1
|
Zou X, Nie Q, Li W, Chen Y, Song T, Zhang P. Genetic variation and phylogenetic analysis of 23 STR in Chinese Han population from Hainan, Southern China. Medicine (Baltimore) 2024; 103:e38428. [PMID: 39259071 PMCID: PMC11142786 DOI: 10.1097/md.0000000000038428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 09/12/2024] Open
Abstract
The forensic characteristics and genetic relationships of Hainan Han population are still not fully understood. The aim of this study was to investigate the forensic features and genetic variations of 23 short tandem repeat (STR) included in the HuaxiaTM Platinum system in Hainan Han and analyze the population genetic relationships between Hainan Han and other adjacent Chinese populations. The genetic polymorphisms of 23 STR loci included in the HuaxiaTM Platinum kit were evaluated from 2971 Hainan Han individuals. Comprehensive comparisons were conducted based on genetic distance, phylogenetic tree, multidimensional scaling and principal component analysis (PCA) to explore inter-population genetic relationship. The combined power of discrimination (CPD) and the combined power of exclusion (CPE) of the 23 STR loci was 0.999 999 999 999 999 999 999 999 999 819 and 0.999 999 999 625 408, respectively. The investigated Hainan Han population has high genetic similarity with geographically close Han populations, while great genetic difference with other ethnic minorities, prominently in Yunnan Miao, Xinjiang Uygurs, Xinjiang Kazakh, and Tibetans. Our study found the 23 STR loci were highly polymorphic and suitable for forensic personal identification and paternity testing in Hainan Han population. Genetic similarity widely existed among Han populations from different regions, and significant genetic divergence existed between Han populations and some ethnic minorities. The populations genetic diversity and similarity were closely associated with ethnic origin and geographical distribution.
Collapse
Affiliation(s)
- Xing Zou
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Qianyun Nie
- Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenhui Li
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Yinyu Chen
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Tao Song
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (Tropical Forensic Medicine), Hainan Province Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Fu D, Adnan A, Yao J, Aldayan NH, Wang CC, Hongyi C. Unraveling the paternal genetic structure and forensic traits of the Hui population in Liaoning Province, China using Y-chromosome analysis. BMC Genomics 2023; 24:691. [PMID: 37978341 PMCID: PMC10655310 DOI: 10.1186/s12864-023-09774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
The Hui people are the second-largest ethnic minority in China, and they are distributed throughout the country. A previous study explored the paternal genetic structure of the Hui population in nine different regions of China, but it overlooked the Liaoning province. In this study, we examined the paternal genetic makeup and forensic traits of the Hui population in Liaoning province by analyzing 157 Y-chromosome single nucleotide polymorphisms (Y-SNPs) and 26 short tandem repeats (Y-STRs). We successfully genotyped 282 unrelated male individuals from the Hui population of Liaoning province using the SNaPshot® single base extension assay and Goldeneye™ Y26 system kit (PEOPLESPOT R&D, Beijing, China). The results revealed high haplotypic diversity (0.9998) and identified 46 terminal haplogroups for the Hui population. Additional analyses, such as heat maps, principal component analysis (PCA), genetic distance (FST), Multidimensional scaling (MDS) analysis, and median-joining network (MJ) analysis, showed that the Hui population could be classified into three groups: Northwest Hui populations (NWH), including Liaoning, Xinjiang, Qinghai, Gansu, Ningxia, Shaanxi, and Henan; Hui populations from Sichuan and Shandong (SSH); and Yunnan Hui populations (YNH). Pairwise genetic distance (Rst) comparisons with other Chinese populations revealed that the Hui population displayed genetic affinity with the Han population. The comprehensive understanding of the Hui population in Liaoning province, explored by Y-SNPs and Y-STRs, can be utilized to interpret their genetic structure and enhance the accuracy of forensic databases.
Collapse
Affiliation(s)
- Dazhi Fu
- First Affiliated Hospital of China Medical University, 155 Heping District, Shenyang, 110001, China
| | - Atif Adnan
- Department of Forensic Sciences, Collage of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia.
| | - Jun Yao
- Department of Forensic Biology and Genetics, School of Forensic Medicine, China Medical University, Shenyang, 110001, China
| | - Noura H Aldayan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Ibn Abdulaziz University, Al-Kharj, 16273, Saudi Arabia
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian, People's Republic of China.
| | - Cao Hongyi
- First Affiliated Hospital of China Medical University, 155 Heping District, Shenyang, 110001, China.
- Department of Pathology, School of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
3
|
Zhao M, Cui W, Xu H, Zhang Y, Zhu B. Unveiling the genetic landscape of high-altitude adaptive ethnic groups with polymorphic markers: Implications of comprehensive forensic appraisals and population genetic investigations. Heliyon 2023; 9:e21229. [PMID: 38027587 PMCID: PMC10656254 DOI: 10.1016/j.heliyon.2023.e21229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deletion/insertion polymorphisms (DIPs), a novel class of biomarker, have been widely utilized in forensic areas for individual identification, paternity tests, and ancestral origin inference due to its applicability to degraded samples and low mutation rates. Despite the availability of a well-established commercial kit, the Investigator® DIPplex kit (Qiagen), certain loci exhibit limited levels of polymorphisms in East Asian populations, particularly in Chinese populations. Objective This dissertation seeks to undertake a comprehensive evaluation about the forensic efficiency of a self-developed multiplex amplification system in high-altitude adaptive ethnic groups of China. Healthy unrelated Tibetan individuals residing in Tibet Autonomous Region and Qinghai Province were genotyped using previously reported 43 deletion/insertion polymorphism loci. Forensic statistical analyses including allele frequencies and forensic parameters were conducted in the two Tibetan groups, and the genetic relatedness of the studied groups with reference populations from the 1000 Genomes Project Phase 3 were investigated. Results Forensic statistical results showed that the polymorphism information content values of the 43 deletion/insertion polymorphism loci in the two Tibetan groups exceeded 0.35. Moreover, the combined power of discrimination using the 43 deletion/insertion polymorphism loci was calculated to be 0.9999999999999999984 in the Qinghai Tibetan group and 0.9999999999999999921 in the Tibet Tibetan group. The cumulative power of exclusion using the 43 deletion/insertion polymorphism loci was calculated to be 0.999782512 in the Qinghai Tibetan group and 0.999886205 in the Tibet Tibetan group. Analysis of population genetics demonstrated that the two studied Tibetan groups shared close genetic relationships with East Asia populations. Conclusion The set of 43 deletion/insertion polymorphism loci exhibited remarkable forensic efficacy, rendering it a promising tool for forensic practice. Population genetic analyses indicated that the two Tibetan groups had closer genetic affinities to East Asian populations.
