1
|
Ahmed A, Rahman MS. Histological, biochemical and immunohistochemical assessments of Roundup®, atrazine, and 2,4-D mixtures on tissue architecture, body fluid conditions, nitrotyrosine protein and Na +/K +-ATPase expressions in the American oyster, Crassostera virginica. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109951. [PMID: 38844188 DOI: 10.1016/j.cbpc.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Pesticides are widely used to control weeds and pests in agricultural settings but harm non-target aquatic organisms. In this study, our objective was to evaluate the effect of short-term exposure (one week) to environmentally relevant concentrations of pesticides mixture (low concentration: 0.4 μg/l atrazine, 0.5 μg/l Roundup®, and 0.5 μg/l 2,4-D; high concentration: 0.8 μg/l atrazine, 1 μg/l Roundup®, and 1 μg/l 2,4-D) on tissue architecture, body fluid conditions, and 3-nitrotyrosine protein (NTP) and Na+/K+-ATPase, expressions in tissues of American oyster (Crassostrea virginica) under controlled laboratory conditions. Histological analysis demonstrated the atrophy in the gills and digestive glands of oysters exposed to pesticides mixture. Periodic acid-Schiff (PAS) staining showed the number of hemocytes in connective tissue increased in low- and high-concentration pesticides exposure groups. However, pesticides treatment significantly (P < 0.05) decreased the amount of mucous secretion in the gills and digestive glands of oysters. The extrapallial fluid (i.e., body fluid) protein concentrations and glucose levels were dropped significantly (P < 0.05) in oysters exposed to high-concentration pesticides exposure groups. Moreover, immunohistochemical analysis showed significant upregulations of NTP and Na+/K+-ATPase expressions in the gills and digestive glands in pesticides exposure groups. Our results suggest that exposure to environmentally relevant pesticides mixture causes morphological changes in tissues and alters body fluid conditions and NTP and Na+/K+-ATPase expressions in tissues, which may lead to impaired physiological functions in oysters.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
2
|
Li P, Wang J, Xie J. Excitation of Reactive Oxygen Species and Damage to the Cell Membrane, Protein, and DNA are Important Inhibition Mechanisms of CO 2 on Shewanella putrefaciens at 4 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17559-17571. [PMID: 39054619 DOI: 10.1021/acs.jafc.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To explore whether oxidative stress caused by 100% CO2 is an inhibitory mechanism against Shewanella putrefaciens, the oxidative stress reaction, antioxidant activity, and damage to the cell membrane, protein, and DNA of CO2-incubated S. putrefaciens at 4 °C were evaluated. Research demonstrated that CO2 caused more severe reactive oxygen species (ROS) accumulation. Simultaneously, weaker •OH/H2O2/O2•--scavenging activity and decreased T-VOC and GSH content were also observed. The activities of antioxidant enzymes (SOD, POD, CAT, and GPX) continuously declined, which might be attributed to the CO2-mediated decrease in the pH value. Correspondingly, the cell membrane was damaged with hyperpolarization, increased permeability, and more severe lipid peroxidation. The expression of total and membrane protein decreased, and the synthesis and activity of extracellular protease were inhibited. DNA was also subjected to oxidative damage and expressed at a lower level. All results collaboratively confirmed that ROS excitation and inhibition of antioxidant activity were important inhibition mechanisms of CO2 on S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jinfeng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
3
|
Vellani V, Cuccaro A, Oliva M, Pretti C, Renzi M. Assessing combined effects of long-term exposure to copper and marine heatwaves on the reef-forming serpulid Ficopomatus enigmaticus through a biomarker approach. MARINE POLLUTION BULLETIN 2024; 201:116269. [PMID: 38531206 DOI: 10.1016/j.marpolbul.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Sessile benthic organisms can be affected by global changes and local pressures, such as metal pollution, that can lead to damages at different levels of biological organization. Effects of exposure to marine heatwaves (MHWs) alone and in combination with environmentally relevant concentration of copper (Cu) were evaluated in the reef-forming tubeworm Ficopomatus enigmaticus using a multi-biomarker approach. Biomarkers of cell membrane damage, enzymatic antioxidant defences, metabolic activity, neurotoxicity, and DNA integrity were analyzed. The exposure to Cu alone did not produce any significant effect. Exposure to MHWs alone produced effects only on metabolic activity (increase of glutathione S-transferase) and energy reserves (decrease in protein content). MHWs in combination with copper was the condition that most influenced the status of cell homeostasis of exposed F. enigmaticus. The combination of MHWs plus Cu exposure induced increase of protein carbonylation and glutathione S-transferase activity, decrease in protein/carbohydrate content and carboxylesterase activity. This study on a reef-forming organism highlighted the additive effect of a climate change-related stressor to metals pollution of marine and brackish waters.
Collapse
Affiliation(s)
- Verdiana Vellani
- Department of Life Sciences, University of Trieste, 34127 Trieste, TS, Italy; CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Alessia Cuccaro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology of Leghorn 'G. Bacci', 57128 Leghorn, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn 'G. Bacci', 57128 Leghorn, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy.
