance with mixtures varied. The need for more population data was highlighted, as well as further research surrounding variables affecting the quality of the sequencing results.
Collapse
Affiliation(s)
- Sharlize Pedroza Matute
- School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- AttoGroup Limited, Scottow Enterprise Park, Badersfield, Norwich NR10 5FB, UK
| | - Sasitaran Iyavoo
- School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- AttoGroup Limited, Scottow Enterprise Park, Badersfield, Norwich NR10 5FB, UK
| |
Collapse
|
2
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Mattila TM, Svensson EM, Juras A, Günther T, Kashuba N, Ala-Hulkko T, Chyleński M, McKenna J, Pospieszny Ł, Constantinescu M, Rotea M, Palincaș N, Wilk S, Czerniak L, Kruk J, Łapo J, Makarowicz P, Potekhina I, Soficaru A, Szmyt M, Szostek K, Götherström A, Storå J, Netea MG, Nikitin AG, Persson P, Malmström H, Jakobsson M. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Commun Biol 2023; 6:793. [PMID: 37558731 PMCID: PMC10412644 DOI: 10.1038/s42003-023-05131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
The genomic landscape of Stone Age Europe was shaped by multiple migratory waves and population replacements, but different regions do not all show similar patterns. To refine our understanding of the population dynamics before and after the dawn of the Neolithic, we generated and analyzed genomic sequence data from human remains of 56 individuals from the Mesolithic, Neolithic, and Eneolithic across Central and Eastern Europe. We found that Mesolithic European populations formed a geographically widespread isolation-by-distance zone ranging from Central Europe to Siberia, which was already established 10,000 years ago. We found contrasting patterns of population continuity during the Neolithic transition: people around the lower Dnipro Valley region, Ukraine, showed continuity over 4000 years, from the Mesolithic to the end of the Neolithic, in contrast to almost all other parts of Europe where population turnover drove this cultural change, including vast areas of Central Europe and around the Danube River.
Collapse
Affiliation(s)
- Tiina M Mattila
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden.
| | - Emma M Svensson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
| | - Anna Juras
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
| | - Natalija Kashuba
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
- Department of Archaeology and Ancient History, Uppsala University, 75126, Uppsala, Sweden
| | - Terhi Ala-Hulkko
- Geography Research Unit, University of Oulu, 90014, Oulu, Finland
- Kerttu Saalasti Institute, University of Oulu, 90014, Oulu, Finland
| | - Maciej Chyleński
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - James McKenna
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
| | - Łukasz Pospieszny
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
- Institute of Archaeology, University of Gdańsk, 80-851, Gdańsk, Poland
| | - Mihai Constantinescu
- "Francisc I. Rainer" Institute of Anthropology, Romanian Academy, 050711, Bucharest, Romania
- Faculty of History, University of Bucharest, 030167, Bucharest, Romania
| | - Mihai Rotea
- National History Museum of Transylvania, Cluj-Napoca, Romania
| | - Nona Palincaș
- Vasile Pârvan Institute of Archaeology, Bucharest, Romania
| | - Stanisław Wilk
- Institute of Archaeology, Jagiellonian University, 31-007, Kraków, Poland
- Karkonosze Museum, 58-500, Jelenia Góra, Poland
| | - Lech Czerniak
- Institute of Archaeology, University of Gdańsk, 80-851, Gdańsk, Poland
| | - Janusz Kruk
- Polish Academy of Sciences, Institute of Archaeology and Ethnology, 31-016, Kraków, Poland
| | - Jerzy Łapo
- Museum of Folk Culture, 11-600, Węgorzewo, Poland
| | - Przemysław Makarowicz
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
| | - Inna Potekhina
- Department of Bioarchaeology, Institute of Archaeology, National Academy of Sciences of Ukraine, 04210, Kyiv, Ukraine
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, 3008, Bern, Switzerland
| | - Andrei Soficaru
- "Francisc I. Rainer" Institute of Anthropology, Romanian Academy, 050711, Bucharest, Romania
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, 61-614, Poznań, Poland
- Archaeological Museum, 61-781, Poznań, Poland
| | - Krzysztof Szostek
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-938, Warszawa, Poland
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University and the Swedish Museum of Natural History, 106 91, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91, Stockholm, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, 106 91, Stockholm, Sweden
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525, HP, Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Alexey G Nikitin
- Grand Valley State University, Department of Biology, Allendale, MI, 49401, USA
| | - Per Persson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
- Museum of Cultural History, University of Oslo, 0130, Oslo, Norway
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, 75105, Uppsala, Sweden.
