1
|
Bakhat N, Jiménez-Sánchez A, Ruiz-Jiménez L, Padilla-Roji I, Velasco L, Pérez-García A, Fernández-Ortuño D. Fungal effector genes involved in the suppression of chitin signaling as novel targets for the control of powdery mildew disease via a nontransgenic RNA interference approach. PEST MANAGEMENT SCIENCE 2025. [PMID: 39797552 DOI: 10.1002/ps.8660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii. RESULTS The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression. To assess the impact on powdery mildew disease control, in vitro and in planta assays were carried out in growth chamber and glasshouse experiments, with ≈50% reduction in disease symptoms after 8 days postinoculation (dpi) in leaf discs and 12 dpi in plants' leaves, respectively. This control was extended for 21 days when the dsRNAs were protected on the carbon dot nanocarriers. Additionally, the uptake of the dsRNAs by fungal spores was observed 12 h postapplication via confocal microscopy, and efficient processing of dsRNAs into siRNAs by the melon RNAi machinery was observed 24 h postspraying through sRNA-seq. CONCLUSIONS This study highlights notable advancements in environmentally friendly disease management, and features the technological potential of RNA-based fungicides together with nanotechnology for cucurbit powdery mildew control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nisrine Bakhat
- Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Alejandro Jiménez-Sánchez
- Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Laura Ruiz-Jiménez
- Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Isabel Padilla-Roji
- Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | | | - Alejandro Pérez-García
- Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Dolores Fernández-Ortuño
- Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
2
|
Yin J, Li X, Dong L, Zhu X, Chen Y, Zhao W, Liu Y, Shan J, Liu W, Lin C, Miao W. Transformation-based gene silencing and functional characterization of an ISC effector reveal how a powdery mildew fungus disturbs salicylic acid biosynthesis and immune response in the plant. MOLECULAR PLANT PATHOLOGY 2024; 25:e70030. [PMID: 39558488 PMCID: PMC11573735 DOI: 10.1111/mpp.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
Obligate biotrophic powdery mildew fungi infect a wide range of economically important plants. These fungi often deliver effector proteins into the host tissues to suppress plant immunity and sustain infection. The phytohormone salicylic acid (SA) is one of the most important signals that activate plant immunity against pathogens. However, how powdery mildew effectors interact with host SA signalling is poorly understood. Isochorismatase (ISC) effectors from two other filamentous pathogens have been found to inhibit host SA biosynthesis by hydrolysing isochorismate, the main SA precursor in the plant cytosol. Here, we identified an ISC effector, named EqIsc1, from the rubber tree powdery mildew fungus Erysiphe quercicola. In ISC enzyme assays, EqIsc1 displayed ISC activity by transferring isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate in vitro and in transgenic Nicotiana benthamiana plants. In EqIsc1-expressing transgenic Arabidopsis thaliana, SA biosynthesis and SA-mediated immune response were significantly inhibited. In addition, we developed an electroporation-mediated transformation method for the genetic manipulation of E. quercicola. Inoculation of rubber tree leaves with EqIsc1-silenced E. quercicola strain induced SA-mediated immunity. We also detected the translocation of EqIsc1 into the plant cytosol during the interaction between E. quercicola and its host. Taken together, our results suggest that a powdery mildew effector functions as an ISC enzyme to hydrolyse isochorismate in the host cytosol, altering the SA biosynthesis and immune response.
Collapse
Affiliation(s)
- Jinyao Yin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Xiao Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Linpeng Dong
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Xuehuan Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Yalong Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Wenyuan Zhao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Yuhan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Jiaxin Shan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Chunhua Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| |
Collapse
|
3
|
Baumann AJ, Díaz GV, Marino DJG, Belardita AA, Argüello BDV, Zapata PD. A promising alternative for sustainable remediation of carbendazim in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60235-60246. [PMID: 39370465 DOI: 10.1007/s11356-024-35237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The treatment of carbendazim-contaminated effluents is a challenge because of its complex composition and toxicity. A promising solution lies in biodegradation and the fungus Actinomucor elegans LBM 290 shows significant potential in this regard. Thus, the aim of this study was to biodegrade MBC by A. elegans LBM 290 in a liquid medium addressing the changes in the fungal morphology and protein production. The fungus A. elegans LBM 290 efficiently remove the fungicide carbendazim, with 86.6% removal within 8 days. This degradation is a combination of biodegradation (24.54%) and adsorption (62.08%). Exposure to carbendazim negatively affected the fungus, causing a decrease in biomass and morphological changes. Proteomic analysis revealed the fungal response to carbendazim stress through increased production of Cu-Zn superoxide dismutase, an antioxidant enzyme that combats oxidative stress, and the presence of a G protein subunit, suggesting participation in stress signaling pathways. These findings contribute to understanding the strategies of A. elegans LBM 290 to cope with carbendazim exposure in aquatic environments.
