1
|
Liu Z, Wang J, Li Z, Zhang G. mRNA for Body Fluid and Individual Identification. Electrophoresis 2024. [PMID: 39498727 DOI: 10.1002/elps.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Biological stains are one of the most important pieces of evidence, playing a multifaceted role in forensic investigations. An integral facet of forensic practice involves the identification of body fluids, typically achieved through chemical and enzymatic reactions. In recent decades, the introduction of mRNA markers has been posited as a pivotal advancement to augment the capabilities of body fluid identification (BFID). The mRNA coding region single-nucleotide polymorphisms (cSNPs) also present notable advantages, particularly in the task of individual identification. Here, we review the specificity and stability of mRNA markers in the context of BFID and the prowess of mRNA polymorphism in individual identification. Additionally, innovative methods for mRNA detection are discussed.
Collapse
Affiliation(s)
- Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
2
|
Neis M, Groß T, Schneider H, Schneider PM, Courts C. Comprehensive body fluid identification and contributor assignment by combining targeted sequencing of mRNA and coding region SNPs. Forensic Sci Int Genet 2024; 73:103125. [PMID: 39182373 DOI: 10.1016/j.fsigen.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Forensic genetic analyses aim to retrieve as much information as possible from biological trace material recovered from crime scenes. While standard short tandem repeat (STR) profiling is essential to individualize biological traces, its significance is diminished in crime scenarios where the presence of a suspect's DNA is acknowledged by all parties. In such cases, forensic (m)RNA analysis can provide crucial contextualizing information on the source level about a trace's composition, i.e., body fluids/tissues, and has therefore emerged as a powerful tool for modern forensic investigations. However, the question which of several suspects contributed a specific component (body fluid) to a mixed trace cannot be answered by RNA analysis using conventional methods. This individualizing information is stored within the sequence of the mRNA transcripts. Massively parallel sequencing (MPS) represents a promising alternative, offering not only higher multiplex capacity, but also the typing of individual coding region SNPs (cSNPs) to enable the assignment of contributors to mixture components, thereby reducing the risk of association fallacies. Herein, we describe the development of an extensive mRNA/cSNP panel for targeted sequencing on the IonTorrent S5 platform. Our panel comprises 30 markers for the detection of six body fluids/tissues (blood, saliva, semen, skin, vaginal and menstrual secretion), along with 70 linkage-controlled cSNPs for contributor assignment. It exhibited high reliable detection sensitivity with RNA inputs down to 0.75 ng and a conservatively calculated probability of identity of 0.03 - 6 % for individual body fluid-specific cSNP profiles. Limitations and areas for future work include RNA-related allele imbalances, inclusion of markers to correctly identify rectal mucosa and the optimization of specific markers. In summary, our new panel is intended to be a major step forward to interpret biological evidence at sub-source and source level based on cSNP attribution of a body fluid component to a suspect and victim, respectively.
Collapse
Affiliation(s)
- Maximilian Neis
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.
| | - Theresa Groß
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Harald Schneider
- Hessian State Office of Criminal Investigation, Wiesbaden, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Cornelius Courts
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Lynch CRH, Martin OL, Billington C, Fleming R. Towards the identification of body fluids using RT-LAMP isothermal amplification coupled with CRISPR-Cas12a. Forensic Sci Int Genet 2024; 74:103167. [PMID: 39488143 DOI: 10.1016/j.fsigen.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
While often necessary in sexual assault cases, confirmatory identification of body fluids can be a lengthy and/or costly process. In particular, the detection of vaginal fluid and menstrual fluid in forensic casework is limited to endpoint reverse-transcription PCR to detect fluid-specific messenger RNA (mRNA) markers as there are no robust chemical or enzymatic techniques available for these fluids. Similarly, testing for rectal mucosa is not possible with standard methods, the presence of which would provide probative value in cases of alleged anal penetration, although mRNA-based markers have recently been described. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is an alternative technique that enables detection of mRNA at a single temperature (usually 60-65℃) for 10-30 minutes and has comparable sensitivity to PCR. We describe the coupling of RT-LAMP amplification (60℃ for 30 minutes) with CRISPR-mediated fluorescent detection of the body fluid specific mRNA markers MMP3 (menstrual fluid), CYP2B7P (vaginal material), TNP1 (spermatozoa), KLK2 (semen), and MUC12 (rectal mucosa). Following temperature optimization and final selection of RT-LAMP-CRISPR assays, their specificity across circulatory blood, buccal, menstrual fluid, vaginal material, semen, and rectal mucosa was assessed. Most assays were specific for their intended target body fluid, although MMP3 and CYP2B7P were detected in some rectal mucosa samples, the latter of which has been observed previously in the literature. A preliminary sensitivity assessment in target fluids was determined by a dilution series over six logs of RNA input. A range of assay approaches were investigated to develop a protocol suitable for use in a forensic screening laboratory. This included the determination of fluorescent assay results by eye, use of lyophilised reagents, and RT-LAMP and CRISPR reactions undertaken in one-tube in a lower resource setting.