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
- SciLifeLab, Uppsala University, 75105, Uppsala, Sweden.
| |
Collapse
|
4
|
Chyleński M, Makarowicz P, Juras A, Krzewińska M, Pospieszny Ł, Ehler E, Breszka A, Górski J, Taras H, Szczepanek A, Polańska M, Włodarczak P, Lasota-Kuś A, Wójcik I, Romaniszyn J, Szmyt M, Kośko A, Ignaczak M, Sadowski S, Matoga A, Grossman A, Ilchyshyn V, Yahodinska MO, Romańska A, Tunia K, Przybyła M, Grygiel R, Szostek K, Dabert M, Götherström A, Jakobsson M, Malmström H. Patrilocality and hunter-gatherer-related ancestry of populations in East-Central Europe during the Middle Bronze Age. Nat Commun 2023; 14:4395. [PMID: 37528090 PMCID: PMC10393988 DOI: 10.1038/s41467-023-40072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
The demographic history of East-Central Europe after the Neolithic period remains poorly explored, despite this region being on the confluence of various ecological zones and cultural entities. Here, the descendants of societies associated with steppe pastoralists form Early Bronze Age were followed by Middle Bronze Age populations displaying unique characteristics. Particularly, the predominance of collective burials, the scale of which, was previously seen only in the Neolithic. The extent to which this re-emergence of older traditions is a result of genetic shift or social changes in the MBA is a subject of debate. Here by analysing 91 newly generated genomes from Bronze Age individuals from present Poland and Ukraine, we discovered that Middle Bronze Age populations were formed by an additional admixture event involving a population with relatively high proportions of genetic component associated with European hunter-gatherers and that their social structure was based on, primarily patrilocal, multigenerational kin-groups.
Collapse
Affiliation(s)
- Maciej Chyleński
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Przemysław Makarowicz
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Anna Juras
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, SE-106 91, Stockholm, Sweden
- Centre for Palaeogentics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Łukasz Pospieszny
- Institute of Archaeology, University of Gdańsk, ul. Bielańska 5, 80-851, Gdańsk, Poland
- Department of Anthropology and Archaeology, University of Bristol, 43 Woodland Road, Bristol, BS8 1UU, UK
| | - Edvard Ehler
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Prague, Czech Republic
| | - Agnieszka Breszka
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jacek Górski
- Department of History and Cultural Heritage, University of Pope Jan Paweł II, Kanonicza 9, 31-002, Cracow, Poland
- Archaeological Museum in Cracow, Senacka 3, 31-002, Cracow, Poland
| | - Halina Taras
- Institute of Archaeology, Maria Curie-Skłodowska University, M.C.-Skłodowska sq. 4, 20-031, Lublin, Poland
| | - Anita Szczepanek
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Marta Polańska
- Department of Material and Spiritual Culture, Lublin Museum, Zamkowa 9, 20-117, Lublin, Poland
| | - Piotr Włodarczak
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Anna Lasota-Kuś
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Irena Wójcik
- Archaeological Museum in Cracow, Senacka 3, 31-002, Cracow, Poland
| | - Jan Romaniszyn
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
- Archaeological Museum in Poznań, Wodna 27, 61-781, Poznań, Poland
| | - Aleksander Kośko
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Marcin Ignaczak
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 7, 61- 614, Poznań, Poland
| | - Sylwester Sadowski
- Institute of Archaeology, Maria Curie-Skłodowska University, M.C.-Skłodowska sq. 4, 20-031, Lublin, Poland
| | - Andrzej Matoga
- Archaeological Museum in Cracow, Senacka 3, 31-002, Cracow, Poland
| | - Anna Grossman
- Muzeum Archeologiczne w Biskupinie, Biskupin 17, 88-410, Gąsawa, Poland
| | - Vasyl Ilchyshyn
- Zaliztsi Museum of Local Lore, Schevchenka 51, Zalizhtsi, 47243, Ternopil reg, Ukraine
| | - Maryna O Yahodinska
- Ternopil Regional Center for Protection and Research of Cultural Heritage Sites, Kyyivs'ka 3а, 46016, Ternopil, Ukraine
| | - Adriana Romańska
- Wojewódzki Urząd Ochrony Zabytków, Gołębia 2, 61-840, Poznań, Poland
| | - Krzysztof Tunia
- Institute of Archaeology and Ethnology, Polish Academy of Science, Sławkowska 17, 31-016, Cracow, Poland
| | - Marcin Przybyła
- Archaeological company "Dolmen Marcin Przybyła, Michał Podsiadło s.c.", Serkowskiego Sq. 8/3, 30-512, Cracow, Poland
| | - Ryszard Grygiel
- Museum of Archaeology and Ethnography in Łódź, Plac Wolności 14, 91-415, Łódź, Poland
| | - Krzysztof Szostek
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Anders Götherström
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, SE-106 91, Stockholm, Sweden
- Centre for Palaeogentics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
- SciLifeLab, Stockholm and Uppsala, Sweden
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden.