Collapse
Affiliation(s)
- Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Wei Cui
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Yunying Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhao Q, Li Y, Liang Q, Zhao J, Kang K, Hou M, Zhang X, Du R, Kong L, Liang B, Huang W. The infertile individual analysis based on whole-exome sequencing in chinese multi-ethnic groups. Genes Genomics 2023; 45:531-542. [PMID: 36115009 DOI: 10.1007/s13258-022-01307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Infertility is a common and rapidly growing health issue around the world. The genetic analysis based on the infertile population is crucial for intervention and treatment. OBJECTIVE To find candidate gene locus led to azoospermia in Chinese multi-ethnic groups and provide theoretical guidance for the diagnosis of genetic diseases to progressively aggravated infertility patients and sterile offspring with ART. METHODS The study based on whole-exome sequencing (WES) was presented for genetic characteristic analysis of multi-ethnics and identification of variants related to infertility in Xinjiang area of China. RESULTS The frequency of pathogenic variants showed significant ethnic differences among four main ethnics in Xinjiang. The population structure analysis confirmed that the Hui was close to the Han population, the Kazak was close to the Uygur population, and there are three ancestry components in the four ethnics. In addition, ten candidate variants potentially regulated azoospermia were detected, and KNTC1 (rs7968222: G > T) was chosen to validate the association. Through the analysis in the valid group, the frequency of rs7968222 (G > T) has a significant difference in the azoospermia population (11.76%, 8/68) and normospermia population (4.63%, 35/756) (P < 0.001). Interestingly, the proportion of people with abnormal follicle-stimulating hormone (FSH) level in the group carrying rs7968222 (G > T) was significantly higher than non-carriers (P < 0.05). Therefore, rs7968222 may regulate spermatogenesis through affecting hormone level. CONCLUSION Our study establishes the genetics analysis of Northwest China and finds a candidate gene locus KNTC1 (rs7968222: G > T), which is one of the genetic susceptibility factors for male azoospermia.
Collapse
Affiliation(s)
- Qiongzhen Zhao
- Tanzhi Stem Cell Bank of Xinjiang, 844000, Tumshuk, Xinjiang, China
| | - Yanqi Li
- Tanzhi Stem Cell Bank of Xinjiang, 844000, Tumshuk, Xinjiang, China
| | - Qi Liang
- Xinjiang Jiayin hospital, 830000, Urumqi, Xinjiang, China
| | - Jie Zhao
- Xinjiang Jiayin hospital, 830000, Urumqi, Xinjiang, China
| | - Kai Kang
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Meiling Hou
- Suzhou BioX Research Institute, 215001, Suzhou, Jiangsu, China
| | - Xin Zhang
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Renqian Du
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd, 215001, Suzhou, Jiangsu, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200020, Shanghai, China.
| | - Weidong Huang
- Tanzhi Stem Cell Bank of Xinjiang, 844000, Tumshuk, Xinjiang, China.
- Xinjiang Jiayin hospital, 830000, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Lan Q, Cai M, Lei F, Shen C, Zhu B. Systematically exploring the performance of a self-developed Multi-InDel system in forensic identification, ancestry inference and genetic structure analysis of Chinese Manchu and Mongolian groups. Forensic Sci Int 2023; 346:111637. [PMID: 36934684 DOI: 10.1016/j.forsciint.2023.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
The insertion/deletion (InDel) polymorphism has promising applications in forensic DNA analysis. However, the insufficient forensic efficiencies of the present InDel-based systems restrict their applications in parentage testing, due to the lower genetic polymorphism of the biallelic InDel locus and the limited number of InDel loci in a multiplex amplification system. Here, we introduced an in-house developed system which contained 41 polymorphic Multi-InDel markers (equivalent to 82 InDels in total), to serve as an efficient and reliable tool for different forensic applications in the Manchu and Mongolian groups. We demonstrated that the new system exhibited potential efficiencies for personal identification, parentage testing, two-person DNA mixture interpretation and ancestry inference of intercontinental populations. Meanwhile, we explored the genetic backgrounds of the Manchu and Mongolian groups by conducting a series of population genetic analyses. We showed that the Manchu and Mongolian groups shared closer genetic relationships with East Asian populations, especially Han Chinese populations in northern China. Moreover, more similar genetic compositions were detected between the Manchu group and the northern Han populations in this study, suggesting that the Manchu group had higher genetic affinities with northern Han populations than the Mongolian group. Overall. this study provided the necessary evidence that these Multi-InDel genetic markers could play an important role in forensic applications.
Collapse
Affiliation(s)
- Qiong Lan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515 Guangzhou, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515 Guangzhou, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515 Guangzhou, China
| | - Chunmei Shen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, 510515 Guangzhou, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Zheng Y, Wang T, He K, Yang Y, You J, Huang X, Zhang H, Ren Z, Wang Q, Huang J, Jin X. Forensic efficiency evaluation of a novel multiplex panel of InDels and STRs in the Guizhou Han population and its phylogenetic relationships with other reference populations. Ann Hum Biol 2023; 50:42-47. [PMID: 36636013 DOI: 10.1080/03014460.2023.2168754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Insertion/deletion polymorphism (InDel), as the third genetic marker, has been given a lot of attention by forensic geneticists since it has the advantages of extensive distributions in the human genome, small amplicon, and low mutation rate. However, the extant InDel panels were only viewed as supplemental tools for kinship analyses. In addition, these panels were not conductive to mixture deconvolution because InDels in these panels mainly displayed two alleles. AIMS The purpose of this study is to investigate genetic distributions of a novel panel of InDels and STRs in the Guizhou Han population; assess the forensic application value of the panel; and conduct population genetic analyses of the Guizhou Han and other reference populations based on the overlapping loci. SUBJECTS AND METHODS The bloodstain samples of 209 Guizhou Han were gathered and genotyped by the novel panel. Allelic frequencies and forensic parameters of two miniSTRs and 59 InDels in the panel were estimated. In addition, we assessed phylogenetic relationships among the Guizhou Han and other reference populations by principal component analysis, DA genetic distance, and neighbor-joining tree. RESULTS A total of 139 alleles of 61 loci could be observed in the Guizhou Han population. Polymorphic information content values of 59 InDels were greater than 0.3 in the Guizhou Han population. The cumulative power of discrimination and probability of exclusion of two miniSTRs and 59 InDels in the Guizhou Han population were 0.999999999999999999999999997984 and 0.9999986, respectively. Principal component analysis of 14 populations showed that the Guizhou Han population located closer to Hunan Han and Southern Han Chinese (CHS) populations. Similar results were also discerned from DA genetic distances and the neighbor-joining tree. CONCLUSION To sum up, the novel panel could be employed for forensic personal identification and paternity testing in the Guizhou Han population as a promising independent tool. Besides, the principal component analysis and phylogenetic tree of the Guizhou Han and other compared populations revealed that the Guizhou Han population possesses close genetic affinities with Hunan Han, CHS, and Han Chinese in Beijing (CHB) populations.
