1
|
Ali D, van Oorschot RAH, Linacre A, Goray M. How to best assess shedder status: a comparison of popular shedder tests. Int J Legal Med 2024:10.1007/s00414-024-03351-8. [PMID: 39508835 DOI: 10.1007/s00414-024-03351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
"Shedder status" describes the inherent variation between individuals to leave touch DNA on a surface through direct contact. Depending on the amount and quality of DNA or cellular deposition, individuals are typically deemed high, intermediate, or low shedders. Although many shedder tests have been described, variability in study design and categorisation criteria has limited the ability of researchers to accurately compare results, as well as accrue the necessary population data. As activity level reporting becomes more common, the need for reliable and standardised testing increases. To assess reproducibility, this study compared shedder status data generated by six participants using three different shedder tests, as modified from the literature. This involved DNA quantification and profiling of a handprint made on a glass plate, DNA quantification and profiling of a grip mark made on a plastic conical tube, and cell scoring of a Diamond™ Dye-stained fingermark. All participants washed and dried their hands fifteen minutes before each deposit. To assess the impact of behaviour on shedder designation, participants either refrained from activity or went about their daily tasks during this wait. The shedder status of participants changed between tests, as DNA-based testing often generated lower shedder statuses than cell scores. Further, when different categorisation methods were applied to a single test, intra-person variability increased as the number of shedder designations increased from two (low/high) to five (low/low-intermediate/intermediate/intermediate-high/high). Moving forward, the utilisation of a single shedder test and standardised categorisation criteria is needed to employ shedder testing in forensic casework.
Collapse
Affiliation(s)
- Darya Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Adrian Linacre
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Mariya Goray
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
2
|
Recipon M, Agniel R, Kunemann P, Ponche A, Carreiras F, Hermitte F, Leroy-Dudal J, Hubac S, Gallet O, Kellouche S. Detection of invisible biological traces in relation to the physicochemical properties of substrates surfaces in forensic casework. Sci Rep 2024; 14:13271. [PMID: 38858407 PMCID: PMC11164948 DOI: 10.1038/s41598-024-63911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Touch DNA, which can be found at crime scenes, consists of invisible biological traces deposited through a person's skin's contact with an object or another person. Many factors influence touch DNA transfer, including the "destination" substrate's surface. The latter's physicochemical characteristics (wettability, roughness, surface energy, etc.) will impact touch DNA deposition and persistence on a substrate. We selected a representative panel of substrates from objects found at crime scenes (glass, polystyrene, tiles, raw wood, etc.) to investigate the impact of these characteristics on touch DNA deposition and detection. These were shown to impact cell deposition, morphology, retention, and subsequent touch DNA genetic analysis. Interestingly, cell-derived fragments found within keratinocyte cells and fingermarks using in vitro touch DNA models could be successfully detected whichever the substrates' physicochemistry by targeting cellular proteins and carbohydrates for two months, indoors and outdoors. However, swabbing and genetic analyses of such mock traces from different substrates produced informative profiles mainly for substrates with the highest surface free energy and therefore the most hydrophilic. The substrates' intrinsic characteristics need to be considered to better understand both the transfer and persistence of biological traces, as well as their detection and collection, which require an appropriate methodology and sampling device to get informative genetic profiles.
Collapse
Affiliation(s)
- Mathilde Recipon
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville Sur Oise, France.
- Institut de Recherche Criminelle de La Gendarmerie Nationale, Cergy-Pontoise, France.
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville Sur Oise, France
| | | | - Arnaud Ponche
- Institut de Science Des Matériaux de Mulhouse, Mulhouse, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville Sur Oise, France
| | - Francis Hermitte
- Institut de Recherche Criminelle de La Gendarmerie Nationale, Cergy-Pontoise, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville Sur Oise, France
| | - Sylvain Hubac
- Institut de Recherche Criminelle de La Gendarmerie Nationale, Cergy-Pontoise, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville Sur Oise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville Sur Oise, France.