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, TS, Italy; CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy
| |
Collapse
|
4
|
Liu P, Qu X, Zhang X, Ma R. Flexible Sensing Enabled Nondestructive Detection on Viability/Quality of Live Edible Oyster. Foods 2024; 13:167. [PMID: 38201196 PMCID: PMC10778624 DOI: 10.3390/foods13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Environmental and physiological fluctuations in the live oyster cold chain can result in reduced survival and quality. In this study, a flexible wireless sensor network (F-WSN) monitoring system combined with knowledge engineering was designed and developed to monitor environmental information and physiological fluctuations in the live oyster cold chain. Based on the Hazard Analysis and Critical Control Point (HACCP) plan to identify the critical control points (CCPs) in the live oyster cold chain, the F-WSN was utilized to conduct tracking and collection experiments in real scenarios from Yantai, Shandong Province, to Beijing. The knowledge model for shelf-life and quality prediction based on environmental information and physiological fluctuations was established, and the prediction accuracies of TVB-N, TVC, and pH were 96%, 85%, and 97%, respectively, and the prediction accuracy of viability was 96%. Relevant managers, workers, and experts were invited to participate in the efficiency and applicability assessment of the established system. The results indicated that combining F-WSN monitoring with knowledge-based HACCP modeling is an effective approach to improving the transparency of cold chain management, reducing quality and safety risks in the oyster industry, and promoting the sharing and reuse of HACCP knowledge in the oyster cold chain.
Collapse
Affiliation(s)
| | | | | | - Ruiqin Ma
- College of Engineering, China Agricultural University, Beijing 100083, China; (P.L.); (X.Q.); (X.Z.)
| |
Collapse
|
5
|
Zhang L, Hu Z, Bai W, Peng Y, Lin Y, Cong Z. Fucoxanthin ameliorates traumatic brain injury by suppressing the blood-brain barrier disruption. iScience 2023; 26:108270. [PMID: 37965135 PMCID: PMC10641514 DOI: 10.1016/j.isci.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Fucoxanthin is the most abundant marine carotenoid extracted from seaweed. Our previous study has shown that fucoxanthin inhibited oxidative stress after traumatic brain injury (TBI). However, the effects of fucoxanthin on TBI-induced blood-brain barrier (BBB) destruction have not been well understood. In the present study, we found that fucoxanthin improved neurological dysfunction, reduced brain edema, attenuated cortical lesion volume, and decreased dendrites loss after TBI in vivo. Moreover, fucoxanthin suppressed BBB leakage, preserved tight junction (TJ) and adherens junction (AJ) proteins, and inhibited MMP-9 expression. Furthermore, fucoxanthin alleviated apoptosis and ferroptosis, and activated mitophagy in endothelial cells (ECs) after TBI. However, the protection of fucoxanthin on BBB was attenuated when mitophagy was inhibited. Importantly, fucoxanthin also provided protective effects in bEnd.3 cells after TBI. Taken together, our results suggested that fucoxanthin played a key role in the protection of BBB after TBI through mitophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Wanshan Bai
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, P.R.China
| |
Collapse
|
6
|
Chowdhury A, Rahman MS. Molecular and biochemical biomarkers in the American oyster Crassostrea virginica exposed to herbicide Roundup® at high temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94757-94778. [PMID: 37540412 DOI: 10.1007/s11356-023-28862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Aquatic organisms are frequently exposed to various environmental stressors. Thus, the effects of high temperatures and herbicides on aquatic organisms are a major subject of interest. In this study, we studied the effects of short-term exposure (1 week) to Roundup®, a glyphosate-based herbicide (concentrations: 0.5 and 5 µg/L), on the morphology of gills, digestive glands, and connective tissues, and the expression of heat shock protein-70 (HSP70, a chaperone protein), cytochrome P450 (CYP450, a biomarker of environmental contaminants), dinitrophenyl protein (DNP, a biomarker of protein oxidation), nitrotyrosine protein (NTP, a biomarker of protein nitration), antioxidant enzymes such as superoxidase dismutase (SOD) and catalase (CAT) in tissues of American oyster, Crassostrea virginica (Gmelin, 1791) maintained at high temperature (30 °C). Histological analyses showed an increase in mucous production in the gills and digestive glands, and in hemocyte aggregation in the connective tissues as well as a structural change of lumen in the digestive glands of oysters exposed to Roundup. Immunohistochemical and quantitative RT-PCR analyses showed significant (P < 0.05) increases in HSP70, CYP450, DNP, NTP, CAT, and SOD mRNA and protein expressions in the tissues of oysters exposed to Roundup. Taken together, these results suggest that exposure to Roundup at high temperature induces overproduction of reactive oxygen species/reactive nitrogen species which in turn leads to altered prooxidant-antioxidant activity in oyster tissues. Moreover, our results provide new information on protein oxidation/nitration and antioxidant-dependent mechanisms for HSP70 and CYP450 regulations in oysters exposed to Roundup at high temperature.
Collapse
Affiliation(s)
- Afsana Chowdhury
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, 1 West University Blvd, TX, 78520, Brownsville, USA.
| |
Collapse
|