Collapse
Affiliation(s)
- Yanhua Zheng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ting Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Kun He
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yunteng Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangtao You
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Fang Y, Liu Y, Xu H, Zhu B. Performance evaluation of an in-house panel containing 59 autosomal InDels for forensic identification in Chinese Hui and Mongolian groups. Genomics 2023; 115:110552. [PMID: 36565793 DOI: 10.1016/j.ygeno.2022.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
In recent years, a novel multiplex system containing two mini-short tandem repeats, 59 autosomal InDels, two Y-chromosomal InDels, and the Amelogenin gene with all amplicons less than 200 bp has been constructed and validated by ourselves for forensic degration sample, and its forensic application efficiency has been studied in Chinese some populations. Herein, the population genetic polymorphisms of these loci were investigated in Chinese Hui (n = 249) and Mongolian (n = 222) ethnic groups using direct multiplex amplification and capillary electrophoresis platform. The forensic identification efficiencies of this self-developed system were further evaluated in these two groups. And the results showed that the values of the combined power of discrimination were 0.9999999999999999999999999999006 (Hui) and 0.999999999999999999999999999738 (Mongolian), respectively. Moreover, the combined power of exclusion values were 0.99999817 (Hui) and 0.99999779 (Mongolian). The 59 autosomal InDels used in this study exhibited high forensic identification efficiencies in 10 East Asian populations, which was also expected to be a new powerful tool for identifying degraded biological materials in East Asian populations.
Collapse
Affiliation(s)
- Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; School of Basic Medical Sciences, Anhui Medical University, Anhui 230031, China
| | - Yanfang Liu
- Laboratory of Fundamental Nursing Research, School of Nursing, Guangdong Medical University, Dongguan, China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
8
|
Fan H, He Y, Li S, Xie Q, Wang F, Du Z, Fang Y, Qiu P, Zhu B. Systematic Evaluation of a Novel 6-dye Direct and Multiplex PCR-CE-Based InDel Typing System for Forensic Purposes. Front Genet 2022; 12:744645. [PMID: 35082827 PMCID: PMC8784372 DOI: 10.3389/fgene.2021.744645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Insertion/deletion (InDel) polymorphisms, combined desirable characteristics of both short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs), are considerable potential in the fields of forensic practices and population genetics. However, most commercial InDel kits designed based on non-Asians limited extensive forensic applications in East Asian (EAS) populations. Recently, a novel 6-dye direct and multiplex PCR-CE-based typing system was designed on the basis of genome-wide EAS population data, which could amplify 60 molecular genetic markers, consisting of 57 autosomal InDels (A-InDels), 2 Y-chromosomal InDels (Y-InDels), and Amelogenin in a single PCR reaction and detect by capillary electrophoresis, simultaneously. In the present study, the DNA profiles of 279 unrelated individuals from the Hainan Li group were generated by the novel typing system. In addition, we collected two A-InDel sets to evaluate the forensic performances of the novel system in the 1,000 Genomes Project (1KG) populations and Hainan Li group. For the Universal A-InDel set (UAIS, containing 44 A-InDels) the cumulative power of discrimination (CPD) ranged from 1-1.03 × 10-14 to 1-1.27 × 10-18, and the cumulative power of exclusion (CPE) varied from 0.993634 to 0.999908 in the 1KG populations. For the East Asia-based A-InDel set (EAIS, containing 57 A-InDels) the CPD spanned from 1-1.32 × 10-23 to 1-9.42 × 10-24, and the CPE ranged from 0.999965 to 0.999997. In the Hainan Li group, the average heterozygote (He) was 0.4666 (0.2366-0.5448), and the polymorphism information content (PIC) spanned from 0.2116 to 0.3750 (mean PIC: 0.3563 ± 0.0291). In total, the CPD and CPE of 57 A-InDels were 1-1.32 × 10-23 and 0.999965, respectively. Consequently, the novel 6-dye direct and multiplex PCR-CE-based typing system could be considered as the reliable and robust tool for human identification and intercontinental population differentiation, and supplied additional information for kinship analysis in the 1KG populations and Hainan Li group.
Collapse
Affiliation(s)
- Haoliang Fan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Yitong He
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Shuanglin Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Fenfen Wang
- First Clinical Medical College, Hainan Medical University, Haikou, China
| | - Zhengming Du
- First Clinical Medical College, Hainan Medical University, Haikou, China
| | - Yating Fang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Jin XY, Liu YF, Cui W, Chen C, Zhang XR, Huang J, Zhu BF. Development a multiplex panel of AISNPs, multi-allelic InDels, microhaplotypes and Y-SNP/InDel loci for multiple forensic purposes via the NGS. Electrophoresis 2021; 43:632-644. [PMID: 34859475 DOI: 10.1002/elps.202100253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022]
Abstract
Recently, next generation sequencing showed the promising application value in forensic research. In this study, we constructed a multiplex system of different molecular genetic markers based on the previous selected AISNPs, multi-allelic InDels, microhaplotypes and Y-SNP/InDel loci and evaluated forensic efficiencies of the system in Chinese Shaanxi Han, Hui and Mongolian groups via the NGS platform. Ancestry informative analyses of Shaanxi Han, Hui and Mongolian groups revealed that most Mongolian individuals could be differentiated from Shaanxi Hans and Huis based on the selected AISNPs. Multi-allelic InDels and microhaplotypes showed the multiple allele variations and possessed relatively high genetic polymorphisms in these three groups, indicating these loci could also provide higher forensic efficiencies for individual identification and paternity testing. Based on Y-SNPs, different haplogroup distributions were observed among Shaanxi Han, Hui and Mongolian groups. In conclusion, the self-developed system could be used to simultaneously carry out the individual identification, paternity analysis, mixture deconvolution, forensic ancestry information analysis and Y chromosomal haplogroup inference, which could provide more investigative clues in forensic practices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Ye Jin
- Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yan-Fang Liu
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Wei Cui
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| | - Chong Chen
- Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Xing-Ru Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Bo-Feng Zhu
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
10
|
Chen C, Jin X, Zhang X, Zhang W, Guo Y, Tao R, Chen A, Xu Q, Li M, Yang Y, Zhu B. Comprehensive Insights Into Forensic Features and Genetic Background of Chinese Northwest Hui Group Using Six Distinct Categories of 231 Molecular Markers. Front Genet 2021; 12:705753. [PMID: 34721519 PMCID: PMC8555763 DOI: 10.3389/fgene.2021.705753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The Hui minority is predominantly composed of Chinese-speaking Islamic adherents distributed throughout China, of which the individuals are mainly concentrated in Northwest China. In the present study, we employed the length and sequence polymorphisms-based typing system of 231 molecular markers, i.e., amelogenin, 22 phenotypic-informative single nucleotide polymorphisms (PISNPs), 94 identity-informative single nucleotide polymorphisms (IISNPs), 24 Y-chromosomal short tandem repeats (Y-STRs), 56 ancestry-informative single nucleotide polymorphisms (AISNPs), 7 X-chromosomal short tandem repeats (X-STRs), and 27 autosomal short tandem repeats (A-STRs), into 90 unrelated male individuals from the Chinese Northwest Hui group to comprehensively explore its forensic characteristics and genetic background. Total of 451 length-based and 652 sequence-based distinct alleles were identified from 58 short tandem repeats (STRs) in 90 unrelated Northwest Hui individuals, denoting that the sequence-based genetic markers could pronouncedly provide more genetic information than length-based markers. The forensic characteristics and efficiencies of STRs and IISNPs were estimated, both of which externalized high polymorphisms in the Northwest Hui group and could be further utilized in forensic investigations. No significant departure from the Hardy-Weinberg equilibrium (HWE) expectation was observed after the Bonferroni correction. Additionally, four group sets of reference population data were exploited to dissect the genetic background of the Northwest Hui group separately from different perspectives, which contained 26 populations for 93 IISNPs, 58 populations for 17 Y-STRs, 26 populations for 55 AISNPs (raw data), and 109 populations for 55 AISNPs (allele frequencies). As a result, the analyses based on the Y-STRs indicated that the Northwest Hui group primarily exhibited intimate genetic relationships with reference Hui groups from Chinese different regions except for the Sichuan Hui group and secondarily displayed close genetic relationships with populations from Central and West Asia, as well as several Chinese groups. However, the AISNP analyses demonstrated that the Northwest Hui group shared more intimate relationships with current East Asian populations apart from reference Hui group, harboring the large proportion of ancestral component contributed by East Asia.