1
|
Jenberie S, Sandve SR, To TH, Kent MP, Rimstad E, Jørgensen JB, Jensen I. Transcriptionally distinct B cell profiles in systemic immune tissues and peritoneal cavity of Atlantic salmon ( Salmo salar) infected with salmonid alphavirus subtype 3. Front Immunol 2024; 15:1504836. [PMID: 39691715 PMCID: PMC11649679 DOI: 10.3389/fimmu.2024.1504836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Teleost B cells producing neutralizing antibodies contribute to protection against salmonid alphavirus (SAV) infection, the etiological agent of pancreas disease, thereby reducing mortality and disease severity. Our previous studies show differences in B cell responses between the systemic immune tissues (head kidney (HK) and spleen) and the peritoneal cavity (PerC) after intraperitoneal SAV3 infection in Atlantic salmon (Salmo salar) where the response in PerC dominates at the late time points. By employing the same infection model, we aimed to further characterize these B cells. Immunophenotyping of teleost B cells is challenging due to limited availability of markers; however, RNA-seq opens an opportunity to explore differences in transcriptomic responses of these cells. Our analysis identified 334, 259 and 613 differentially expressed genes (DEGs) in Atlantic salmon IgM+IgD+ B cells from HK, spleen, and PerC, respectively, at 6 weeks post SAV3 infection. Of these, only 34 were common to all the three immune sites. Additionally, out of the top 100 genes with the highest fold change in expression, only four genes were common across B cells from the three sites. Functional enrichment analyses of DEGs using KEGG and GO databases demonstrated differences in enriched innate immune signaling and the cytokine-cytokine interaction pathways in B cells across the sites, with varying numbers of genes involved. Overall, these findings show the presence of transcriptionally distinct B cell subsets with innate immune functions in HK, spleen and PerC of SAV3-infected Atlantic salmon. Further, our data provide new insights into the immunoregulatory role of fish B cells through the differential expression of various cytokine ligands and receptors and will be a useful resource for further studies into B cell immune compartments.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Simen Rød Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Thu-Hien To
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Peter Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B. Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT- the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Collins C, Chaumont L, Peruzzi M, Jamak N, Boudinot P, Béjar J, Moreno P, Álvarez Torres D, Collet B. Effect of a loss of the mda5/ifih1 gene on the antiviral resistance in a Chinook salmon Oncorhynchus tshawytscha cell line. PLoS One 2024; 19:e0311283. [PMID: 39401233 PMCID: PMC11472919 DOI: 10.1371/journal.pone.0311283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/17/2024] Open
Abstract
Cells are equipped with intracellular RIG-like Receptors (RLRs) detecting double stranded (ds)RNA, a molecule with Pathogen-Associated Molecular Pattern (PAMPs) generated during the life cycle of many viruses. Melanoma Differentiation-Associated protein 5 (MDA5), a helicase enzyme member of the RLRs encoded by the ifih1 gene, binds to long dsRNA molecules during a viral infection and initiates production of type I interferon (IFN1) which orchestrates the antiviral response. In order to understand the contribution of MDA5 to viral resistance in fish cells, we have isolated a clonal Chinook salmon Oncorhynchus tshawytscha epithelial-like cell line invalidated for the ifih1 gene by CRISPR/Cas9 genome editing. We demonstrated that IFN1 induction is impaired in this cell line after infection with the Snakehead Rhabdovirus (SHRV), the Salmon Alphavirus (SAV) or Nervous Necrosis Virus (NNV). The cell line, however, did not show any increase in cytopathic effect when infected with SHRV or SAV. Similarly, no cytopathic effect was observed in the ifih1-/- cell line when infected with Infectious Pancreatic Necrosis Virus (IPNV), Infectious Haemorrhagic Necrotic Virus (IHNV). These results indicate the redundancy of the antiviral innate defence system in CHSE-derived cells, which helps with circumventing viral evasion strategies.