Collapse
Affiliation(s)
- Alicia Jeannette Baumann
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María EbeReca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina.
- Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gabriela Verónica Díaz
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María EbeReca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Buenos Aires, Argentina
| | - Damián José Gabriel Marino
- Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad Nacional de La Plata. Facultad de Ciencias Exactas, Centro de Investigaciones del Medio Ambiente (CIM), La Plata, Argentina
| | - Agustín Alfredo Belardita
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María EbeReca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
| | - Beatriz Del Valle Argüello
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Departamento de Química, Posadas, Misiones, Argentina
| | - Pedro Darío Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María EbeReca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Suppression of Chitin-Triggered Immunity by a New Fungal Chitin-Binding Effector Resulting from Alternative Splicing of a Chitin Deacetylase Gene. J Fungi (Basel) 2022; 8:jof8101022. [PMID: 36294587 PMCID: PMC9605236 DOI: 10.3390/jof8101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Phytopathogenic fungi have evolved mechanisms to manipulate plant defences, such as chitin-triggered immunity, a plant defensive response based on the recognition of chitin oligomers by plant-specific receptors. To cope with chitin resistance, fungal pathogens have developed different strategies to prevent chitin recognition, such as binding, breaking, or modifying immunogenic oligomers. In powdery mildew fungi, the activity of chitin deacetylase (CDA) is crucial for this purpose, since silencing of the CDA gene leads to a rapid activation of chitin signalling and the subsequent suppression of fungal growth. In this work, we have identified an unusually short CDA transcript in Podosphaera xanthii, the cucurbit powdery mildew pathogen. This transcript, designated PxCDA3, appears to encode a truncated version of CDA resulting from an alternative splicing of the PxCDA gene, which lacked most of the chitin deacetylase activity domain but retained the carbohydrate-binding module. Experiments with the recombinant protein showed its ability to bind to chitin oligomers and prevent the activation of chitin signalling. Furthermore, the use of fluorescent fusion proteins allowed its localization in plant papillae at pathogen penetration sites. Our results suggest the occurrence of a new fungal chitin-binding effector, designated CHBE, involved in the manipulation of chitin-triggered immunity in powdery mildew fungi.
Collapse
|
5
|
Vaghefi N, Kusch S, Németh MZ, Seress D, Braun U, Takamatsu S, Panstruga R, Kiss L. Beyond Nuclear Ribosomal DNA Sequences: Evolution, Taxonomy, and Closest Known Saprobic Relatives of Powdery Mildew Fungi ( Erysiphaceae) Inferred From Their First Comprehensive Genome-Scale Phylogenetic Analyses. Front Microbiol 2022; 13:903024. [PMID: 35756050 PMCID: PMC9218914 DOI: 10.3389/fmicb.2022.903024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Powdery mildew fungi (Erysiphaceae), common obligate biotrophic pathogens of many plants, including important agricultural and horticultural crops, represent a monophyletic lineage within the Ascomycota. Within the Erysiphaceae, molecular phylogenetic relationships and DNA-based species and genera delimitations were up to now mostly based on nuclear ribosomal DNA (nrDNA) phylogenies. This is the first comprehensive genome-scale phylogenetic analysis of this group using 751 single-copy orthologous sequences extracted from 24 selected powdery mildew genomes and 14 additional genomes from Helotiales, the fungal order that includes the Erysiphaceae. Representative genomes of all powdery mildew species with publicly available whole-genome sequencing (WGS) data that were of sufficient quality were included in the analyses. The 24 powdery mildew genomes included in the analysis represented 17 species belonging to eight out of 19 genera recognized within the Erysiphaceae. The epiphytic genera, all but one represented by multiple genomes, belonged each to distinct, well-supported lineages. Three hemiendophytic genera, each represented by a single genome, together formed the hemiendophytic lineage. Out of the 14 other taxa from the Helotiales, Arachnopeziza araneosa, a saprobic species, was the only taxon that grouped together with the 24 genome-sequenced powdery mildew fungi in a monophyletic clade. The close phylogenetic relationship between the Erysiphaceae and Arachnopeziza was revealed earlier by a phylogenomic study of the Leotiomycetes. Further analyses of powdery mildew and Arachnopeziza genomes may discover signatures of the evolutionary processes that have led to obligate biotrophy from a saprobic way of life. A separate phylogeny was produced using the 18S, 5.8S, and 28S nrDNA sequences of the same set of powdery mildew specimens and compared to the genome-scale phylogeny. The nrDNA phylogeny was largely congruent to the phylogeny produced using 751 orthologs. This part of the study has revealed multiple contamination and other quality issues in some powdery mildew genomes. We recommend that the presence of 28S, internal transcribed spacer (ITS), and 18S nrDNA sequences in powdery mildew WGS datasets that are identical to those determined by Sanger sequencing should be used to assess the quality of assemblies, in addition to the commonly used Benchmarking Universal Single-Copy Orthologs (BUSCO) values.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Márk Z. Németh