Collapse
Affiliation(s)
- Courtney R H Lynch
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand.
| | - Olivia L Martin
- Forensic Science Programme, University of Auckland, Auckland, New Zealand
| | - Craig Billington
- Health and Environment Group, Institute of Environmental Science and Research Ltd, Christchurch, New Zealand
| | - Rachel Fleming
- Forensic Research and Development Team, Institute of Environmental Science and Research Ltd, Auckland, New Zealand
| |
Collapse
|
4
|
Altmeyer L, Baumer K, Hall D. Differentiation of five forensically relevant body fluids using a small set of microRNA markers. Electrophoresis 2024; 45:1785-1795. [PMID: 39076047 DOI: 10.1002/elps.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
In forensic investigations, identifying the type of body fluid allows for the interpretation of biological evidence at the activity level. Over the past two decades, significant research efforts have focused on developing molecular methods for this purpose. MicroRNAs (miRNAs) hold great promise due to their tissue-specific expression, abundance, lack of splice variants, and relative stability. Although initial findings are promising, achieving consistent results across studies is still challenging, underscoring the necessity for both original and replication studies. To address this, we selected 18 miRNA candidates and tested them on 6 body fluids commonly encountered in forensic cases: peripheral blood, menstrual blood, saliva, semen, vaginal secretion, and skin. Using reverse transcription quantitative PCR analysis, we confirmed eight miRNA candidates (miR-144-3p, miR-451a, miR-205-5p, miR-214-3p, miR-888-5p, miR-891a-5p, miR-193b-3p, miR-1260b) with high tissue specificity and four (miR-203a-3p, miR-141-3p, miR-200b-3p, miR-4286) with lesser discrimination ability but still contributing to body fluid differentiation. Through principal component analysis and hierarchical clustering, the set of 12 miRNAs successfully distinguished all body fluids, including the challenging discrimination of blood from menstrual blood and saliva from vaginal secretion. In conclusion, our results provide additional data supporting the use of a small set of miRNAs for predicting common body fluids in forensic contexts. Large population data need to be gathered to develop a body fluid prediction model and assess its accuracy.
Collapse
Affiliation(s)
- Linus Altmeyer
- School of Criminal Justice, University of Lausanne, Lausanne, Switzerland
| | - Karine Baumer
- Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Switzerland
| | - Diana Hall
- Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Courts C, Gosch A, Rothschild M. RNA Analysis in Forensic Molecular Biology. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:363-369. [PMID: 38573184 PMCID: PMC11539881 DOI: 10.3238/arztebl.m2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Different types of RNA take on multiple crucial functions in living cells and tissues. Messenger RNA (mRNA) is a temporary molecular carrier of genetic information. Analysis of the composition of all mRNA contained in a cell at a given moment, the so-called transcriptome, enables the determination of the type of cell and its condition, e.g., in pathologically altered states. METHODS This review is based on pertinent publications retrieved by a selective literature search. RESULTS The analysis of differential gene expression has already been used in forensic molecular biology to determine the type of tissue contained in biological specimens. It is also being used in criminal investigations to determine the composition of mixed traces of various bodily fluids and/or organ tissues. The method is limited by degradation of the mRNA molecules through environmental influences. The use of newly developed molecular biological methods such as massive parallel sequencing can expand the information obtainable by this investigative method. Current research also addresses the forensic potential of deriving relevant information about the crime-e.g., its timing, or the condition of the involved persons-from the totality of mRNA species present in the specimens. CONCLUSION Forensic RNA analysis can yield a great deal of relevant information. It is likely to be applicable in a much wider variety of forensic situations in the near future.