Collapse
Affiliation(s)
- Catherine Collins
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Lise Chaumont
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Peruzzi
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nedim Jamak
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | - Bertrand Collet
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
3
|
Geng S, Lv X, Zheng W, Xu T. An arms race between 5'ppp-RNA virus and its alternative recognition receptor MDA5 in RIG-I-lost teleost fish. eLife 2024; 13:RP94898. [PMID: 39347580 PMCID: PMC11441976 DOI: 10.7554/elife.94898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The incessant arms race between viruses and hosts has led to numerous evolutionary innovations that shape life's evolution. During this process, the interactions between viral receptors and viruses have garnered significant interest since viral receptors are cell surface proteins exploited by viruses to initiate infection. Our study sheds light on the arms race between the MDA5 receptor and 5'ppp-RNA virus in a lower vertebrate fish, Miichthys miiuy. Firstly, the frequent and independent loss events of RIG-I in vertebrates prompted us to search for alternative immune substitutes, with homology-dependent genetic compensation response (HDGCR) being the main pathway. Our further analysis suggested that MDA5 of M. miiuy and Gallus gallus, the homolog of RIG-I, can replace RIG-I in recognizing 5'ppp-RNA virus, which may lead to redundancy of RIG-I and loss from the species genome during evolution. Secondly, as an adversarial strategy, 5'ppp-RNA SCRV can utilize the m6A methylation mechanism to degrade MDA5 and weaken its antiviral immune ability, thus promoting its own replication and immune evasion. In summary, our study provides a snapshot into the interaction and coevolution between vertebrate and virus, offering valuable perspectives on the ecological and evolutionary factors that contribute to the diversity of the immune system.
Collapse
Affiliation(s)
- Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean UniversityShanghaiChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special AreaShanghaiChina
| |
Collapse
|
4
|
Liang B, Li W, Yang C, Su J. LGP2 Facilitates Bacterial Escape through Binding Peptidoglycan via EEK Motif and Suppressing NOD2-RIP2 Axis in Cyprinidae and Xenocyprididae Families. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1791-1806. [PMID: 38629918 DOI: 10.4049/jimmunol.2300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/14/2024] [Indexed: 05/22/2024]
Abstract
RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.
Collapse
Affiliation(s)
- Bo Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wenqian Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Rao SS, Lunde HS, Dolan DWP, Fond AK, Petersen K, Haugland GT. Transcriptome-wide analyses of early immune responses in lumpfish leukocytes upon stimulation with poly(I:C). Front Immunol 2023; 14:1198211. [PMID: 37388730 PMCID: PMC10300353 DOI: 10.3389/fimmu.2023.1198211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Background Both bacterial and viral diseases are a major threat to farmed fish. As the antiviral immune mechanisms in lumpfish (Cyclopterus lumpus L.) are poorly understood, lumpfish leukocytes were stimulated with poly(I:C), a synthetic analog of double stranded RNA, which mimic viral infections, and RNA sequencing was performed. Methods To address this gap, we stimulated lumpfish leukocytes with poly(I:C) for 6 and 24 hours and did RNA sequencing with three parallels per timepoint. Genome guided mapping was performed to define differentially expressed genes (DEGs). Results Immune genes were identified, and transcriptome-wide analyses of early immune responses showed that 376 and 2372 transcripts were significantly differentially expressed 6 and 24 hours post exposure (hpe) to poly(I:C), respectively. The most enriched GO terms when time had been accounted for, were immune system processes (GO:0002376) and immune response (GO:0006955). Analysis of DEGs showed that among the most highly upregulated genes were TLRs and genes belonging to the RIG-I signaling pathway, including LGP2, STING and MX, as well as IRF3 and IL12A. RIG-I was not identified, but in silico analyses showed that genes encoding proteins involved in pathogen recognition, cell signaling, and cytokines of the TLR and RIG-I signaling pathway are mostly conserved in lumpfish when compared to mammals and other teleost species. Conclusions Our analyses unravel the innate immune pathways playing a major role in antiviral defense in lumpfish. The information gathered can be used in comparative studies and lay the groundwork for future functional analyses of immune and pathogenicity mechanisms. Such knowledge is also necessary for the development of immunoprophylactic measures for lumpfish, which is extensively cultivated for use as cleaner fish in the aquaculture for removal of sea lice from Atlantic salmon (Salmo salar L.).
