1
|
Zhao M, Cai M, Lei F, Yuan X, Liu Q, Fang Y, Zhu B. AI-driven feature selection and epigenetic pattern analysis: A screening strategy of CpGs validated by pyrosequencing for body fluid identification. Forensic Sci Int 2024; 367:112339. [PMID: 39729807 DOI: 10.1016/j.forsciint.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Identification of body fluid stain at crime scene is one of the important tasks of forensic evidence analysis. Currently, body fluid-specific CpGs detected by DNA methylation microarray screening, have been widely studied for forensic body fluid identification. However, some CpGs have limited ability to distinguish certain body fluid types. The ongoing need is to discover novel methylation markers and fully validate them to enhance their evidentiary strength in complex forensic scenarios. This research gathered forensic-related DNA methylation microarrays data from the Gene Expression Omnibus (GEO) database. A novel screening strategy for marker selection was developed, combining feature selection algorithms (elastic net, information gain ratio, feature importance based on Random Forest, and mutual information coefficient) with epigenetic pattern analysis, to identify CpG markers for body fluid identification. The selected CpGs were validated through pyrosequencing on peripheral blood, saliva, semen, vaginal secretions, and menstrual blood samples, and machine learning classification models were constructed based on the sequencing results. Pyrosequencing results revealed 14 CpGs with high specificity in five types of body fluid samples. A machine learning classification model, developed based on the pyrosequencing results, could effectively distinguish five types of body fluid samples, achieving 100 % accuracy on the test set. Utilizing six CpG markers, it was also feasible to attain ideal efficacy in identifying body fluid stains. Our research proposes a systematic and scientific strategy for screening body fluid-specific CpGs, contributing new insights and methods to forensic body fluid identification.
Collapse
Affiliation(s)
- Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xi Yuan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qinglin Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yating Fang
- School of Basic Medical Science, Anhui Medical University, Hefei 230031, China.
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Yu D, Zhang J, Gao N, Huo Y, Li W, Wang T, Zhang X, Simayijiang H, Yan J. Rapid and visual detection of specific bacteria for saliva and vaginal fluid identification with the lateral flow dipstick strategy. Int J Legal Med 2023; 137:1853-1863. [PMID: 37358650 DOI: 10.1007/s00414-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China.
| |
Collapse
|
3
|
Adampourezare M, Hasanzadeh M, Hoseinpourefeizi MA, Seidi F. Iron/iron oxide-based magneto-electrochemical sensors/biosensors for ensuring food safety: recent progress and challenges in environmental protection. RSC Adv 2023; 13:12760-12780. [PMID: 37153517 PMCID: PMC10157298 DOI: 10.1039/d2ra07415j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne diseases have arisen due to the globalization of industry and the increase in urban population, which has led to increased demand for food and has ultimately endangered the quality of food. Foodborne diseases have caused some of the most common public health problems and led to significant social and economic issues worldwide. Food quality and safety are affected by microbial contaminants, growth-promoting feed additives (β-agonists and antibiotics), food allergens, and toxins in different stages from harvesting to storage and marketing of products. Electrochemical biosensors, due to their reduced size and portability, low cost, and low consumption of reagents and samples, can quickly provide valuable quantitative and qualitative information about food contamination. In this regard, using nanomaterials can increase the sensitivity of the assessment. Magnetic nanoparticle (MNP)-based biosensors, especially, are receiving significant attention due to their low-cost production, physicochemical stability, biocompatibility, and eco-friendly catalytic characteristics, along with magnetic, biological, chemical and electronic sensing features. Here, we provide a review on the application of iron-based magnetic nanoparticles in the electrochemical sensing of food contamination. The types of nanomaterials used in order to improve the methods and increase the sensitivity of the methods have been discussed. Then, we stated the advantages and limitations of each method and tried to state the research gaps for each platform/method. Finally, the role of microfluidic and smartphone-based methods in the rapid detection of food contamination is stated. Then, various techniques like label-free and labelled regimes for the sensitive monitoring of food contamination were surveyed. Next, the critical role of antibody, aptamer, peptide, enzyme, DNA, cells and so on for the construction of specific bioreceptors for individual and simultaneous recognition by electrochemical methods for food contamination were discussed. Finally, integration of novel technologies such as microfluidic and smartphones for the identification of food contaminations were investigated. It is important to point out that, in the last part of each sub-section, attained results of different reports for each strategy were compared and advantages/limitations were mentioned.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
4
|
Upadhyay M, Shrivastava P, Verma K, Joshi B. Recent advancements in identification and detection of saliva as forensic evidence: a review. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2023. [DOI: 10.1186/s41935-023-00336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Abstract
Background
Saliva is the most common biological evidence found at any crime scene next to blood. It is a clear liquid which makes it immune to any possible evidence of alteration by the perpetrator. In forensics, saliva is used as biological evidence and is very helpful in determining various aspects of an individual such as sex, individuality, ABO blood groups, microbial signature, biomarkers, or habits like smoking.