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Wenqing Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Anqi Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qiannan Xu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Min Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yue Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Huang Y, Chen X, Liu C, Han X, Xiao C, Yi S, Huang D. Genetic analysis of 32 InDels in four ethnic minorities from Chinese Xinjiang. PLoS One 2021; 16:e0250206. [PMID: 33886624 PMCID: PMC8061914 DOI: 10.1371/journal.pone.0250206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 12/05/2022] Open
Abstract
The present study used the previously constructed 32-plex InDels panel to investigated the genetic diversity of four ethnic minorities (Hui, Mongol, Uygur and Kazakh) from Xinjiang, and analyzed the genetic relationships between the four populations and 27 reference populations. No significant deviations were observed from the Hardy-Weinberg equilibrium (HWE) at the 32 InDels for each population. The average observed heterozygosity (Hexp), average polymorphic information content (PIC), combined power of discrimination (CPD) and cumulative probability of exclusion (CPE) for the 32 InDels were all higher than the Qiagen Investigator DIPplex kit in the four populations from Xinjiang. The CPD ranged from 0.999999999999903 (Kazakh) to 0.999999999999952 (Hui) and CPE ranged from 0.9971 (Uygur) to 0.9985 (Hui), which indicated that the 32 InDels were capable for individual identification and could be a supplementary tool in paternity test for these populations. Population genetic analysis by the method of analysis of molecular variance (AMOVA), FST, phylogenetic tree, TreeMix-based topology, multi-dimensional scale analysis (MDS), principal components analysis (PCA) and STRUCTURE analysis showed that Xinjiang Hui population has a close relationship with East Asians (EAS), especially Chinese Han, and the populations of Xinjiang Mongol, Uygur and Kazakh showed mixed ancestral components related to EAS and Europeans (EUR).
Collapse
Affiliation(s)
- Yujie Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoying Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cong Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xueli Han
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
12
|
Jin R, Cui W, Fang Y, Jin X, Wang H, Lan Q, Guo Y, Chen C, Zhang X, Zhu B. A Novel Panel of 43 Insertion/Deletion Loci for Human Identifications of Forensic Degraded DNA Samples: Development and Validation. Front Genet 2021; 12:610540. [PMID: 33777093 PMCID: PMC7990895 DOI: 10.3389/fgene.2021.610540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Insertion/deletion polymorphism is a promising genetic marker in the forensic genetic fields, especially in the forensic application of degraded sample at crime scene. In this research, a novel five-dye multiplex amplification panel containing 43 highly polymorphic Insertion/deletion (InDel) loci and one Amelogenin gene locus is designed and constructed in-house for the individual identification in East Asian populations. The amplicon sizes of 43 InDel loci are less than 200 bp, which help to ensure that full allele profiles can be obtained from degraded DNA sample. A series of optimizations and developmental validations including optimization of PCR conditions, detection efficiency of the degraded and casework samples, sensitivity, reproducibility, precision, tolerance for inhibitors, species specificity and DNA mixtures are performed according to the Scientific Working Group on DNA Analysis Methods (SWGDAM) guideline. The results of the internal validation demonstrated that this novel InDel panel was a reliable, sensitive and accurate system with good tolerances to different inhibitors, and performed the considerable detection efficiency for the degraded or mixed samples, which could be used in the forensic applications.
Collapse
Affiliation(s)
- Rui Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yating Fang
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hongdan Wang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Lan
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
The Polymorphism Analyses of Short Tandem Repeats as a Basis for Understanding the Genetic Characteristics of the Guanzhong Han Population. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8887244. [PMID: 33728348 PMCID: PMC7936557 DOI: 10.1155/2021/8887244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
The short tandem repeat (STR) loci are polymorphic markers in the combined DNA index system (CODIS) and non-CODIS STR loci. Due to the highly polymorphic characteristic of STR loci, they are popular and widely used in forensic DNA typing laboratories. In this study, 22 STR loci (1 CODIS, 21 non-CODIS STR loci) and an Amelogenin locus were genotyped and analyzed in 590 unrelated individuals of the Guanzhong Han population. None of the 22 STR loci deviated from the Hardy-Weinberg equilibrium, and all the loci were in the linkage equilibrium state. We observed 247 alleles, and the corresponding allelic frequencies ranged from 0.0008 to 0.3695 in the Guanzhong Han population. The combined power of discrimination and the cumulative exclusion probability was 0.999 999 999 999 999 999 999 999 999 346 36 and 0.999 999 999 709 74, respectively. The results including Nei's D A genetic distance, multidimensional scaling analysis, and principal component analysis showed that the Guanzhong Han population has closer genetic affinities with Northern Han, Chengdu Han, and Xinjiang Hui groups from China based on allelic frequencies of 15 overlapped STR loci from Guanzhong Han and 13 reference groups. The present results indicated that Microreader™ 23sp ID kit included highly polymorphic loci, and it could be well used for individual identification, paternity testing, and population genetics in the Guanzhong Han population.
Collapse
|
14
|
Du H, Zheng X, Zhao Q, Hu Z, Wang H, Zhou L, Liu JF. Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing. Front Genet 2021; 12:550676. [PMID: 33613628 PMCID: PMC7890942 DOI: 10.3389/fgene.2021.550676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) represent essential forms of genetic variation, and they are associated with various phenotypic traits in a wide range of important livestock species. However, the distribution of SVs in the pig genome has not been fully characterized, and the function of SVs in the economic traits of pig has rarely been studied, especially for most domestic pig breeds. Meishan pig is one of the most famous Chinese domestic pig breeds, with excellent reproductive performance. Here, to explore the genome characters of Meishan pig, we construct an SV map of porcine using whole-genome sequencing data and report 33,698 SVs in 305 individuals of 55 globally distributed pig breeds. We perform selective signature analysis using these SVs, and a number of candidate variants are successfully identified. Especially for the Meishan pig, 64 novel significant selection regions are detected in its genome. A 140-bp deletion in the Indoleamine 2,3-Dioxygenase 2 (IDO2) gene, is shown to be associated with reproduction traits in Meishan pig. In addition, we detect two duplications only existing in Meishan pig. Moreover, the two duplications are separately located in cytochrome P450 family 2 subfamily J member 2 (CYP2J2) gene and phospholipase A2 group IVA (PLA2G4A) gene, which are related to the reproduction trait. Our study provides new insights into the role of selection in SVs' evolution and how SVs contribute to phenotypic variation in pigs.