Collapse
Affiliation(s)
- Shreesha S. Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S. Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - David W. P. Dolan
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Amanda K. Fond
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Gyri T. Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Shi L, Li C, Gao Y, Ye J, Lu Y, Liu X. STUB1 activates antiviral response in zebrafish by promoting the expression of RIG-I. FISH & SHELLFISH IMMUNOLOGY 2022; 123:182-193. [PMID: 35227882 DOI: 10.1016/j.fsi.2022.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Spring viraemia of carp virus (SVCV) is a fierce pathogen causing high mortality in the common carp. At present, the treatment of spring viraemia of carp (SVC) is limited. Innate immunity is the host's first line of defense against microbial pathogens. Retinoic acid-inducible gene I (RIG-I) activation plays an essential role in the antiviral immune response. Virus infection can activate the RIG-I signaling and induce the production of interferon (IFN) and the expression of IFN-stimulated genes (ISGs). STUB1 (STIP1 homology and U-box containing protein 1) is a highly conserved cytoplasmic protein. This protein is known to exist widely in many biological systems and plays an important role in the process of immune regulation, but little is known in fish. To explore the immune function of STUB1 in fish, STUB1 gene was cloned from zebrafish and analyzed in this study. Zebrafish STUB1 showed 77% and 79% amino acid sequence homology with those from human and mouse, respectively. The amino acid sequence of zebrafish STUB1 contains three TPR domains and one U-box domain. Subcellular localization study revealed that STUB1 is located in the cytoplasm. And overexpression of zebrafish STUB1 resulted in the activation of the transcription of IFN1 and ISGs. Functional analysis showed that STUB1 was able to activate RIG-I signaling, and promote the expression of RIG-I, but STUB1 can degrade RIG-I in mammals. The proliferation of SVCV was significantly inhibited after the overexpression of STUB1 and N-terminal TPR domain of STUB1 in EPC cells. And through secondary structure analysis, overexpression of the mutant of STUB1 110 amino acid resulted in weakened antiviral ability. The expression of STUB1 was attenuated by poly(I:C) treatment and SVCV infection. In summary, this study demonstrated for the first time that STUB1 can induce the production of IFN, enhance the expression of ISGs by promoting the expression of RIG-I and inhibiting viral replication in fish. These findings may form the essential basis for the development of antiviral targets and drugs.
Collapse
Affiliation(s)
- Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Yan Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Zhang W, Tan B, Deng J, Yang Q, Chi S, Pang A, Xin Y, Liu Y, Zhang H. PRR-Mediated Immune Response and Intestinal Flora Profile in Soybean Meal-Induced Enteritis of Pearl Gentian Groupers, Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂. Front Immunol 2022; 13:814479. [PMID: 35296073 PMCID: PMC8919722 DOI: 10.3389/fimmu.2022.814479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Pattern recognition receptors (PRRs) can recognize microbial-specific pathogen-associated molecular patterns, initiate signal cascade transduction, activate the expressions of host immunity and proinflammatory genes, and, ultimately, trigger an immune response against identified pathogens. The present study focused on two outcomes of feeding pearl gentian groupers with high levels of soybean meal (SBM): (1) growth performance and (2) the intestinal environment, including tissue structure, flora profile, and immune responses. Some 720 groupers were randomly divided into three groups (n = 4): (1) controls, fed a 50% fish meal feed (FM), (2) with 20% of the FM substituted with SBM (SBM20), and (3) 40% of the FM substituted with SBM (SBM40). The fish were fed these iso-nitrogenous and iso-lipidic diets for 10 weeks. They were kept in containers with 1 m3 of water under natural light and temperature levels. The experimental results demonstrate that the SBM diets significantly degraded growth performance and intestinal physiology. Typical enteritis characteristics and immune fluctuations appeared, as reflected by the enzyme activities of total superoxide dismutase and lysozyme, and the contents of immunoglobulin M, complement 3, and complement 4. 