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
5
|
Zupanič Pajnič I, Geršak ŽM, Leskovar T, Črešnar M. Kinship analysis of 5th- to 6th-century skeletons of Romanized indigenous people from the Bled-Pristava archaeological site. Forensic Sci Int Genet 2023; 65:102886. [PMID: 37137206 DOI: 10.1016/j.fsigen.2023.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
The familial relationship between skeletons buried together in a shared grave is important for understanding the burial practices of past human populations. Four skeletons were excavated from the Late Antiquity part of the Bled-Pristava burial site in Slovenia, dated to the 5th to 6th century. They were anthropologically characterized as two adults (a middle-aged man and a young woman) and two non-adults (of unknown sex). Based on stratigraphy, the skeletons were considered to be buried simultaneously in one grave. Our aim was to determine whether the skeletons were related. Petrous bones and teeth were used for genetic analysis. Specific precautions were followed to prevent contamination of ancient DNA with contemporary DNA, and an elimination database was established. Bone powder was obtained using a MillMix tissue homogenizer. Prior to extracting the DNA using Biorobot EZ1, 0.5 g of powder was decalcified. The PowerQuant System was used for quantification, various autosomal kits for autosomal short tandem repeat (STR) typing, and the PowerPlex Y23 kit for Y-STR typing. All analyses were performed in duplicate. Up to 28 ng DNA/g of powder was extracted from the samples analyzed. Almost full autosomal STR profiles obtained from all four skeletons and almost full Y-STR haplotypes obtained from two male skeletons were compared, and the possibility of a familial relationship was evaluated. No amplification was obtained in the negative controls, and no match was found in the elimination database. Autosomal STR statistical calculations confirmed that the adult male was the father of two non-adult individuals and one young adult individual from the grave. The relationship between the males (father and son) was additionally confirmed by an identical Y-STR haplotype that belonged to the E1b1b haplogroup, and a combined likelihood ratio for autosomal and Y-STRs was calculated. Kinship analysis confirmed with high confidence (kinship probability greater than 99.9% was calculated for all three children) that all four skeletons belonged to the same family (a father, two daughters, and a son). Through genetic analysis, the burial of members of the same family in a shared grave was confirmed as a burial practice of the population living in the Bled area in Late Antiquity.
Collapse
Affiliation(s)
- Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.
| | - Živa Miriam Geršak
- Institute of Radiology, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, Slovenia
| | - Tamara Leskovar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Črešnar
- Centre for Interdisciplinary Research in Archaeology, Department of Archaeology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
WAKU DAISUKE, GAKUHARI TAKASHI, KOGANEBUCHI KAE, YONEDA MINORU, KONDO OSAMU, MASUYAMA TADAYUKI, YAMADA YASUHIRO, OOTA HIROKI. Complete mitochondrial genome sequencing reveals double-buried Jomon individuals excavated from the Ikawazu shell-mound site were not in a mother–child relationship. ANTHROPOL SCI 2022. [DOI: 10.1537/ase.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- DAISUKE WAKU
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | - TAKASHI GAKUHARI
- Center for Cultural Resource Studies, College of Human and Social Sciences, Kanazawa University, Kanazawa
| | - KAE KOGANEBUCHI
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | - MINORU YONEDA
- The University Museum, The University of Tokyo, Tokyo
| | - OSAMU KONDO
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| | | | - YASUHIRO YAMADA
- Department of Philosophy, History and Cultural Studies, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo
| | - HIROKI OOTA
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo
| |
Collapse
|
7
|
Juras A, Ehler E, Chyleński M, Pospieszny Ł, Spinek AE, Malmström H, Krzewińska M, Szostek K, Pasterkiewicz W, Florek M, Wilk S, Mnich B, Kruk J, Szmyt M, Kozieł S, Götherström A, Jakobsson M, Dabert M. Maternal genetic origin of the late and final Neolithic human populations from present-day Poland. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:223-236. [PMID: 34308549 DOI: 10.1002/ajpa.24372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We aim to identify maternal genetic affinities between the Middle to Final Neolithic (3850-2300 BC) populations from present-day Poland and possible genetic influences from the Pontic steppe. MATERIALS AND METHODS We conducted ancient DNA studies from populations associated with Złota, Globular Amphora, Funnel Beaker, and Corded Ware cultures (CWC). We sequenced genomic libraries on Illumina platform to generate 86 complete ancient mitochondrial genomes. Some of the samples were enriched for mitochondrial DNA using hybridization capture. RESULTS The maternal genetic composition found in Złota-associated individuals resembled that found in people associated with the Globular Amphora culture which indicates that both groups likely originated from the same maternal genetic background. Further, these two groups were closely related to the Funnel Beaker culture-associated population. None of these groups shared a close affinity to CWC-associated people. Haplogroup U4 was present only in the CWC group and absent in Złota group, Globular Amphora, and Funnel Beaker cultures. DISCUSSION The prevalence of mitochondrial haplogroups of Neolithic farmer origin identified in Early, Middle and Late Neolithic populations suggests a genetic continuity of these maternal lineages in the studied area. Although overlapping in time - and to some extent - in cultural expressions, none of the studied groups (Złota, Globular Amphora, Funnel Beaker), shared a close genetic affinity to CWC-associated people, indicating a larger extent of cultural influence from the Pontic steppe than genetic exchange. The higher frequency of haplogroup U5b found in populations associated with Funnel Beaker, Globular Amphora, and Złota cultures suggest a gradual maternal genetic influx from Mesolithic hunter-gatherers. Moreover, presence of haplogroup U4 in Corded Ware groups is most likely associated with the migrations from the Pontic steppe at the end of the Neolithic and supports the observed genetic distances.