Collapse
Affiliation(s)
- Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiqi Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Chen C, Li Y, Tao R, Jin X, Guo Y, Cui W, Chen A, Yang Y, Zhang X, Zhang J, Li C, Zhu B. The Genetic Structure of Chinese Hui Ethnic Group Revealed by Complete Mitochondrial Genome Analyses Using Massively Parallel Sequencing. Genes (Basel) 2020; 11:E1352. [PMID: 33202591 PMCID: PMC7698084 DOI: 10.3390/genes11111352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA), coupled with maternal inheritance and relatively high mutation rates, provides a pivotal way for us to investigate the formation histories of populations. The Hui minority with Islamic faith is one of the most widely distributed ethnic groups in China. However, the exploration of Hui's genetic architecture from the complete mitochondrial genome perspective has not been detected yet. Therefore, in this study, we employed the complete mitochondrial genomes of 98 healthy and unrelated individuals from Northwest China, as well as 99 previously published populations containing 7274 individuals from all over the world as reference data, to comprehensively dissect the matrilineal landscape of Hui group. Our results demonstrated that Hui group exhibited closer genetic relationships with Chinese Han populations from different regions, which was largely attributable to the widespread of haplogroups D4, D5, M7, B4, and F1 in these populations. The demographic expansion of Hui group might occur during the Late Pleistocene. Finally, we also found that Hui group might have gene exchanges with Uygur, Tibetan, and Tajik groups in different degrees and retained minor genetic imprint of European-specific lineages, therefore, hinting the existence of multi-ethnic integration events in shaping the genetic landscape of Chinese Hui group.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Yuchun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610017, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Wei Cui
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Anqi Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yue Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Jingyi Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610017, China
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
16
|
Forensic parameters and genetic structure analysis of 30 autosomal InDels of the population in Freetown, Sierra Leone. Int J Legal Med 2020; 135:767-769. [PMID: 32865693 DOI: 10.1007/s00414-020-02417-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
As the origin of modern humanity, African populations show high genetic diversity and are attracting increasing academic attention. However, populations living in West Africa have so far received less study and exploration. In this study, we analyze 30 insertion/deletion (InDel) loci of 516 samples from Freetown, Sierra Leone, to evaluate the forensic properties and reveal the genetic structure in Freetown, Sierra Leone, West Africa. No significant linkage disequilibrium (LD) between 30 InDels was observed after the Bonferroni correction. The random match probability (RMP), the combined power of exclusion for duos (CPE duos), and the combined power of exclusion for trios (CPE trios) were 6.823 × 10-11, 0.9168, and 0.9731, respectively. Null alleles and off-ladder alleles were observed, suggesting that we should be cautious when using this kit for forensic caseworks in African populations. In the population comparison study, we found that the Freetown population is genetically closer to geographically distinct West Africans and has a closer genetic relationship with the Bantu-speaking populations than other African populations.
Collapse
|
17
|
Cui W, Jin X, Guo Y, Chen C, Zhang W, Kong T, Wang Y, Huang J, Zhu B. Forensic applicability of autosomal insertion/deletion loci in Chinese Daur ethnic group and genetic affinity evaluations between Daur group and reference populations. Leg Med (Tokyo) 2020; 47:101741. [PMID: 32682294 DOI: 10.1016/j.legalmed.2020.101741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
In present study, we evaluated the genetic diversities of 30 insertion/deletion (InDel) loci and analyzed the genetic relationships between Daur and other comparison populations. In the studied Daur group, any two InDel loci showed no linkage disequilibrium, and all loci showed no deviations from exact tests of Hardy-Weinberg equilibrium. Insertion allele frequencies at 30 InDel loci ranged from 0.1459 (HLD39) to 0.8774 (HLD118). The observed heterozygosity and expected heterozygosity values were ranged from 0.1984 (HLD118) to 0.5564 (HLD6) and 0.2155 (HLD118) to 0.5000 (HLD92 and HLD6), respectively. The combined power of discrimination and power of exclusion values were 0.999999999993428 and 0.9878, respectively, which indicated that this panel of 30 InDels could be used for individual identifications in Daur group. Population genetic analyses including pairwise fixation index, STRUCTURE analysis, principal component analysis, genetic distance, multidimensional scaling analysis and phylogenetic analysis demonstrated that the Daur group had the closer genetic relationships with the groups from western China in comparison with other continental populations.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Wenqing Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Tingting Kong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jingfeng Huang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China; Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Liu Y, Jin X, Lan Q, Zhao C, Xu H, Xie T, Lan J, Tai Y, Zhu B. Forensic characteristic and population structure dissection of Shaanxi Han population in the light of diallelic deletion/insertion polymorphism data. Genomics 2020; 112:3837-3845. [PMID: 32574833 DOI: 10.1016/j.ygeno.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/08/2022]
Abstract
The genetic polymorphisms of diallelic deletion/insertion polymorphic (DIP) loci in the Shaanxi Han population are still not clearly characterized. Herein, allele frequencies and forensic application efficiencies for 30 diallelic DIP loci were investigated in 506 unrelated healthy Han individuals from Chinese Shaanxi province. Based on population data of the same 30 diallelic DIP loci, the genetic differentiations, hierarchical clustering relationships and population architectures among Shaanxi Han and other 50 populations were further dissected through genetic and bioinformatics analyses. Results indicated that most of the 30 diallelic DIP loci were relatively high polymorphisms in the Shaanxi Han population; and there were the genetically intimate relationships between Shaanxi Han and the East Asian populations. In summary, this study provided significant insights into genetic background of Shaanxi Han population, and the multiplex amplification of these 30 diallelic DIP loci was appropriate for forensic individual identification and population genetic research in Shaanxi Han population.
Collapse
Affiliation(s)
- Yanfang Liu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 710004 Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 710004, Xi'an, China; College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qiong Lan
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Congying Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hui Xu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tong Xie
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiangwei Lan
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yunchun Tai
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bofeng Zhu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 710004 Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, 710004, Xi'an, China.
| |
Collapse
|
19
|
Ancestry Prediction Comparisons of Different AISNPs for Five Continental Populations and Population Structure Dissection of the Xinjiang Hui Group via a Self-Developed Panel. Genes (Basel) 2020; 11:genes11050505. [PMID: 32375366 PMCID: PMC7288656 DOI: 10.3390/genes11050505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
Abstract
Ancestry informative markers are genetic markers that show distinct genetic divergences among different populations. These markers can be utilized to discern population substructures and estimate the ancestral origins of unknown individuals. Previously, we developed a multiplex system of 30 ancestry informative single nucleotide polymorphism (AISNP) loci to facilitate ancestral inferences in different continental populations. In the current study, we first compared the ancestry resolutions of the 30 AISNPs and the other previously reported AISNP panels for African, European, East Asian, South Asian and American populations. Next, the genetic components of the Xinjiang Hui group were further explored in comparison to these continental populations based on the 30 AISNPs. Genetic divergence analyses of the 30 AISNPs in these five continental populations revealed that most of the AISNPs showed high genetic differentiations between these populations. Ancestry analysis comparisons of the 30 AISNPs and other published AISNPs revealed that these 30 AISNPs had comparable efficiency to other AISNP panels. Genetic relationship analyses among the studied Hui group and other continental populations demonstrated that the Hui group had close genetic affinities with East Asian populations and might share the genetic ancestries with East Asian populations. Overall, the 30 AISNPs can be used to predict the bio-geographical origins of different continental populations. Moreover, the obtained genetic data of 30 AISNPs in the Hui group can further enrich the extant reference data, which can be used as reference data for ancestry analyses of the Hui group.