Collapse
Affiliation(s)
- Cornelius Courts
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Forensic Medicine, Cologne
| | - Annica Gosch
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Forensic Medicine, Cologne
| | - Markus Rothschild
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Forensic Medicine, Cologne
| |
Collapse
|
6
|
Wang S, Jiang T, Yuan C, Wu L, Zhen X, Lei Y, Xie B, Tao R, Li C. An mRNA profiling assay incorporating coding region InDels for body fluid identification and the inference of the donor in mixed samples. Forensic Sci Int Genet 2024; 69:102979. [PMID: 38043150 DOI: 10.1016/j.fsigen.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tingting Jiang
- Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Yuan
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Liming Wu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Xiaoyuan Zhen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Yinlei Lei
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Baoyan Xie
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, PR China, Shanghai 200063, China; Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Euteneuer J, Moitinho-Silva L, Courts C. Forensically relevant anatomical brain regions cannot be sub-differentiated by RNA expression analysis. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00787-7. [PMID: 38294632 DOI: 10.1007/s12024-024-00787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The contextualization of biological traces generated by severe head injuries can be beneficial for criminal investigations. Here we aimed to identify and validate mRNA candidates for a robust sub-differentiation of forensically and traumatologically relevant brain regions. To this purpose, massively parallel sequencing of whole transcriptomes in sample material taken from four different areas of the cerebral cortex (frontal, temporal, parietal, occipital lobe) was performed, followed by bioinformatical data analysis, classification, and biostatistical candidate selection. Candidates were evaluated by Multiplex-RT-PCR and capillary electrophoresis. Only a weak relative upregulation and solely for candidates expressed in the parietal lobe was observed. Two candidates with upregulation in the cerebellar region (PVALB and CDR2L) were chosen for further investigation; however, PVALB could not reliably and repeatedly be detected in any lobe whereas CDR2L was detectable in all lobes. Consequently, we suggest that differences in mRNA expression between four regions of the cerebral cortex are too small and less pronounced to be useful for and applicable in forensic RNA analysis. We conclude that sub-differentiation of these brain regions via RNA expression analysis is generally not feasible within a forensic scope.
Collapse
Affiliation(s)
- Jan Euteneuer
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Arnold-Heller-Strasse 12, 24105, Kiel, Germany
| | | | - Cornelius Courts
- Institute of Forensic Medicine, University Hospital of Schleswig-Holstein, Arnold-Heller-Strasse 12, 24105, Kiel, Germany.
- Institute of Legal Medicine, University Hospital of Köln, Melatengürtel 60/62, 50823, Cologne, Germany.
| |
Collapse
|
8
|
Tang L, Wang Y, Gong X, Xiang J, Zhang Y, Xiang Q, Li J. Integrated transcriptome and metabolome analysis to investigate the mechanism of intranasal insulin treatment in a rat model of vascular dementia. Front Pharmacol 2023; 14:1182803. [PMID: 37256231 PMCID: PMC10225696 DOI: 10.3389/fphar.2023.1182803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Insulin has an effect on neurodegenerative diseases. However, the role and mechanism of insulin in vascular dementia (VD) and its underlying mechanism are unknown. In this study, we aimed to investigate the effects and mechanism of insulin on VD. Methods: Experimental rats were randomly assigned to control (CK), Sham, VD, and insulin (INS) + VD groups. Insulin was administered by intranasal spray. Cognitive function was evaluated using the Morris's water maze. Nissl's staining and immunohistochemical staining were used to assess morphological alterations. Apoptosis was evaluated using TUNEL-staining. Transcriptome and metabolome analyses were performed to identify differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs), respectively. Results: Insulin significantly improved cognitive and memory functions in VD model rats (p < 0.05). Compared with the VD group, the insulin + VD group exhibited significantly reduced the number of Nissl's bodies numbers, apoptosis level, GFAP-positive cell numbers, apoptosis rates, and p-tau and tau levels in the hippocampal CA1 region (p < 0.05). Transcriptomic analysis found 1,257 and 938 DEGs in the VD vs. CK and insulin + VD vs. VD comparisons, respectively. The DEGs were mainly enriched in calcium signaling, cAMP signaling, axon guidance, and glutamatergic synapse signaling pathways. In addition, metabolomic analysis identified 1 and 14 DEMs between groups in negative and positive modes, respectively. KEGG pathway analysis indicated that DEGs and DEMs were mostly enriched in metabolic pathway. Conclusion: Insulin could effectively improve cognitive function in VD model rats by downregulating tau and p-tau expression, inhibiting astrocyte inflammation and neuron apoptosis, and regulating genes involved in calcium signaling, cAMP signaling, axon guidance, and glutamatergic synapse pathways, as well as metabolites involved in metabolic pathway.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| | - Yan Wang
- Department of Basic Biology, Changsha Medical College, Changsha, China
| | - Xujing Gong
- Department of Basic Biology, Changsha Medical College, Changsha, China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yan Zhang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| |
Collapse
|
9
|
Kistenev YV, Borisov AV, Samarinova AA, Colón-Rodríguez S, Lednev IK. A novel Raman spectroscopic method for detecting traces of blood on an interfering substrate. Sci Rep 2023; 13:5384. [PMID: 37012280 PMCID: PMC10070500 DOI: 10.1038/s41598-023-31918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Traces of body fluids discovered at a crime scene are a primary source of DNA evidence. Raman spectroscopy is a promising universal technique for identifying biological stains for forensic purposes. The advantages of this method include the ability to work with trace amounts, high chemical specificity, no need for sample preparation and the nondestructive nature. However, common substrate interference limits the practical application of this novel technology. To overcome this limitation, two approaches called "Reducing a spectrum complexity" (RSC) and "Multivariate curve resolution combined with the additions method" (MCRAD) were investigated for detecting bloodstains on several common substrates. In the latter approach, the experimental spectra were "titrated" numerically with a known spectrum of a targeted component. The advantages and disadvantages of both methods for practical forensics were evaluated. In addition, a hierarchical approach to reduce the possibility of false positives was suggested.