| |
Collapse
|
3
|
Jansson L, Siti C, Hedell R, Forsberg C, Ansell R, Hedman J. Assessing the consistency of shedder status under various experimental conditions. Forensic Sci Int Genet 2024; 69:103002. [PMID: 38176092 DOI: 10.1016/j.fsigen.2023.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Shedder status is defined as the propensity of an individual to leave DNA behind on touched items or surfaces and has been suggested as one of the major factors influencing DNA transfer. However, little is known about whether shedder status is a constant property of an individual across multiple measurements or when the environmental conditions are changed. We have assessed DNA depositions of six males on 20 occasions to acquire a reference data set and to classify the participants into high, intermediate, or low shedders. This data set was also used to investigate how the probability of a correct shedder status classification changed when the number of DNA deposition measurements increased. Individual sweat rates were measured with a VapoMeter and data regarding hygiene routines were collected through a questionnaire on each sampling occasion. Next, we investigated how changes in the experimental conditions such as seasonal variation, hygiene routines, the temperature of the touched object, and repeated handling of an object influenced the DNA shedding. Additionally, we assessed DNA collected from the face and from T-shirts worn by the six participants to explore whether shedder status may be associated with the relative amount of DNA obtained from other body parts. Our results indicate that shedder status is a stable property across different seasons and different temperatures of handled objects. The relative DNA amounts obtained from repeatedly handled tubes, worn T-shirts, and from faces reflected the shedder status of the participants. We suggest that an individual's shedder status is highly influenced by the DNA levels on other body parts than hands, accumulating on the palms by frequently touching e.g., the face or previously handled items harboring self-DNA. Assessing physiological differences between the participants revealed that there were no associations between DNA shedding and individual sweat rates.
Collapse
Affiliation(s)
- Linda Jansson
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Chiara Siti
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Ronny Hedell
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden
| | | | - Ricky Ansell
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, Sweden
| | - Johannes Hedman
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Fantinato C, Fonneløp AE, Bleka Ø, Vigeland MD, Gill P. The invisible witness: air and dust as DNA evidence of human occupancy in indoor premises. Sci Rep 2023; 13:19059. [PMID: 37925517 PMCID: PMC10625553 DOI: 10.1038/s41598-023-46151-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Humans constantly shed deoxyribonucleic acid (DNA) into the surrounding environment. This DNA may either remain suspended in the air or it settles onto surfaces as indoor dust. In this study, we explored the potential use of human DNA recovered from air and dust to investigate crimes where there are no visible traces available-for example, from a recently vacated drugs factory where multiple workers had been present. Samples were collected from three indoor locations (offices, meeting rooms and laboratories) characterized by different occupancy types and cleaning regimes. The resultant DNA profiles were compared with the reference profiles of 55 occupants of the premises. Our findings showed that indoor dust samples are rich sources of DNA and provide an historical record of occupants within the specific locality of collection. Detectable levels of DNA were also observed in air and dust samples from ultra-clean forensic laboratories which can potentially contaminate casework samples. We provide a Bayesian statistical model to estimate the minimum number of dust samples needed to detect all inhabitants of a location. The results of this study suggest that air and dust could become novel sources of DNA evidence to identify current and past occupants of a crime scene.
Collapse
Affiliation(s)
- Chiara Fantinato
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway.
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ane Elida Fonneløp
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | | | - Peter Gill
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Nolan M, Handt O, Linacre A. Persistence of cellular material after exposure to water. J Forensic Sci 2023; 68:2128-2137. [PMID: 37356058 DOI: 10.1111/1556-4029.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Disposing of items of forensic relevance in bodies of water is one countermeasure offenders can use to avoid detection. The impact of immersion in water has been explored for blood, saliva, and semen; however, few studies have assessed touch DNA. Here we report on the effect of exposure to water on the persistence of touch DNA over prolonged periods of time. To evaluate the persistence of cells from touch DNA, after water exposure, three substrates and two water types were tested: plastic, metal, and ceramic, submerged into seawater or tap water. Diamond™ Nucleic Acid Dye was used to stain cells deposited by touch. Cell counts before and after water exposure were compared to investigate cell loss over time, ranging from 6 hours to 5 days. A logarithmic increase in the percent of cells lost was observed over time when the data for substrate and water type conditions were combined. Substrate type influenced the persistence of cells, with the metal substrate retaining cells longer than plastic or ceramic. The influence of water type appeared dependent on the substrate, with varied cell persistence on metal whereas plastic and ceramic recorded similar cell loss over time between water types. The ability to visualize cells after exposure to water could assist in triaging evidence within operational forensic laboratories and allow for targeted sampling. This proof-of-concept study demonstrated that greater than 50% of cells can persist on various items submerged in aqueous environments for at least 5 days, highlighting the possibility for downstream DNA testing.