Collapse
|
20
|
Li L, Yao L, He X, Gong H, Deng Y, Luan M, He G, Jia F, Chen P. Haplotype diversity and phylogenetic characteristics for Guanzhong Han population from Northwest China via 38 Y-STRs using Yfiler™ Platinum Amplification System. Mol Genet Genomic Med 2020; 8:e1187. [PMID: 32166867 PMCID: PMC7216798 DOI: 10.1002/mgg3.1187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND For better application in human forensic cases and population genetics research, it is imperative to investigate the genetic characteristics of Guanzhong Han population using enhanced Y-chromosomal short tandem repeats (Y-STR) detecting system with higher discriminating power than previous ones. METHODS In this study, 38 Y-STRs were profiled in 430 unrelated Chinese Han male individuals from Guanzhong region of Shaanxi Province, Northwest China, using the Yfiler™ Platinum PCR Amplification Kit. Haplotype frequencies and forensic parameters were calculated. Comprehensive population comparisons with geographically/ethnically different populations in China and other worldwide countries were performed. RESULTS A total of 422 different haplotypes were observed with the overall haplotype diversity (HD), discriminatory power (DC) and haplotype match probability (HMP) were 0.9999, 0.9814, and 0.0024, respectively. Guanzhong Han showed genetically affinity with Han ethnicity from Shanxi and Henan provinces, while far distant from Tibetan populations. CONCLUSION This study offered a unique insight into Guanzhong Han population, the 38 Y-STRs included in the the Yfiler™ Platinum system are highly polymorphic and informative and can be used for forensic practice and human genetic research.
Collapse
Affiliation(s)
- Luyao Li
- Department of Pathologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lilan Yao
- Center of Forensic ExpertiseAffiliated hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xin He
- Department of MathematicsSichuan UniversityChengduSichuanChina
| | - Huilin Gong
- Department of Pathologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yuan Deng
- Department of Pathologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Mei Luan
- Department of Dermatology and Venerologythe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Guanglin He
- Institute of Forensic medicineWest China School of Basic Science and Forensic MedicineSichuan UniversityChengduSichuanChina
| | - Fuquan Jia
- Department of Forensic MedicineInner Mongolia Medical UniversityHohhotInner Mongolia Autonomous RegionChina
| | - Pengyu Chen
- Center of Forensic ExpertiseAffiliated hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
21
|
Wang F, He G, Wang Z, Wang M, Liu J, Zou X, Wang S, Song M, Ye Z, Xie M, Hou Y. Population genetics and forensic efficiency of 30 InDel markers in four Chinese ethnic groups residing in Sichuan. Forensic Sci Res 2020; 7:498-502. [DOI: 10.1080/20961790.2020.1737470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Fei Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mengyuan Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingkun Xie
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Zou X, He G, Wang M, Huo L, Chen X, Liu J, Wang S, Ye Z, Wang F, Wang Z, Hou Y. Genetic diversity and phylogenetic structure of four Tibeto-Burman-speaking populations in Tibetan-Yi corridor revealed by insertion/deletion polymorphisms. Mol Genet Genomic Med 2020; 8:e1140. [PMID: 32017463 PMCID: PMC7196475 DOI: 10.1002/mgg3.1140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insertion/deletion polymorphisms (InDels), combined with all the desirable features of both short tandem repeat and single nucleotide polymorphism, have been used in archaeological and anthropological research, population genetics and forensic application. METHODS Thirty InDels in 530 individuals residing in the Tibetan-Yi corridor (142 Dujiangyan Tibetans, 164 Muli Tibetans, 187 Xichang Yis, and 37 Yanyuan Mosuos) were genotyped using the Investigator DIPplex. Forensic parameters and allele frequency spectrum were calculated. Genetic relationships between the investigated populations and worldwide and nationwide populations were assessed based on both the allele frequency distribution and genotype data. RESULTS The combined powers of exclusion were 0.9807 (Dujiangyan Tibetan), 0.9880 (Muli Tibetan), 0.9852 (Xichang Yi) and 0.9892 (Yanyuan Mosuo). The combined powers of discrimination were 0.999999999983 (Dujiangyan Tibetan), 0.999999999942 (Muli Tibetan), 0.999999999982 (Xichang Yi) and 0.999999999962 (Yanyuan Mosuo), respectively. The comprehensive population comparisons among worldwide and nationwide populations uniformly illustrated that the investigated populations have a genetically closer relationship with Tibeto-Burman-speaking populations and geographically adjacent populations. CONCLUSION These 30 loci can be regarded as an efficient genetic tool in forensic individual identification and as a supplementary tool in paternity testing in Dujiangyan Tibetan, Muli Tibetan, Xichang Yi, and Yanyuan Mosuo. The genetic proximity between the four populations in the Tibetan-Yi corridor and other populations is strongly correlated with the linguistic origin and geographical distance.
Collapse
Affiliation(s)
- Xing Zou
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Guanglin He
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Mengge Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Liwen Huo
- Chongqing Hechuan District Public Security BureauChongqingChina
| | - Xu Chen
- Department of Clinical LaboratoryThe First People’s Hospital of Liangshan Yi Autonomous PrefectureXichangChina
| | - Jing Liu
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Shouyu Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Ziwei Ye
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Fei Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Zheng Wang
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| | - Yiping Hou
- Institute of Forensic MedicineWest China School of Basic Science & Forensic MedicineSichuan UniversityChengduChina
| |
Collapse
|
23
|
Zou X, Wang Z, He G, Wang M, Liu J, Wang S, Ye Z, Wang F, Hou Y. Genetic variation and population structure analysis of Chinese Wuzhong Hui population using 30 Indels. Ann Hum Biol 2020; 47:300-303. [PMID: 32202169 DOI: 10.1080/03014460.2020.1736627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Insertions and deletions (Indels) have been used in routine forensic studies, archaeology, and population genetics. They have certain advantages, such as absence of stutter, small amplicon lengths, and low mutation rates. The genetic variations and forensic features of Indels in the Wuzhong Hui population are, as yet, unclear.Aim: To investigate the genetic polymorphisms of 30 Indels in Wuzhong Hui people and explore their genetic relationship with 48 reference populations from all over the world.Subjects and methods: We genotyped 30 Indels included in the Investigator DIPplex Kit in 156 Wuzhong Hui individuals. The genetic polymorphisms and population genetic relationships were analysed and explored via pairwise Fst, principal component analysis, multidimensional scaling plots, phylogenetic tree, and structure.Results: The combined power of discrimination (CPD) and the combined probability of exclusion (CPE) were 0.9999999999899 and 0.9880, respectively. Population genetic diversity and affinity were associated with geographic origin and linguistic affiliation.Conclusions: The 30 Indels can be utilised as an important tool in forensic personal identification and as a supplementary method in paternity testing in Wuzhong Hui. The Wuzhong Hui people have a close genetic relationship with populations of geographical proximity and Sinitic-speaking populations, while they are different from other continental populations and Turkic-speaking populations.