Main body
Saliva shares a great resemblance with plasma as it encompasses similar organic or inorganic compound contents. In forensic casework, identifying any evidence is the primary goal to establish the groundwork for further investigation. Saliva may be found in the form of a pool or stained form, but its identification is challenging because of its transparency. It has been widely used as an informative tool in forensic situations like poisoning, hanging, or cases of drug abuse, etc. for more than two decades now. Over the years, many proposed ways or methods have been identified and described, which helped in the detection and identification of saliva as evidence.
Conclusion
This review article represents the significance of saliva as important forensic evidence, along with the different forms it may be encountered at the crime scene. The use of diverse collection and detection methods, over the past few decades, has been discussed. An attempt has been made to collect the available data, highlighting the merit and demerits of different identification techniques. The relevant data has been collected from all the published and reported literature (1987–2021).
Collapse
|
5
|
Lewis C, Seashols-Williams SJ. Design and optimization of a 16S microbial qPCR multiplex for the presumptive identification of feces, saliva, vaginal and menstrual secretions. J Forensic Sci 2022; 67:1660-1667. [PMID: 35352345 PMCID: PMC9310585 DOI: 10.1111/1556-4029.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Molecular methods for body fluid identification have been extensively researched in the forensic community over the last decade, mostly focusing on RNA‐based methods. Microbial DNA analysis has long been used for forensic applications, such as postmortem interval estimations, but only recently has it been applied to body fluid identification. High‐throughput sequencing of the 16S ribosomal RNA gene by previous research groups revealed that microbial signatures and abundances vary across human body fluids at the genus and/or species taxonomic level. Since quantitative PCR is still the current technique used in forensic DNA analysis, the purpose of this study was to design a qPCR multiplex targeting the 16S gene of Bacteroides uniformis, Streptococcus salivarius, and Lactobacillus crispatus that can distinguish between feces, saliva, and vaginal/menstrual secretions, respectively. Primers and probes were designed at the species level because these bacteria are highly abundant within their respective fluid. The validated 16S triplex was evaluated in DNA extracts from thirty donors of each body fluid. A classification regression tree model resulted in 96.5% classification accuracy of the population data, which demonstrates the ability of this 16S triplex to presumptively identify these fluids with high confidence at the quantification step of the forensic workflow using minimal input volume of DNA extracted from evidentiary samples.
Collapse
Affiliation(s)
- Carolyn Lewis
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
6
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Application of DNA repair for Streptococcus salivarius DNA-based identification of saliva from ultraviolet-exposed samples. Forensic Sci Int 2020; 306:110077. [DOI: 10.1016/j.forsciint.2019.110077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/04/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
|
8
|
Ohta J, Sakurada K. Oral gram-positive bacterial DNA-based identification of saliva from highly degraded samples. Forensic Sci Int Genet 2019; 42:103-112. [DOI: 10.1016/j.fsigen.2019.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 12/29/2022]
|
9
|
Wilson D, Materón EM, Ibáñez-Redín G, Faria RC, Correa DS, Oliveira ON. Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta 2018; 194:611-618. [PMID: 30609580 DOI: 10.1016/j.talanta.2018.10.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 01/27/2023]
Abstract
Outbreaks of foodborne diseases demand simple, rapid techniques for detecting pathogenic bacteria beyond the standard methods that are not applicable to routine analysis in the food industry and in the points of food consumption. In this work, we developed a sensitive, rapid and low-cost assay for detecting Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhi) in potable water and apple juice. The assay is based on electrical impedance spectroscopy measurements with screen-printed interdigitated electrodes coupled with magnetite nanoparticles functionalized with the antimicrobial peptide melittin (MLT). The data were analyzed with the information visualization methods Sammon's Mapping and Interactive Document Map to distinguish samples at two levels of contamination from food suitable for consumption. With this approach it has been possible to detect E. coli concentration down to 1 CFU mL-1 in potable water and 3.5 CFU mL-1 in apple juice without sample preparation, within only 25 min. This approach may serve as a low-cost, quick screening procedure to detect bacteria-related food poisoning, especially if the impedance data of several sensing units are combined.