Collapse
Affiliation(s)
- Anna Juras
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Edvard Ehler
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| | - Maciej Chyleński
- Institute of Human Biology & Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Łukasz Pospieszny
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK.,Institute of Archaeology and Ethnology, Polish Academy of Sciences, Poznań, Poland
| | - Anna Elżbieta Spinek
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Krzysztof Szostek
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Warszawa, Poland
| | | | - Marek Florek
- Institute of Archaeology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Stanisław Wilk
- Institute of Archaeology, Jagiellonian University, Kraków, Poland.,The Karkonosze Museum in Jelenia Góra, Jelenia Góra, Poland
| | - Barbara Mnich
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Kraków, Poland
| | - Janusz Kruk
- Polish Academy of Sciences, Institute of Archaeology and Ethnology, Kraków, Poland
| | - Marzena Szmyt
- Faculty of Archaeology, Adam Mickiewicz University in Poznań, Poznań, Poland.,Archaeological Museum, Poznań, Poland
| | - Sławomir Kozieł
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anders Götherström
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Centre for Anthropological Research, University of Johannesburg, Johannesburg, South Africa
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| |
Collapse
|
8
|
Biological kinship in 750 year old human remains from Central Argentina with signs of interpersonal violence. Forensic Sci Med Pathol 2020; 16:649-658. [PMID: 32915387 DOI: 10.1007/s12024-020-00296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Human skeletal remains of an adult male (20-24 years old) and a juvenile (4-8 years old), dated to 750 ± 85 14C years BP, were found on the southern margin of Mar Chiquita Lagoon (Córdoba, Argentina). Both individuals show signs of being victims of interpersonal violence, with arrowheads associated with the remains and perimortem lesions on the juvenile, as well as an unusual form of burial, with the juvenile partially overlapped with the adult. The aim of this work is to study a possible kin relationship between these two individuals through ancient DNA analysis. Biological kinship was evaluated by autosomal and Y-chromosome STR (short tandem repeat) typing, PCR-APLP for SNP determination and hypervariable region I sequencing of the mitochondrial DNA. Genetic analyses indicated that these individuals shared the same Y-chromosomal haplotype but different mitochondrial lineages. The likelihood ratio based on autosomal loci indicates that the genetic profiles of the human remains would be more likely to be that indicating a father-son bond. The paleogenetic approach combined with forensic genetic methods applied to this study allowed us to confirm a hypothesis that originated in bioarchaeological evidence. This study constitutes a unique case in Argentina of kinship determination based on DNA profiles of human remains in an archaeological context of interpersonal violence. It is important to highlight the contribution made by these studies to address topics usually hidden in bioarchaeological studies, such as community organization, cultural customs and mortuary practices.
Collapse
|
9
|
Ehler E, Novotný J, Juras A, Chylenski M, Moravcík O, Paces J. AmtDB: a database of ancient human mitochondrial genomes. Nucleic Acids Res 2020; 47:D29-D32. [PMID: 30247677 PMCID: PMC6324066 DOI: 10.1093/nar/gky843] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/21/2018] [Indexed: 02/05/2023] Open
Abstract
Ancient mitochondrial DNA is used for tracing human past demographic events due to its population-level variability. The number of published ancient mitochondrial genomes has increased in recent years, alongside with the development of high-throughput sequencing and capture enrichment methods. Here, we present AmtDB, the first database of ancient human mitochondrial genomes. Release version contains 1107 hand-curated ancient samples, freely accessible for download, together with the individual descriptors, including geographic location, radiocarbon dating, and archaeological culture affiliation. The database also features an interactive map for sample location visualization. AmtDB is a key platform for ancient population genetic studies and is available at https://amtdb.org.
Collapse
Affiliation(s)
- Edvard Ehler
- Institute of Molecular Genetics of the ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic.,Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznań, Poland
| | - Jirí Novotný
- Institute of Molecular Genetics of the ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Maciej Chylenski
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznan, Umultowska 89D, 61-614 Poznan, Poland
| | - Ondrej Moravcík
- Institute of Molecular Genetics of the ASCR, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Paces
- Institute of Molecular Genetics of the ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| |
Collapse
|
10
|
Chyleński M, Ehler E, Somel M, Yaka R, Krzewińska M, Dabert M, Juras A, Marciniak A. Ancient Mitochondrial Genomes Reveal the Absence of Maternal Kinship in the Burials of Çatalhöyük People and Their Genetic Affinities. Genes (Basel) 2019; 10:genes10030207. [PMID: 30862131 PMCID: PMC6471721 DOI: 10.3390/genes10030207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Çatalhöyük is one of the most widely recognized and extensively researched Neolithic settlements. The site has been used to discuss a wide range of aspects associated with the spread of the Neolithic lifestyle and the social organization of Neolithic societies. Here, we address both topics using newly generated mitochondrial genomes, obtained by direct sequencing and capture-based enrichment of genomic libraries, for a group of individuals buried under a cluster of neighboring houses from the classical layer of the site’s occupation. Our data suggests a lack of maternal kinship between individuals interred under the floors of Çatalhöyük buildings. The findings could potentially be explained either by a high variability of maternal lineages within a larger kin group, or alternatively, an intentional selection of individuals for burial based on factors other than biological kinship. Our population analyses shows that Neolithic Central Anatolian groups, including Çatalhöyük, share the closest affinity with the population from the Marmara Region and are, in contrast, set further apart from the Levantine populations. Our findings support the hypothesis about the emergence and the direction of spread of the Neolithic within Anatolian Peninsula and beyond, emphasizing a significant role of Central Anatolia in this process.