Collapse
Affiliation(s)
- Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fei Wang
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Cui W, Jin X, Guo Y, Chen C, Zhang W, Kong T, Meng H, Zhu B. An innovative panel containing a set of insertion/deletion loci for individual identification and its forensic efficiency evaluations in Chinese Hui ethnic minority. Mol Genet Genomic Med 2020; 8:e1074. [PMID: 31865639 PMCID: PMC7005628 DOI: 10.1002/mgg3.1074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Individual identification is one of the most important tasks in the field of forensic genetics. Insertion/Deletion (InDel) polymorphism marker has been a promising marker for individual identification. However, a part of InDel loci in commonly used commercial kit show low polymorphisms in Chinese populations. METHODS We evaluated a panel of 35 InDel loci constructed previously for individual identifications in Hui group. Subsequently, population data of three Chinese populations from 1,000 Genomes Project database were used to evaluate individual identification performance of these 35 InDels. Forensic parameters, such as heterozygosity, power of exclusion, match probability and power of discrimination, were calculated to evaluate the forensic efficiency of these loci in Hui group. The heatmap of insertion allelic frequencies, Nei's genetic distances, pairwise fixation index values, principal component analyses and admixture analyses were used to analyze the genetic differentiations and structure between Hui group and other populations. RESULTS In studied Hui group, besides rs3054057, polymorphism information content values of the remaining loci were greater than 0.3. Values of expected heterozygosity of these loci were close to 0.5. The combined power of discrimination and power of exclusion values were 0.99999999999999659609 and 0.998682, respectively. Analyses of population genetics revealed that Chinese Hui group had closer genetic relationships with East Asian populations than other intercontinental populations. CONCLUSION The forensic statistical analyses revealed these loci showed relatively high genetic polymorphisms in Chinese Hui group, and could be served as a useful tool for individual identifications in Hui group. Population genetic evaluations indicated that Chinese Hui group had close genetic relationships with East Asian populations.
Collapse
Affiliation(s)
- Wei Cui
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaoye Jin
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yuxin Guo
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Chong Chen
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- College of Medicine and ForensicsXi’an Jiaotong University Health Science CenterXi’anChina
| | - Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Tingting Kong
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Haotian Meng
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi’an Jiaotong UniversityXi’anChina
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
25
|
Zhou B, Wen S, Sun H, Zhang H, Shi R. Genetic affinity between Ningxia Hui and eastern Asian populations revealed by a set of InDel loci. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190358. [PMID: 32218926 PMCID: PMC7029925 DOI: 10.1098/rsos.190358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023]
Abstract
According to historical records, ethnic Hui in China obtained substantial genetic components from western Eurasian populations during their Islamization. However, some scholars believed that the ancestry of Hui people were native Chinese populations. In this context, the formation of Hui is due to simple cultural diffusion rather than demic diffusion. In this study, we examined the forensic and population genetic application of the 30 InDel loci in Hui population from Ningxia Hui Autonomous Region, Northwest China. Genotype analysis of 129 unrelated individuals revealed that all loci were in the Hardy-Weinberg equilibrium in Ningxia Hui. Forensic indices calculated from genotypes demonstrated that this panel, Qiagen DIPplex® Investigator kit, was powerful enough to be used in individual identification but not in paternity cases. Through population genetic analysis, we found that Ningxia Hui received much more genetic contributions from East Asian populations than those from western Eurasian populations. Finally, we statistically identified the admixture signal of eastern and western Eurasians, although the latter is weak, in Ningxia Hui via the three-population test. All this evidence suggested that the formation of Ningxia Hui was mainly attributed to the cultural transformation of local Chinese residents with minor gene flow from western Eurasian populations.
Collapse
Affiliation(s)
- Boyan Zhou
- State Key Laboratory of Genetic Engineering and Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Shaoqing Wen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Huilin Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong 510080, People's Republic of China
| | - Hong Zhang
- The First Affiliated Hospital Health Center and School of Management, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ruiming Shi
- Department of Pediatrics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
26
|
Liu J, Ye Z, Wang Z, Zou X, He G, Wang M, Wang S, Hou Y. Genetic diversity and phylogenetic analysis of Chinese Han and Li ethnic populations from Hainan Island by 30 autosomal insertion/deletion polymorphisms. Forensic Sci Res 2019; 7:189-195. [PMID: 35784419 PMCID: PMC9245983 DOI: 10.1080/20961790.2019.1672933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
With the characteristics of low mutation rate, length variation and short amplicon size, insertion/deletion polymorphisms (InDels) have the advantages of both short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs). Herein, people of two ethnicities from Hainan Island were genotyped for the first time using the Investigator DIPplex kit. We investigated the forensic parameters of the 30 InDels and the phylogenetic relationships among different populations. The accumulated powers of discrimination and powers of exclusion were 0.999 999 999 9646 and 0.9897 in the Hainan Han population and 0.999 999 999 9292 and 0.9861 in the Hainan Li population, respectively. Additionally, population comparisons among geographically, ethnically and linguistically diverse populations via cluster heatmap, multidimensional scaling, principal component analysis, phylogenetic tree and STRUCTURE analyses demonstrated that the Hainan Han population had genetic similarities to the other Han, She and Tujia populations, while the Hainan Li population had close genetic relationships to the Zhuang and Miao groups; both populations had a high degree of genetic differentiation from most Turkic-speaking populations. Aforementioned results suggested that the 30 autosomal InDels are highly polymorphic and informative, which are suitable for human identification and population genetics. Four hundred and forty-five Chinese individuals from two ethnicities (Hainan Han and Hainan Li) were firstly analyzed by 30 autosomal InDels included in the Investigator DIPplex panel. Forensic parameters of the 30 InDels in the two populations showed high polymorphism and universality for human identification purposes. The Investigator DIPplex panel had a certain capacity of differentiating intercontinental populations and different language populations.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
A comprehensive exploration of the genetic legacy and forensic features of Afghanistan and Pakistan Mongolian-descent Hazara. Forensic Sci Int Genet 2019; 42:e1-e12. [DOI: 10.1016/j.fsigen.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
|
28
|
Genetic diversity, structure and forensic characteristics of Hmong-Mien-speaking Miao revealed by autosomal insertion/deletion markers. Mol Genet Genomics 2019; 294:1487-1498. [PMID: 31312894 DOI: 10.1007/s00438-019-01591-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/22/2019] [Indexed: 02/08/2023]
Abstract
Insertion/deletion (Indel) genetic markers have special features compared to other forensic-related markers, such as the low mutation rate and di-allelic markers with length polymorphism, playing an indispensable role in the forensic and population genetics, molecular anthropology and evolutionary biology. However, the genetic diversity, allelic frequency, forensic parameters and population genetic characteristics of the Indel markers in Hmong-Mien-speaking Guizhou Miao people are unclear due to the sparse sampling. Thus, we genotyped 30 forensic-related Indel markers in 311 unrelated healthy Miao individuals (149 females and 161 males) residing in the Guizhou Province in Southwest China using the Investigator DIPplex amplification system. All 30 Indels are in accordance with the no departures of Hardy-Weinberg equilibrium and linkage disequilibrium. The combined probability of discrimination and the probability of exclusion in Guizhou Miao population are 0.999999999948 and 0.9843, respectively. This observed ideal forensic parameter estimates indicate that this di-allelic Indel panel can be used as a supplementary tool in forensic retinue personal identification and complemented for autosomal STRs in the parentage testing in Miao population, especially used as the main tool in old or highly degraded samples in disaster victim identification. Eleven Indels show a high allele frequency difference between different continental populations and could be used as ancestry-informative markers in forensic ancestry inference. Phylogenetic relationships between Guizhou Miao and 68 worldwide populations based on the genetic polymorphisms of Indels are investigated via three different pairwise genetic distances, principal component analysis, multidimensional scaling analysis and phylogenetic relationship reconstructions. Analyses of the comprehensive population genetic relationship comparison reveal significant genetic differentiation of Chinese groups. Our results demonstrate that Guizhou Miao people are genetically closer related to the geographically adjacent populations, especially with Liangshan Yi, Guangxi Miao and Dong, but genetically distinct with Turkic-speaking populations. Comprehensive and precise genetic admixture and divergence history of Guizhou Miao and neighboring populations are needed to further investigate and reconstruct via high-density marker panel or whole-genome sequencing of modern or ancient Miao samples.