Collapse
Affiliation(s)
- Yury V Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050.
| | - Alexei V Borisov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050
| | - Alisa A Samarinova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Lenin Ave. 36, Tomsk, Russia, 634050
| | | | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
10
|
Bamberg M, Bruder M, Dierig L, Kunz SN, Schmidt M, Wiegand P. Best of both: a simultaneous analysis of mRNA and miRNA markers for body fluid identification. Forensic Sci Int Genet 2022; 59:102707. [DOI: 10.1016/j.fsigen.2022.102707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
|
11
|
Evaluation and simultaneous determination of rectal mucosa markers by multiplex reverse transcription-PCR for biological evidence of sexual assault with anal penetration. Forensic Sci Int Genet 2022; 59:102712. [DOI: 10.1016/j.fsigen.2022.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
12
|
Schmidt M, Kunz SN, Wiegand P, Bamberg M. Persistence of blood (DNA/RNA) on shoe soles under varying casework related conditions. Forensic Sci Int Genet 2021; 57:102648. [PMID: 34896976 DOI: 10.1016/j.fsigen.2021.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
Blunt force traumas by footwear can result in severe and even fatal head and upper body injuries. Oftentimes, footwear impressions are only partially available and evidential value is limited. DNA evidence on shoe soles could provide crucial evidence helping to solve crimes by linking target DNA to the activity of interest. Little is known about the persistence and detectability of biological material post such offenses and the interplay of factors affecting the analytical success. In this study, we assessed the persistence of blood on shoe soles under varying parameters such as blood location, different sneakers, weather condition, gait, amount of blood, underground and step count. We applied an optimized DNA/RNA workflow adapted to micro-traces without constraints for the primary DNA pipeline. There is a high probability to link donor DNA to the shoe sole for up to 300-400 steps, regardless of the underground, blood location, and amount of blood. Depending on the sole material and the degree of abrasion of the sole, a longer blood persistence can be observed. Considering blood, 98.2% of the initial DNA amount (1 μl initial blood volume) was lost after 100 steps walked on sole areas that are in constant contact with the ground. Proportion of foreign DNA was marginal (avg. 4.4 alleles), minimizing the probability of unintentional DNA transfer in this context. RNA typing showed high specificity but lower sensitivity than presumptive tests used for body fluid identification (BFI). Luminol is essential for targeted sampling on shoe soles, as latent blood traces (>100-200 steps) provided sufficient biological material for DNA/RNA typing. The generated data help to address the activity of interest and evaluate probabilities about prevalence of target DNA important for casework implications and assessments on activity level.
Collapse
Affiliation(s)
- Max Schmidt
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Sebastian N Kunz
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Peter Wiegand
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Malte Bamberg
- Institute of Legal Medicine, University Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Wang S, Shanthan G, Bouzga MM, Thi Dinh HM, Haas C, Fonneløp AE. Evaluating the performance of five up-to-date DNA/RNA co-extraction methods for forensic application. Forensic Sci Int 2021; 328:110996. [PMID: 34592582 DOI: 10.1016/j.forsciint.2021.110996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
The importance of RNA evidence is growing with new developments in RNA profiling methods and purposes. As forensic samples often can be of small quantity, extraction methods with high yields of both DNA and RNA are desirable. In order to identify the optimal DNA/RNA co-extraction workflow for forensic samples, we evaluated the performance of three frequently-used methods, two new approaches for DNA/RNA co-extraction and a manual phenol/chloroform RNA-only extraction method on blood and saliva samples. Based on a comprehensive analysis of the RNA and DNA quantities, as well as the STR genotyping and mRNA profiling results, we conclude that the two frequently-used co-extraction methods, combining commercially available DNA and RNA extraction kits, achieved the best performance. However, not any combination of commercially available DNA and RNA extraction kits works well and extensive optimization is necessary, as seen in the poor results of the two new approaches.
Collapse
Affiliation(s)
- Shouyu Wang
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland; Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | | | | | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|