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Diána Seress
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Uwe Braun
- Department of Geobotany and Botanical Garden, Herbarium, Institute for Biology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Susumu Takamatsu
- Laboratory of Plant Pathology, Faculty of Bioresources, Mie University, Tsu, Japan
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Levente Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
- Centre for Research and Development, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
6
|
Martínez-Cruz JM, Polonio Á, Zanni R, Romero D, Gálvez J, Fernández-Ortuño D, Pérez-García A. Chitin Deacetylase, a Novel Target for the Design of Agricultural Fungicides. J Fungi (Basel) 2021; 7:jof7121009. [PMID: 34946992 PMCID: PMC8706340 DOI: 10.3390/jof7121009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Fungicide resistance is a serious problem for agriculture. This is particularly apparent in the case of powdery mildew fungi. Therefore, there is an urgent need to develop new agrochemicals. Chitin is a well-known elicitor of plant immunity, and fungal pathogens have evolved strategies to overcome its detection. Among these strategies, chitin deacetylase (CDA) is responsible for modifying immunogenic chitooligomers and hydrolysing the acetamido group in the N-acetylglucosamine units to avoid recognition. In this work, we tested the hypothesis that CDA can be an appropriate target for antifungals using the cucurbit powdery mildew pathogen Podosphaera xanthii. According to our hypothesis, RNAi silencing of PxCDA resulted in a dramatic reduction in fungal growth that was linked to a rapid elicitation of chitin-triggered immunity. Similar results were obtained with treatments with carboxylic acids such as EDTA, a well-known CDA inhibitor. The disease-suppression activity of EDTA was not associated with its chelating activity since other chelating agents did not suppress disease. The binding of EDTA to CDA was confirmed by molecular docking studies. Furthermore, EDTA also suppressed green and grey mould-causing pathogens applied to oranges and strawberries, respectively. Our results conclusively show that CDA is a promising target for control of phytopathogenic fungi and that EDTA could be a starting point for fungicide design.
Collapse
Affiliation(s)
- Jesús M. Martínez-Cruz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (J.M.M.-C.); (Á.P.); (D.R.); (A.P.-G.)
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain
| | - Álvaro Polonio
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (J.M.M.-C.); (Á.P.); (D.R.); (A.P.-G.)
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain
| | - Riccardo Zanni
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, 46010 Valencia, Spain; (R.Z.); (J.G.)
| | - Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (J.M.M.-C.); (Á.P.); (D.R.); (A.P.-G.)
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain
| | - Jorge Gálvez
- Molecular Topology and Drug Design Unit, Department of Physical Chemistry, University of Valencia, 46010 Valencia, Spain; (R.Z.); (J.G.)
| | - Dolores Fernández-Ortuño
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (J.M.M.-C.); (Á.P.); (D.R.); (A.P.-G.)
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain
- Correspondence:
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; (J.M.M.-C.); (Á.P.); (D.R.); (A.P.-G.)
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29010 Málaga, Spain
| |
Collapse
|
7
|
Resistance to the SDHI Fungicides Boscalid and Fluopyram in Podosphaera xanthii Populations from Commercial Cucurbit Fields in Spain. J Fungi (Basel) 2021; 7:jof7090733. [PMID: 34575771 PMCID: PMC8464660 DOI: 10.3390/jof7090733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023] Open
Abstract
Powdery mildew is caused by Podosphaera xanthii, and is one of the most important diseases that attacks Spanish cucurbit crops. Fungicide application is the primary control tool; however, its effectiveness is hampered by the rapid development of resistance to these compounds. In this study, the EC50 values of 26 isolates were determined in response to the succinate dehydrogenase inhibitor (SDHI) fungicides boscalid and fluopyram. From these data, the discriminatory doses were deduced and used for SDHI resistance monitoring during the 2018 and 2019 growing seasons. Of the 298 isolates analysed, 37.9% showed resistance to boscalid and 44% to fluopyram. Although different phenotypes were observed in leaf disc assays, the resistant isolates showed the same phenotype in plant assays. Compared to sensitive isolates, two amino acid changes were found in the SdhC subunit, A86V and G151R, which are associated mostly with resistance patterns to fluopyram and boscalid, respectively. Furthermore, no significant differences were observed in terms of fitness cost between the selected sensitive and resistant isolates analysed here. Lastly, a loop-mediated isothermal amplification (LAMP) assay was developed to detect A86V and G151R mutations using conidia obtained directly from infected material. Our results show that growers could continue to use boscalid and fluopyram, but resistance management practices must be implemented.