Collapse
Affiliation(s)
- Maciej Chyleński
- Institute of Archaeology, Faculty of Historical Studies, Adam Mickiewicz University in Poznań, Umultowska 89D, 61-614 Poznań, Poland.
| | - Edvard Ehler
- Department of Biology and Environmental Studies, Faculty of Education, Charles University, Magdalény Rettigové 4, 116 39 Prague, Czech Republic.
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.
| | - Reyhan Yaka
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Lilla Frescativägen 7, SE-106 91 Stockholm, Sweden.
| | - Mirosława Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznań, Poland.
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Arkadiusz Marciniak
- Institute of Archaeology, Faculty of Historical Studies, Adam Mickiewicz University in Poznań, Umultowska 89D, 61-614 Poznań, Poland.
| |
Collapse
|
11
|
Juras A, Chyleński M, Ehler E, Malmström H, Żurkiewicz D, Włodarczak P, Wilk S, Peška J, Fojtík P, Králík M, Libera J, Bagińska J, Tunia K, Klochko VI, Dabert M, Jakobsson M, Kośko A. Mitochondrial genomes reveal an east to west cline of steppe ancestry in Corded Ware populations. Sci Rep 2018; 8:11603. [PMID: 30072694 PMCID: PMC6072757 DOI: 10.1038/s41598-018-29914-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022] Open
Abstract
From around 4,000 to 2,000 BC the forest-steppe north-western Pontic region was occupied by people who shared a nomadic lifestyle, pastoral economy and barrow burial rituals. It has been shown that these groups, especially those associated with the Yamnaya culture, played an important role in shaping the gene pool of Bronze Age Europeans, which extends into present-day patterns of genetic variation in Europe. Although the genetic impact of these migrations from the forest-steppe Pontic region into central Europe have previously been addressed in several studies, the contribution of mitochondrial lineages to the people associated with the Corded Ware culture in the eastern part of the North European Plain remains contentious. In this study, we present mitochondrial genomes from 23 Late Eneolithic and Bronze Age individuals, including representatives of the north-western Pontic region and the Corded Ware culture from the eastern part of the North European Plain. We identified, for the first time in ancient populations, the rare mitochondrial haplogroup X4 in two Bronze Age Catacomb culture-associated individuals. Genetic similarity analyses show close maternal genetic affinities between populations associated with both eastern and Baltic Corded Ware culture, and the Yamnaya horizon, in contrast to larger genetic differentiation between populations associated with western Corded Ware culture and the Yamnaya horizon. This indicates that females with steppe ancestry contributed to the formation of populations associated with the eastern Corded Ware culture while more local people, likely of Neolithic farmer ancestry, contributed to the formation of populations associated with western Corded Ware culture.
Collapse
Affiliation(s)
- Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznań, Poland.
| | - Maciej Chyleński
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznan, Umultowska 89D, 61-614, Poznań, Poland
| | - Edvard Ehler
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznań, Poland
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Danuta Żurkiewicz
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznan, Umultowska 89D, 61-614, Poznań, Poland
| | - Piotr Włodarczak
- Polish Academy of Sciences, Institute of Archaeology and Ethnology, Sławkowska str. 17, 31-016, Kraków, Poland
| | - Stanisław Wilk
- Institute of Archaeology, Jagiellonian University, Gołębia 11, 31-007, Kraków, Poland
| | - Jaroslav Peška
- Archaeological Centre Olomouc, U Hradiska 42/6, 779 00, Olomouc, Czech Republic
- Department of History - Section of Archaeology, Philosophical faculty, Palacký University Olomouc, Na Hradě 5, 771 80, Olomouc, Czech Republic
| | - Pavel Fojtík
- Institute of Archaeological Heritage Brno, v.v.i., Kaloudova 30, 614 00, Brno, Czech Republic
| | - Miroslav Králík
- Laboratory of Morphology and Forensic Anthropology (LaMorFA), Department of Anthropology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Jerzy Libera
- Institute of Archaeology, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Square 4, 20-031, Lublin, Poland
| | - Jolanta Bagińska
- Muzeum Regionalne im. Janusza Petera, ul. Zamojska 2, 22-600, Tomaszów Lubelski, Poland
| | - Krzysztof Tunia
- Polish Academy of Sciences, Institute of Archaeology and Ethnology, Sławkowska str. 17, 31-016, Kraków, Poland
| | - Viktor I Klochko
- National University of "Kyiv-Mohyla Academy", Institute of Archaeology, Hryhoriya Skovorody St. 2, 04655, Kyiv, Ukraine
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznań, Poland
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology and SciLifeLab, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
- Centre for Anthropological Research, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Aleksander Kośko
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznan, Umultowska 89D, 61-614, Poznań, Poland
| |
Collapse
|
12
|