Collapse
Affiliation(s)
- Deivy Wilson
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil.
| | - Elsa M Materón
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil; Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565-970 São Carlos, SP, Brazil
| | - Gisela Ibáñez-Redín
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos, Rod Washington Luiz, km 235, 13565-970 São Carlos, SP, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Matsumura Y, Enomoto Y, Takahashi M, Maenosono S. Metal (Au, Pt) Nanoparticle-Latex Nanocomposites as Probes for Immunochromatographic Test Strips with Enhanced Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31977-31987. [PMID: 30184422 DOI: 10.1021/acsami.8b11745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of a sensitive and rapid diagnostic test for early detection of infectious viruses is urgently required to defend against pandemic and infectious diseases including seasonal influenza. In this study, we developed noble metal (Au, Pt) nanoparticle-latex nanocomposite particles for use as probes for immunochromatographic test (ICT) strips. The nanocomposite particles were conjugated with monoclonal antibody (mAb) to detect an influenza A (H1N1) antigen. For comparison, Au nanoparticles conjugated with mAb were also prepared. The lowest detectable concentrations of the influenza A antigen were found to be 6.25 × 10-3 and 2.5 × 10-2 HAU/mL for Au nanoparticle-latex and Pt nanoparticle-latex nanocomposite particles, respectively, whereas it was 4.0 × 10-1 HAU/mL for Au nanoparticles. These results clearly demonstrated that the nanocomposite probes were more sensitive than conventional nanoparticle-based probes for ICT. To expand the versatility of the nanocomposite probes, the surfaces of the probes were functionalized with biotinylated proteins to enable modification of their surfaces with desired biotinylated antibodies through biotin-avidin binding.
Collapse
Affiliation(s)
- Yasufumi Matsumura
- New Materials Development Center, Research & Development Division , Nippon Steel & Sumikin Chemical Co., Ltd. , 1-Tsukiji , Kisarazu , Chiba 292-0835 , Japan
| | - Yasushi Enomoto
- New Materials Development Center, Research & Development Division , Nippon Steel & Sumikin Chemical Co., Ltd. , 1-Tsukiji , Kisarazu , Chiba 292-0835 , Japan
| | - Mari Takahashi
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Shinya Maenosono
- School of Materials Science , Japan Advanced Institute of Science and Technology , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
11
|
Tsai LC, Su CW, Lee JCI, Lu YS, Chen HC, Lin YC, Linacre A, Hsieh HM. The detection and identification of saliva in forensic samples by RT-LAMP. Forensic Sci Med Pathol 2018; 14:469-477. [PMID: 30058014 DOI: 10.1007/s12024-018-0008-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
We report on a novel method for saliva identification by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). In our previous report, real-time RT-LAMP was used for blood identification by using HBB detection as a model but in this advanced study, this method was refined for the identification of the more challenging body fluid of saliva. Expression of the18S rRNA gene was used as the internal control and the Statherin (STATH) gene as the saliva-specific marker. A turbidimeter was used for real-time detection of the RT-LAMP products, and confirmation was obtained that the real products were generated using: agarose gel electrophoresis, calcein fluorescence detection and/or enzymatic digestion. The specificity of the test was performed using 42 samples including 7 different body fluids, and the expression of STATH was only observed in all the saliva samples (6) with a threshold time of 39.4 ± 2.9 min. Sensitivity testing showed that RT-LAMP products for STATH were stably detected when the RNA template was not less than 6.25 ng. When the primer concentrations for STATH were two times that of 18S rRNA, saliva could be identified in the body fluid mixtures even at a ratio (saliva:semen) of 1:3 (without loop primer)/1:5 (with loop primer). A multiplex RT-LAMP was established to simultaneously amplify the 18S rRNA and STATH genes, and applied to the identification of saliva on ten non-probative cigarette butts. A positive result for saliva was obtained from all ten butts, even for those that returned a negative or ambiguous result using the amylase test. A direct RT-LAMP test is also reported where the RNA extraction step was omitted to speed the collection of data and all tests using either the simplex or multiplex RT-LAMP resulted in a positive response if saliva was present. Our data provide a simple and effective means to detect the presence of saliva.