Collapse
Affiliation(s)
- Madison Nolan
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Oliva Handt
- College of Science and Engineering, Flinders University, Adelaide, Australia
- Forensic Science South Australia, Adelaide, Australia
| | - Adrian Linacre
- College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
6
|
Recipon M, Agniel R, Leroy-Dudal J, Fritz T, Carreiras F, Hermitte F, Hubac S, Gallet O, Kellouche S. Targeting cell-derived markers to improve the detection of invisible biological traces for the purpose of genetic-based criminal identification. Sci Rep 2023; 13:18105. [PMID: 37872292 PMCID: PMC10593828 DOI: 10.1038/s41598-023-45366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
At a crime scene, investigators are faced with a multitude of traces. Among them, biological traces are of primary interest for the rapid genetic-based identification of individuals. "Touch DNA" consists of invisible biological traces left by the simple contact of a person's skin with objects. To date, these traces remain undetectable with the current methods available in the field. This study proposes a proof-of-concept for the original detection of touch DNA by targeting cell-derived fragments in addition to DNA. More specifically, adhesive-structure proteins (laminin, keratin) as well as carbohydrate patterns (mannose, galactose) have been detected with keratinocyte cells derived from a skin and fingermark touch-DNA model over two months in outdoor conditions. Better still, this combinatory detection strategy is compatible with DNA profiling. This proof-of-concept work paves the way for the optimization of tools that can detect touch DNA, which remains a real challenge in helping investigators and the delivery of justice.
Collapse
Affiliation(s)
- Mathilde Recipon
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville sur Oise, France.
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Cergy-Pontoise, France.
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville sur Oise, France
| | - Thibaud Fritz
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Cergy-Pontoise, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville sur Oise, France
| | - Francis Hermitte
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Cergy-Pontoise, France
| | - Sylvain Hubac
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Cergy-Pontoise, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville sur Oise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Neuville sur Oise, France
| |
Collapse
|
7
|
Arsenault H, Nic Daeid N, Gray A. A synthetic fingerprint solution and its importance in DNA transfer, persistence and recovery studies. Forensic Sci Int Synerg 2023; 6:100330. [PMID: 37249970 PMCID: PMC10209804 DOI: 10.1016/j.fsisyn.2023.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
A review of the literature on DNA transfer and persistence highlights many difficulties that are encountered when conducting research of this nature. One of the main problems highlighted repeatedly in the literature is the prevalence of inherent uncontrolled variation that accompany these studies, and in turn, the results obtained. This work aims to decrease the amount of intrinsic variability associated with DNA transfer and persistence experiments using a realistic proxy solution which is adaptable, of known composition, reproducible, and capable of being standardised. This proxy is composed of three parts: a synthetic fingerprint solution, cellular DNA, and cell free DNA. In this proof-of-concept study the proxy was tested with a small-scale DNA transfer and recovery experiment and the data obtained suggests that the use of a solution that mimics real fingerprint secretions, over an alternative (such as buffer or a body fluid), is important when working with non-donor provided trace DNA samples. This is because the DNA deposit solution likely impacts the transfer of DNA from fingers/hands to a surface as well as the ability to recover the biological material once deposited.