Malyarchuk B, Derenko M, Denisova G, Litvinov A, Rogalla U, Skonieczna K, Grzybowski T, Pentelényi K, Guba Z, Zeke T, Molnár MJ. Whole mitochondrial genome diversity in two Hungarian populations. Mol Genet Genomics 2018; 293:1255-1263. [PMID: 29948329 DOI: 10.1007/s00438-018-1458-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 11/28/2022]
Abstract
Complete mitochondrial genomics is an effective tool for studying the demographic history of human populations, but there is still a deficit of mitogenomic data in European populations. In this paper, we present results of study of variability of 80 complete mitochondrial genomes in two Hungarian populations from eastern part of Hungary (Szeged and Debrecen areas). The genetic diversity of Hungarian mitogenomes is remarkably high, reaching 99.9% in a combined sample. According to the analysis of molecular variance (AMOVA), European populations showed a low, but statistically significant level of between-population differentiation (Fst = 0.61%, p = 0), and two Hungarian populations demonstrate lack of between-population differences. Phylogeographic analysis allowed us to identify 71 different mtDNA sub-clades in Hungarians, sixteen of which are novel. Analysis of ancestry-informative mtDNA sub-clades revealed a complex genetic structure associated with the genetic impact of populations from different parts of Eurasia, though the contribution from European populations is the most pronounced. At least 8% of ancestry-informative haplotypes found in Hungarians demonstrate similarity with East and West Slavic populations (sub-clades H1c23a, H2a1c1, J2b1a6, T2b25a1, U4a2e, K1c1j, and I1a1c), while the influence of Siberian populations is not so noticeable (sub-clades A12a, C4a1a, and probably U4b1a4).
Collapse
Affiliation(s)
- Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia.
| | - Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Galina Denisova
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Andrey Litvinov
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Urszula Rogalla
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094, Bydgoszcz, Poland
| | - Katarzyna Skonieczna
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094, Bydgoszcz, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094, Bydgoszcz, Poland
| | - Klára Pentelényi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1085, Hungary
| | - Zsuzsanna Guba
- Hungarian Molecular Anthropological Research Group, Debrecen, 4030, Hungary
| | - Tamás Zeke
- Hungarian Molecular Anthropological Research Group, Debrecen, 4030, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, 1085, Hungary
| |
Collapse
|
13
|
Mnich B, Spinek AE, Chyleński M, Sommerfeld A, Dabert M, Juras A, Szostek K. Analysis of LCT-13910 genotypes and bone mineral density in ancient skeletal materials. PLoS One 2018; 13:e0194966. [PMID: 29708972 PMCID: PMC5927400 DOI: 10.1371/journal.pone.0194966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 03/14/2018] [Indexed: 11/19/2022] Open
Abstract
The relation of LCT-13910 genotypes and bone mineral density (BMD) has been the subject of modern-day human population studies, giving inconsistent results. In the present study we analyze for the first time a relation of LCT-13910 genotypes and BMD in historical skeletal individuals. Ancient population might be a model for testing this association due to elimination of non-natural factors affecting bone density. Among 22 medieval individuals from Sanok churchyard (South-Eastern Poland; dated from XIV to XVII c. AD) we identified 4 individuals with osteoporosis (mean BMD = 0.468 g/cm2, SD = 0.090), 10 individuals with osteopenia (mean BMD = 0.531 g/cm2, SD = 0.066) and 8 individuals with normal BMD values (mean BMD = 0,642 g/cm2, SD = 0.060). Analyses of BMD and LCT-13910 genotypes revealed that mean BMD was the highest (0.583 g/cm2, SD = 0.065) in the individuals with lactose tolerance genotypes (TT and CT). We also found possible association of lower BMD at the radius and CC genotypes due to higher but not statistically significant frequency of osteoporosis in the lactose intolerant group (p = 0.60). Statistically significant correlation was found between BMD and females aged 20-35 years, with tendency to reduce BMD with age (p = 0.02).
Collapse
Affiliation(s)
- Barbara Mnich
- Department of Anthropology, Jagiellonian University, Cracow, Poland
| | | | - Maciej Chyleński
- Institute of Archaeology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Aleksandra Sommerfeld
- Department of Agriculture and Bioengineering, University of Life Sciences, Poznan, Poland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Anna Juras
- Department of Human Evolutionary Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | |
Collapse
|
14
|
Loreille O, Ratnayake S, Bazinet AL, Stockwell TB, Sommer DD, Rohland N, Mallick S, Johnson PLF, Skoglund P, Onorato AJ, Bergman NH, Reich D, Irwin JA. Biological Sexing of a 4000-Year-Old Egyptian Mummy Head to Assess the Potential of Nuclear DNA Recovery from the Most Damaged and Limited Forensic Specimens. Genes (Basel) 2018; 9:genes9030135. [PMID: 29494531 PMCID: PMC5867856 DOI: 10.3390/genes9030135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens.