Collapse
Affiliation(s)
- Li-Chin Tsai
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan, 33304, Taiwan, Republic of China
| | - Chih-Wen Su
- Forensic Biology Division, Criminal Investigation Bureau, National Police Administration, No.5 Lane 553, Sec. 4, Zhongxiao E. RD., Xinyi District, Taipei, 11072, Taiwan, Republic of China
| | - James Chun-I Lee
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei, 10051, Taiwan, Republic of China
| | - Yu-Sheng Lu
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan, 33304, Taiwan, Republic of China
| | - Hsuan-Chen Chen
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan, 33304, Taiwan, Republic of China
| | - Yu-Chih Lin
- Taichung City Government Police Department, 588 Wenxin Road Section 2, Xitun District, Taichung, 40758, Taiwan, Republic of China
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide, 5001, Australia
| | - Hsing-Mei Hsieh
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan, 33304, Taiwan, Republic of China.
| |
Collapse
|
12
|
Jung JY, Yoon HK, An S, Lee JW, Ahn ER, Kim YJ, Park HC, Lee K, Hwang JH, Lim SK. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep 2018; 8:10852. [PMID: 30022122 PMCID: PMC6052055 DOI: 10.1038/s41598-018-29264-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
This study developed a new method for forensic saliva identification using three oral bacteria, Streptococcus salivarius, Streptococcus sanguinis, and Neisseria subflava, combined with a real-time polymerase chain reaction (RT-PCR) system we called OB mRT-PCR. Analytical sensitivity results showed that the target bacteria were amplified at 102-107 copies/reaction, and analytical specificity was assessed using 24 other viruses, bacteria, and protozoa. To evaluate the OB mRT-PCR kit for forensic applications, saliva from 140 Korean individuals was tested, and at least two target bacteria were detected in all the samples. Additional studies on non-saliva samples demonstrated the specificity of the kit. Comparison of the kit with two conventional saliva test methods, the SALIgAE and RSID-Saliva assays, indicated that it was more sensitive and applicable to saliva samples in long-term storage (up to 14 weeks). Additionally, through amplification of mock forensic items and old DNA samples (isolated without lysis of the bacterial cells, regardless of their Gram-positivity), we found that the kit was applicable to not only saliva swabs, but also DNA samples. We suggest that this simple RT-PCR-based experimental method is feasible for rapid on-site analysis, and we expect this kit to be useful for saliva detection in old forensic DNA samples.
Collapse
Affiliation(s)
- Ju Yeon Jung
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Hyun Kyu Yoon
- JS Biotech, Business Incubation Center, Kyungbok University, 425 Kyungbokdae-ro, Jinjeop-eup, Namyangju-si, Gyeonggi-do, 12051, Republic of Korea
| | - Sanghyun An
- DNA Analysis Division, Seoul Institute, National Forensic Service, 139, Jiyang-ro, Yangcheon-gu, Seoul, 08036, Republic of Korea
| | - Jee Won Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Eu-Ree Ahn
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Yeon-Ji Kim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Hyun-Chul Park
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Kyungmyung Lee
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Jung Ho Hwang
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea
| | - Si-Keun Lim
- Forensic DNA Division, National Forensic Service, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, Republic of Korea.
| |
Collapse
|