Collapse
|
29
|
Genetic substructure and forensic characteristics of Chinese Hui populations using 157 Y-SNPs and 27 Y-STRs. Forensic Sci Int Genet 2019; 41:11-18. [DOI: 10.1016/j.fsigen.2019.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
|
30
|
Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers. Mol Genet Genomics 2019; 294:1343-1357. [DOI: 10.1007/s00438-019-01584-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
|
31
|
Chen P, Luo L, Gao H, Wu J, Wang Y, He G, Han Y. Forensic performance of 30 InDels included in the Investigator DIPplex system in Miao population and comprehensive genetic relationship in China. Int J Legal Med 2019; 133:1389-1392. [PMID: 30989323 DOI: 10.1007/s00414-019-02057-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Binary markers of insertion and deletion (InDel) play an important role in forensic personal identification, parentage testing, and individual ancestry inference. We first genotyped 30 InDels included in the Investigator DIPplex in 403 unrelated healthy Zunyi Miao people and analyzed the genetic polymorphisms, as well as explored the genetic relationship between Miao and 32 Chinese reference populations. No departures from the HWE were observed. The combined power of discrimination and the combined probability of exclusion were 0.99999999998 and 0.9884, respectively. Forensic parameters demonstrated that 30 markers are polymorphic and informative in the Zunyi Miao population and can be used as a tool for forensic personal identification and parentage testing. Allele frequency divergence analysis found that 12 out of 30 displaying high allele frequency difference between Turkic-speaking populations and other Chinese populations can be used as candidates of ancestry informative markers for ancestry inference of sub-population in East Asia. Population genetic parameters in the comprehensive population comparison among 33 Chinese populations indicated that our studied Hmong-Mien-speaking Miao has a close genetic relationship with geographically adjacent Enshi Tujia and genetically differentiate from Turkic-speaking populations.
Collapse
Affiliation(s)
- Pengyu Chen
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563099, Guizhou, China.,School of Forensic Medicine, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Li Luo
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563099, Guizhou, China.,School of Forensic Medicine, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Hongyan Gao
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563099, Guizhou, China.,School of Forensic Medicine, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Jian Wu
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563099, Guizhou, China.,School of Forensic Medicine, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Yudan Wang
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563099, Guizhou, China.,School of Forensic Medicine, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yanyan Han
- School of Public Health, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
32
|
Li L, Ye Y, Song F, Wang Z, Hou Y. Genetic structure and forensic parameters of 30 InDels for human identification purposes in 10 Tibetan populations of China. Forensic Sci Int Genet 2019; 40:e219-e227. [PMID: 30744985 DOI: 10.1016/j.fsigen.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 01/21/2023]
Abstract
Insertion/deletion analysis can serve as a promising and useful supporting tool in forensic research. The Qiagen Investigator® DIPplex Kit contained 30 well-chosen autosomal InDels was targeted to reveal the population genetic variation. In the present study, 10 Tibetan populations residing in different geographic areas of China were recruited and genotyped by Investigator® DIPplex Kit. Allele frequencies and forensic parameters were determined. No significant departures from Hard-Weinberg equilibrium (HWE) in all loci/populations after Bonferroni correction. The combined matching probability values range from 1.7148 × 10-11 to 5.3516 × 10-1° in 10 Tibetan populations. Our results revealed 10 Tibetan populations in China are genetically very similar. Intercontinental population differentiation analysis indicated Tibetan populations had a close genetic relationship with East Asian populations using Hierarchical clustering, multi-dimensional scaling (MDS), principal component analysis (PCA) and STRUCTURE. Comprehensive population genetic studies revealed that the 30-InDels assay was similarly efficient in forensic personal identification and could be regarded as an effective supplementary protocol for kinship testing.
Collapse
Affiliation(s)
- Luyao Li
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Feng Song
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Zhu B, Lan Q, Guo Y, Xie T, Fang Y, Jin X, Cui W, Chen C, Zhou Y, Li X. Population Genetic Diversity and Clustering Analysis for Chinese Dongxiang Group With 30 Autosomal InDel Loci Simultaneously Analyzed. Front Genet 2018; 9:279. [PMID: 30116256 PMCID: PMC6082941 DOI: 10.3389/fgene.2018.00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022] Open
Abstract
In comparison with the most preferred genetic marker utilized in forensic science (STR), insertion/deletion analysis possesses further benefits, like absence of stutter peak, low mutation rate, and enabling mixed stain analysis. At present, a total of 169 unrelated healthy Dongxiang individuals dwelling in Dongxiang Autonomous county of Gansu province were recruited in our study to appraise the forensic usefulness of the panel including 30 autosomal diallelic genetic markers. The insertion allele frequencies were in the range of 0.1598 at HLD 111 to 0.8550 at HLD 118. The cumulative match of probability and the combined probability of exclusion were estimated based on independence of pairwise loci, with the values of 3.96 × 10-11 and 0.9886, respectively, which showed tremendous potential of this panel to be qualified for forensic personal identification in Chinese Dongxiang group. And it could also be used as a complementary tool for forensic parentage testing when combined with standard STR genetic markers. Furthermore, calculation of the DA distance and Fst values of pairwise populations, phylogenetic reconstruction, multidimensional scaling analysis, structure clustering analysis were also conducted to probe the genetic relationships between Dongxiang group and the other 30 reference populations. Results demonstrated that Dongxiang ethnic group might be genetically closer related with most Chinese populations involved in our study, especially Tibet groups, Xibe group, and several Han populations.
Collapse
Affiliation(s)
- Bofeng Zhu
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China.,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qiong Lan
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tong Xie
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yating Fang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Wei Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yongsong Zhou
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaogang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|