Collapse
Affiliation(s)
- Odile Loreille
- DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | - Shashikala Ratnayake
- National Biodefense Analysis and Countermeasures Center, 8300 Research Plaza, Fort Detrick, MD 21702, USA.
| | - Adam L Bazinet
- National Biodefense Analysis and Countermeasures Center, 8300 Research Plaza, Fort Detrick, MD 21702, USA.
| | - Timothy B Stockwell
- National Biodefense Analysis and Countermeasures Center, 8300 Research Plaza, Fort Detrick, MD 21702, USA.
| | - Daniel D Sommer
- National Biodefense Analysis and Countermeasures Center, 8300 Research Plaza, Fort Detrick, MD 21702, USA.
| | - Nadin Rohland
- Department of Genetics Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Swapan Mallick
- Department of Genetics Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Philip L F Johnson
- Department of Biology, University of Maryland, 1210 Biology-Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA.
| | - Pontus Skoglund
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.
| | - Anthony J Onorato
- DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| | - Nicholas H Bergman
- National Biodefense Analysis and Countermeasures Center, 8300 Research Plaza, Fort Detrick, MD 21702, USA.
| | - David Reich
- Department of Genetics Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| | - Jodi A Irwin
- DNA Support Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA.
| |
Collapse
|
15
|
A review of bioinformatic methods for forensic DNA analyses. Forensic Sci Int Genet 2017; 33:117-128. [PMID: 29247928 DOI: 10.1016/j.fsigen.2017.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/30/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022]
Abstract
Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used.
Collapse
|
16
|
Gomes C, Gibaja JF, Buxó JRI, Baeza-Richer C, López − Matayoshi C, López-Parra AM, Palomo-Díez S, Subirà ME, Arroyo-Pardo E. Biological kinship analysis in extremely critical samples: The case of a Spanish Neolithic necropolis. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.09.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Corrêa HSD, Pedro FLM, Volpato LER, Pereira TM, Siebert Filho G, Borges ÁH. Forensic DNA typing from teeth using demineralized root tips. Forensic Sci Int 2017; 280:164-168. [DOI: 10.1016/j.forsciint.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/28/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
18
|
Philips A, Stolarek I, Kuczkowska B, Juras A, Handschuh L, Piontek J, Kozlowski P, Figlerowicz M. Comprehensive analysis of microorganisms accompanying human archaeological remains. Gigascience 2017; 6:1-13. [PMID: 28609785 PMCID: PMC5965364 DOI: 10.1093/gigascience/gix044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Accepted: 06/11/2017] [Indexed: 02/01/2023] Open
Abstract
Metagenome analysis has become a common source of information about microbial communities that occupy a wide range of niches, including archaeological specimens. It has been shown that the vast majority of DNA extracted from ancient samples come from bacteria (presumably modern contaminants). However, characterization of microbial DNA accompanying human remains has never been done systematically for a wide range of different samples. We used metagenomic approaches to perform comparative analyses of microorganism communities present in 161 archaeological human remains. DNA samples were isolated from the teeth of human skeletons dated from 100 AD to 1200 AD. The skeletons were collected from 7 archaeological sites in Central Europe and stored under different conditions. The majority of identified microbes were ubiquitous environmental bacteria that most likely contaminated the host remains not long ago. We observed that the composition of microbial communities was sample-specific and not correlated with its temporal or geographical origin. Additionally, traces of bacteria and archaea typical for human oral/gut flora, as well as potential pathogens, were identified in two-thirds of the samples. The genetic material of human-related species, in contrast to the environmental species that accounted for the majority of identified bacteria, displayed DNA damage patterns comparable with endogenous human ancient DNA, which suggested that these microbes might have accompanied the individual before death. Our study showed that the microbiome observed in an individual sample is not reliant on the method or duration of sample storage. Moreover, shallow sequencing of DNA extracted from ancient specimens and subsequent bioinformatics analysis allowed both the identification of ancient microbial species, including potential pathogens, and their differentiation from contemporary species that colonized human remains more recently.