16SrDNA high-throughput sequencing showed that the intestinal flora was significantly affected, with the abundance of harmful bacteria, such as Vibrio and Streptococcus, increasing with dietary SBM level. Based on "3 + 2" full-length transcriptome sequencing, three triggered PRRs were found in the intestine: the RIG-like receptor, NOD-like receptor, and Toll-like receptor signaling pathways. The intestinal flora variations were significantly correlated with the activation of the three PRR signaling pathways by canonical correlation analysis. These culminated in the transcriptome activation of NF-κB, IRFs, and costimulatory molecules, ultimately promoting the expressions of proinflammatory cytokines, interferons (IFNs), chemokines, and other molecules vital to the innate and/or adaptive immune responses. This study provides new information for diagnosing and preventing SBMIE in aquaculture fish.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Aobo Pang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Yu Xin
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Yu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
8
|
Su H, Liao Z, Yang C, Zhang Y, Su J. Grass Carp Reovirus VP56 Allies VP4, Recruits, Blocks, and Degrades RIG-I to More Effectively Attenuate IFN Responses and Facilitate Viral Evasion. Microbiol Spectr 2021; 9:e0100021. [PMID: 34523975 PMCID: PMC8557896 DOI: 10.1128/spectrum.01000-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Grass carp reovirus (GCRV), the most virulent aquareovirus, causes epidemic hemorrhagic disease and tremendous economic loss in freshwater aquaculture industry. VP56, a putative fibrin inlaying the outer surface of GCRV-II and GCRV-III, is involved in cell attachment. In the present study, we found that VP56 localizes at the early endosome, lysosome, and endoplasmic reticulum, recruits the cytoplasmic viral RNA sensor retinoic acid-inducible gene I (RIG-I) and binds to it. The interaction between VP56 and RIG-I was detected by endogenous coimmunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) and was then confirmed by traditional co-IPs and a novel far-red mNeptune-based bimolecular fluorescence complementation system. VP56 binds to the helicase domain of RIG-I. VP56 enhances K48-linked ubiquitination of RIG-I to degrade it by the proteasomal pathway. Thus, VP56 impedes the initial immune function of RIG-I by dual mechanisms (blockade and degradation) and attenuates signaling from RIG-I recognizing viral RNA, subsequently weakening downstream signaling transduction and interferon (IFN) responses. Accordingly, host antiviral effectors are reduced, and cytopathic effects are increased. These findings were corroborated by RNA sequencing (RNA-seq) and VP56 knockdown. Finally, we found that VP56 and the major outer capsid protein VP4 bind together in the cytosol to enhance the degradation of RIG-I and more efficiently facilitate viral replication. Collectively, the results indicated that VP56 allies VP4, recruits, blocks, and degrades RIG-I, thereby attenuating IFNs and antiviral effectors to facilitate viral evasion more effectively. This study reveals a virus attacking target and an escaping strategy from host antiviral immunity for GCRV and will help understand mechanisms of infection of reoviruses. IMPORTANCE Grass carp reovirus (GCRV) fibrin VP56 and major outer capsid protein VP4 inlay and locate on the outer surface of GCRV-II and GCRV-III, which causes tremendous loss in grass carp and black carp industries. Fibrin is involved in cell attachment and plays an important role in reovirus infection. The present study identified the interaction proteins of VP56 and found that VP56 and VP4 bind to the different domains of the viral RNA sensor retinoic acid-inducible gene I (RIG-I) in grass carp to block RIG-I sensing of viral RNA and induce RIG-I degradation by the proteasomal pathway to attenuate signaling transduction, thereby suppressing interferons (IFNs) and antiviral effectors, facilitating viral replication. VP56 and VP4 bind together in the cytosol to more efficiently facilitate viral evasion. This study reveals a virus attacking a target and an escaping strategy from host antiviral immunity for GCRV and will be helpful in understanding the mechanisms of infection of reoviruses.
Collapse
Affiliation(s)
- Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|