Collapse
|
8
|
Petcharoen P, Kirkbride KP, Linacre A. Monitoring cell loss through repetitive deposition. J Forensic Sci 2022; 67:2453-2457. [DOI: 10.1111/1556-4029.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Piyamas Petcharoen
- School of Biology, Institute of Science Suranaree University of Technology Nakhon Ratchasima Thailand
- College of Science & Engineering Flinders University Adelaide South Australia Australia
| | | | - Adrian Linacre
- College of Science & Engineering Flinders University Adelaide South Australia Australia
| |
Collapse
|
9
|
Feng X, Zhou D, Xie G, Liu J, Xiong Q, Xu H. A novel photoreactive DNA-binding dye for detecting viable Klebsiella pneumoniae in powdered infant formula. J Dairy Sci 2022; 105:4895-4902. [PMID: 35450718 DOI: 10.3168/jds.2022-21900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
In addition to Cronobacter spp., Klebsiella pneumoniae is another opportunistic bacterial pathogen present in powdered infant formula (PIF) that can cause pneumonia, septicemia, and other diseases. In this study, a rapid and specific method based on a fluorescence probe was developed for detecting viable K. pneumoniae in PIF samples via the combination of recombinase-aided amplification (RAA) with thiazole orange monoazide (TOMA) dye (the TOMA-RAA assay hereafter). As a novel photosensitive DNA-intercalating dye, TOMA was used to penetrate bacterial cells, including both dead and viable cells, as verified by confocal laser scanning microscopy and fluorescent emission spectrometry. Importantly, the RAA assay exhibited good performance in detecting K. pneumoniae within 40 min at 39°C. Under optimal conditions, the TOMA-RAA assay can detect as low as 2.6 × 103 cfu/mL of K. pneumoniae in pure culture and 2.3 × 104 cfu/g of K. pneumoniae in spiked PIF sample. After 3 h of pre-enrichment, 3 × 100 cfu/g of K. pneumoniae can be detected. Furthermore, the TOMA-RAA assay displayed an excellent anti-interference ability to nontarget bacteria. In short, the proposed method has great potential application for the rapid and accurate detection of viable K. pneumoniae in PIF.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, P.R. China
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China.
| |
Collapse
|
10
|
Jansson L, Swensson M, Gifvars E, Hedell R, Forsberg C, Ansell R, Hedman J. Individual shedder status and the origin of touch DNA. Forensic Sci Int Genet 2021; 56:102626. [PMID: 34781198 DOI: 10.1016/j.fsigen.2021.102626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Due to improved laboratory techniques, touched surfaces and items are increasingly employed as sources of forensic DNA evidence. This has urged a need to better understand the mechanisms of DNA transfer between individuals. Shedder status (i.e. the propensity to leave DNA behind) has been identified as one major factor regulating DNA transfer. It is known that some individuals tend to shed more DNA than others, but the mechanisms behind shedder status are largely unknown. By comparing the amounts of DNA deposited from active hands (i.e. used "as usual") and inactive hands (i.e. not allowed to touch anything), we show that some of the self-DNA deposited from hands is likely to have accumulated on hands from other parts of the body or previously handled items (active hands: 2.1 ± 2.7 ng, inactive hands: 0.83 ± 1.1 ng, paired t-test: p = 0.014, n = 27 pairs of hands). Further investigation showed that individual levels of deposited DNA are highly associated with the level of DNA accumulation on the skin of the face (Pearson's correlation: r = 0.90, p < 0.00001 and Spearman's ranked correlation: rs = 0.56, p = 0.0016, n = 29). We hypothesized that individual differences in sebum secretion levels could influence the amount of DNA accumulation in facial areas, but no such correlation was seen (Pearson's correlation: r = - 0.13, p = 0.66, n = 14). Neither was there any correlation between DNA levels on hands or forehead and the time since hand or face wash. We propose that the amount of self-DNA deposited from hands is highly influenced by the individual levels of accumulated facial DNA, and that cells/DNA is often transferred to hands by touching or rubbing one's face.