Collapse
Affiliation(s)
- Anna Philips
- European Center for Bioinformatics and Genomics, Institute of Bioorganic
Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Ireneusz Stolarek
- European Center for Bioinformatics and Genomics, Institute of Bioorganic
Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Bogna Kuczkowska
- European Center for Bioinformatics and Genomics, Institute of Bioorganic
Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty
of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Luiza Handschuh
- European Center for Bioinformatics and Genomics, Institute of Bioorganic
Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
- Department of Hematology and Bone Marrow Transplantation, University of
Medical Sciences, Poznan, 60-569, Poland
- Institute of Technology and Chemical Engineering, Poznan University of
Technology, Poznan, 60-965, Poland
| | - Janusz Piontek
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty
of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Piotr Kozlowski
- European Center for Bioinformatics and Genomics, Institute of Bioorganic
Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
- Institute of Technology and Chemical Engineering, Poznan University of
Technology, Poznan, 60-965, Poland
| | - Marek Figlerowicz
- European Center for Bioinformatics and Genomics, Institute of Bioorganic
Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan,
60-965, Poland
| |
Collapse
|
19
|
Chyleński M, Juras A, Ehler E, Malmström H, Piontek J, Jakobsson M, Marciniak A, Dabert M. Late Danubian mitochondrial genomes shed light into the Neolithisation of Central Europe in the 5 th millennium BC. BMC Evol Biol 2017; 17:80. [PMID: 28302068 PMCID: PMC5356262 DOI: 10.1186/s12862-017-0924-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/23/2017] [Indexed: 11/29/2022] Open
Abstract
Background Recent aDNA studies are progressively focusing on various Neolithic and Hunter - Gatherer (HG) populations, providing arguments in favor of major migrations accompanying European Neolithisation. The major focus was so far on the Linear Pottery Culture (LBK), which introduced the Neolithic way of life in Central Europe in the second half of 6th millennium BC. It is widely agreed that people of this culture were genetically different from local HGs and no genetic exchange is seen between the two groups. From the other hand some degree of resurgence of HGs genetic component is seen in late Neolithic groups belonging to the complex of the Funnel Beaker Cultures (TRB). Less attention is brought to various middle Neolithic cultures belonging to Late Danubian sequence which chronologically fall in between those two abovementioned groups. We suspected that genetic influx from HG to farming communities might have happened in Late Danubian cultures since archaeologists see extensive contacts between those two communities. Results Here we address this issue by presenting 5 complete mitochondrial genomes of various late Danubian individuals from modern-day Poland and combining it with available published data. Our data show that Late Danubian cultures are maternally closely related to Funnel Beaker groups instead of culturally similar LBK. Conclusions We assume that it is an effect of the presence of individuals belonging to U5 haplogroup both in Late Danubians and the TRB. The U5 haplogroup is thought to be a typical for HGs of Europe and therefore we argue that it is an additional evidence of genetic exchange between farming and HG groups taking place at least as far back as in middle Neolithic, in the Late Danubian communities. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0924-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Chyleński
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznań, Umultowska 89D, 61-614, Poznań, Poland.
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Edvard Ehler
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland.,Department of Biology and Environmental Studies, Faculty of Education, Charles University in Prague, Magdalény Rettigové 4, 116 39, Prague, Czech Republic
| | - Helena Malmström
- Department of Organismal Biology and SciLifeLab, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Janusz Piontek
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Mattias Jakobsson
- Department of Organismal Biology and SciLifeLab, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Arkadiusz Marciniak
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznań, Umultowska 89D, 61-614, Poznań, Poland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| |
Collapse
|
20
|
Juras A, Krzewińska M, Nikitin AG, Ehler E, Chyleński M, Łukasik S, Krenz-Niedbała M, Sinika V, Piontek J, Ivanova S, Dabert M, Götherström A. Diverse origin of mitochondrial lineages in Iron Age Black Sea Scythians. Sci Rep 2017; 7:43950. [PMID: 28266657 PMCID: PMC5339713 DOI: 10.1038/srep43950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Scythians were nomadic and semi-nomadic people that ruled the Eurasian steppe during much of the first millennium BCE. While having been extensively studied by archaeology, very little is known about their genetic identity. To fill this gap, we analyzed ancient mitochondrial DNA (mtDNA) from Scythians of the North Pontic Region (NPR) and successfully retrieved 19 whole mtDNA genomes. We have identified three potential mtDNA lineage ancestries of the NPR Scythians tracing back to hunter-gatherer and nomadic populations of east and west Eurasia as well as the Neolithic farming expansion into Europe. One third of all mt lineages in our dataset belonged to subdivisions of mt haplogroup U5. A comparison of NPR Scythian mtDNA linages with other contemporaneous Scythian groups, the Saka and the Pazyryks, reveals a common mtDNA package comprised of haplogroups H/H5, U5a, A, D/D4, and F1/F2. Of these, west Eurasian lineages show a downward cline in the west-east direction while east Eurasian haplogroups display the opposite trajectory. An overall similarity in mtDNA lineages of the NPR Scythians was found with the late Bronze Age Srubnaya population of the Northern Black Sea region which supports the archaeological hypothesis suggesting Srubnaya people as ancestors of the NPR Scythians.
Collapse
Affiliation(s)
- Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Maja Krzewińska
- Department of Archaeology and Classical Studies, Stockholm University Wallenberglaboratoriet, SE-106 91 Stockholm, Sweden
| | - Alexey G Nikitin
- Biology Department, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States of America
| | - Edvard Ehler
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland.,Department of Biology and Environmental Studies, Faculty of Education, Charles University in Prague, Magdalény Rettigové 4, 116 39, Prague, Czech Republic
| | - Maciej Chyleński
- Institute of Archaeology, Faculty of History, Adam Mickiewicz University in Poznan, Umultowska 89D, 61-614 Poznan, Poland
| | - Sylwia Łukasik
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Marta Krenz-Niedbała
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Vitaly Sinika
- Taras Shevchenko University in Tiraspol, Taras Shevchenko University in Tiraspol, October Street 25, 33-00 Tiraspol, Moldova
| | - Janusz Piontek
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Svetlana Ivanova
- Institute of Archaeology, National Academy of Sciences of Ukraine, Lanzheronivska Street, 65026, Odessa, Ukraine
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University Wallenberglaboratoriet, SE-106 91 Stockholm, Sweden
| |
Collapse
|