Collapse
Affiliation(s)
- Linda Jansson
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Marie Swensson
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Emma Gifvars
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Ronny Hedell
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden
| | | | - Ricky Ansell
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, Sweden
| | - Johannes Hedman
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
van Oorschot RAH, Meakin GE, Kokshoorn B, Goray M, Szkuta B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes (Basel) 2021; 12:genes12111766. [PMID: 34828372 PMCID: PMC8618004 DOI: 10.3390/genes12111766] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the factors that may impact the transfer, persistence, prevalence and recovery of DNA (DNA-TPPR), and the availability of data to assign probabilities to DNA quantities and profile types being obtained given particular scenarios and circumstances, is paramount when performing, and giving guidance on, evaluations of DNA findings given activity level propositions (activity level evaluations). In late 2018 and early 2019, three major reviews were published on aspects of DNA-TPPR, with each advocating the need for further research and other actions to support the conduct of DNA-related activity level evaluations. Here, we look at how challenges are being met, primarily by providing a synopsis of DNA-TPPR-related articles published since the conduct of these reviews and briefly exploring some of the actions taken by industry stakeholders towards addressing identified gaps. Much has been carried out in recent years, and efforts continue, to meet the challenges to continually improve the capacity of forensic experts to provide the guidance sought by the judiciary with respect to the transfer of DNA.
Collapse
Affiliation(s)
- Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia
- School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| | - Georgina E. Meakin
- Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Centre for the Forensic Sciences, Department of Security and Crime Science, University College London, London WC1H 9EZ, UK
| | - Bas Kokshoorn
- Netherlands Forensic Institute, 2497 GB The Hague, The Netherlands;
- Faculty of Technology, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands
| | - Mariya Goray
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Bianca Szkuta
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia;
| |
Collapse
|
12
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
13
|
Burrill J, Hotta R, Daniel B, Frascione N. Accumulation of endogenous and exogenous nucleic acids in "Touch DNA" components on hands. Electrophoresis 2021; 42:1594-1604. [PMID: 34080688 DOI: 10.1002/elps.202000371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 02/03/2023]
Abstract
Successful forensic DNA profiling from handled items is increasingly routine in casework. This "touch DNA" is thought to contain both cellular and acellular nucleic acid sources. However, there is little clarity on the origins or characteristics of this material. The cellular component consists of anucleate, terminally differentiated corneocytes (assumed to lack DNA), and the occasional nucleated cell. The acellular DNA source is fragmentary, presumably cell breakdown products. This study examines the relative contributions each component makes to the hand-secretions (endogenous) and hand-accumulations (exogenous) by recovering rinses from the inside and outside of worn gloves. Additionally, cellular and acellular DNA was measured at timepoints up to 2 h after hand washing, both with and without interim contact. Microscopic examination confirmed cell morphology and presence of nucleic acids. Following the novel application of a hair keratinocyte lysis method and plasma-DNA fragment purification to hand rinse samples, DNA profiles were generated from both fractions. Exogenous cell-free DNA is shown to be a significant source of touch DNA, which reaccumulates quickly, although its amplifiable nuclear alleles are limited. Endogenous DNA is mostly cellular in origin and provides more allelic information consistently over time.
Collapse
Affiliation(s)
- Julia Burrill
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Rachel Hotta
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Barbara Daniel
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nunzianda Frascione
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
14
|
Kallupurackal V, Kummer S, Voegeli P, Kratzer A, Dørum G, Haas C, Hess S. Sampling touch DNA from human skin following skin-to-skin contact in mock assault scenarios-A comparison of nine collection methods. J Forensic Sci 2021; 66:1889-1900. [PMID: 33928655 DOI: 10.1111/1556-4029.14733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
Collection of touch DNA from an offender on the victim's skin can provide relevant evidence for investigations of criminal cases. Therefore, the choice of the optimal sample collection method is crucial. In this study, we investigated the recovery of STR profiles from touch DNA on human skin by comparing nine different collection methods: the dry and wet cotton swabs in three different movements, the double-swab (wet-dry) method, the wet and dry Copan FLOQSwabs™, and the Scene Safe FAST™ minitapes. Mock assault scenarios were conducted with a male offender grasping the forearms of a female victim. Samples were collected from the assaulted area of the victim's skin, and the recovery of the offender's STR profile was evaluated. Our results indicate that the different swabs and swabbing techniques did not have a distinct impact on the STR recovery; however, the lowest STR recovery was achieved with Scene Safe FAST™ minitapes. In addition, we compared the double-swab method to the single-swab method by analyzing the DNA quantity of the wet and dry swabs separately. We found on average 13.7% more offender DNA using the double-swab method, but this did not translate into higher STR recovery. Our findings indicate that several methods perform equally well when collecting touch DNA from human skin, although SceneSafe FAST™ minitapes seem to be the least adequate for this purpose.
Collapse
Affiliation(s)
- Venus Kallupurackal
- Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sonja Kummer
- Zurich Forensic Science Institute, Zurich, Switzerland
| | - Pamela Voegeli
- Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Adelgunde Kratzer
- Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Guro Dørum
- Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Cordula Haas
- Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sabine Hess
- Zurich Forensic Science Institute, Zurich, Switzerland
| |
Collapse
|
15
|
How many cells are required for successful DNA profiling? Forensic Sci Int Genet 2021; 51:102453. [PMID: 33422808 DOI: 10.1016/j.fsigen.2020.102453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Through advances in fluorescent nucleic acid dye staining and visualisation, targeted collection of cellular material deposited, for example by touch or within a saliva deposit, is possible. In regard to the potential evidentiary value of the deposit the questions remain: 'How many cells are required to generate an informative DNA profile?'; 'How many visualised corneocytes within a touch deposit compared to typical nucleated cells are required in order to achieve successful DNA profiling?'. Diamond TM Nucleic Acid Dye (DD) staining of cellular material, and subsequent visualisation utilising portable fluorescence microscopy, was performed for touch and saliva samples to target defined numbers of cells for collection, by swab and tapelift, and subsequent processing via direct PCR and PCR post-extraction. The resulting DNA quantification data and alleles generated within subsequent DNA profiles could be correlated to the number of cells initially collected to determine cellular threshold requirements for DNA profile generation for each workflow. Full profiles were consistently generated using direct PCR when the template was ≥40 buccal cells collected by either a swab or tapelift. By contrast ≥800 corneocytes collected by swabbing or ≥4,000 corneocytes collected by a tapelift were required to generate same number of STR alleles from touch samples. When samples were processed through a DNA extraction workflow, ≥80 buccal cells were required to generate full profiles from both swab and tapelift, while touch samples required ≥4,000 corneocytes collected by a swab and >8,000 corneocytes collected by a tapelift. The data presented within this study allow for informative sample triage and workflow decisions to be made to optimise STR amplification based on the presence and visual quantification of stained cellular material.
Collapse
|
16
|
Burrill J, Rammenou E, Alawar F, Daniel B, Frascione N. Corneocyte lysis and fragmented DNA considerations for the cellular component of forensic touch DNA. Forensic Sci Int Genet 2020; 51:102428. [PMID: 33338861 DOI: 10.1016/j.fsigen.2020.102428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 01/28/2023]
Abstract
DNA deposited by individuals' hands is a routine part of forensic analysis, yet little is understood about the precise cellular contents left by handling. "Dead" skin cells known as corneocytes make up the majority of the cellular material left in touch deposits by people's hands but are known to lack nuclei, making their DNA content ambiguous. Here we measure DNA released from anucleate corneocytes following various lysis methods to determine how much DNA may be present in these cells and how best to recover it from inside the cornified envelope. We demonstrate that enhanced lysis methods using a reducing agent and longer incubation may be valuable for hand deposit samples. Corneocyte DNA can be characterized as highly degraded based on the quantification, STR profiling and fluorescence microscopy of the cells from freshly washed hands. Purification to target shorter DNA fragments is demonstrated. DNA from the washed corneocyte cells is shown to constitute the majority of recoverable DNA with these methods. We consider the use of new methods adapted to cornified cells and fragmented DNA for future research into this sample type.
Collapse
Affiliation(s)
- Julia Burrill
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London, United Kingdom.
| | - Elli Rammenou
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London, United Kingdom.
| | - Fatima Alawar
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London, United Kingdom.
| | - Barbara Daniel
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London, United Kingdom.
| | - Nunzianda Frascione
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London, United Kingdom.
| |
Collapse
|