Collapse
|
8
|
Gene Mining for Conserved, Non-Annotated Proteins of Podosphaera xanthii Identifies Novel Target Candidates for Controlling Powdery Mildews by Spray-Induced Gene Silencing. J Fungi (Basel) 2021; 7:jof7090735. [PMID: 34575773 PMCID: PMC8465782 DOI: 10.3390/jof7090735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosylation (CNAP1048) and efflux transport (CNAP948), were identified. Functional analysis of these CNAP coding genes by dsRNA-induced gene silencing resulted in strong silencing phenotypes with large reductions in fungal growth and disease symptoms. Due to their important contributions to fungal development, the CNAP1048, CNAP10905 and CNAP30520 genes were selected as targets to conduct SIGS assays under plant growth chamber conditions. The spray application of these dsRNAs induced high levels of disease control, supporting that SIGS could be a sustainable approach to combat powdery mildew diseases.
Collapse
|
9
|
Kelly LA, Vaghefi N, Bransgrove K, Fechner NA, Stuart K, Pandey AK, Sharma M, Németh MZ, Liu SY, Tang SR, Nair RM, Douglas CA, Kiss L. One Crop Disease, How Many Pathogens? Podosphaera xanthii and Erysiphe vignae sp. nov. Identified as the Two Species that Cause Powdery Mildew of Mungbean ( Vigna radiata) and Black Gram ( V. mungo) in Australia. PHYTOPATHOLOGY 2021; 111:1193-1206. [PMID: 33487024 DOI: 10.1094/phyto-12-20-0554-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Powdery mildew is a significant threat to mungbean (Vigna radiata) and black gram (V. mungo) production across Australia and overseas. Although they have been present in Australia for at least six decades and are easily recognized in the field, the precise identification of the pathogens causing this disease has remained unclear. Our goal was to identify the powdery mildew species infecting mungbean, black gram, and wild mungbean (V. radiata ssp. sublobata) in Australia. The internal transcribed spacer (ITS) and large subunit sequences of the ribosomal DNA and/or morphology of 57 Australian specimens were examined. Mungbean and black gram were infected by two species: Podosphaera xanthii and a newly recognized taxon, Erysiphe vignae sp. nov. Wild mungbean was infected only with P. xanthii. Mungbean and black gram powdery mildew ITS sequences from China, India, and Taiwan revealed the presence of only P. xanthii on these crops despite controversial reports of an Erysiphe species on both crops in India. Sequence analyses indicated that the closest relative of E. vignae is E. diffusa, which infects soybean (Glycine max) and other plants. E. vignae did not infect soybean in cross-inoculation tests. In turn, E. diffusa from soybean infected black gram and provoked hypersensitive response in mungbean. The recognition of a second species, E. vignae, as another causal agent of mungbean and black gram powdery mildew in Australia may complicate plant breeding efforts and control of the disease with fungicide applications.
Collapse
Affiliation(s)
- Lisa A Kelly
- University of Southern Queensland, Centre for Crop Health, QLD 4350 Toowoomba, Australia
- Queensland Government, Department of Agriculture and Fisheries, QLD 4350 Toowoomba, Australia
| | - Niloofar Vaghefi
- University of Southern Queensland, Centre for Crop Health, QLD 4350 Toowoomba, Australia
| | - Kaylene Bransgrove
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, QLD 4102 Dutton Park, Australia
| | - Nigel A Fechner
- Queensland Government, Department of Environment and Science, Queensland Herbarium, Mt. Coot-tha Botanic Gardens, QLD 4066 Toowong, Australia
| | - Kara Stuart
- Biosecurity Queensland, Department of Agriculture and Fisheries, QLD 4102 Dutton Park, Australia
| | - Abhay K Pandey
- World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, Hyderabad 502324, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Márk Z Németh
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, H-1525 Budapest, Hungary
| | - Shu-Yan Liu
- Jilin Agricultural University, College of Plant Protection, Changchun 130118, Jilin Province, China
| | - Shu-Rong Tang
- Jilin Agricultural University, College of Plant Protection, Changchun 130118, Jilin Province, China
| | - Ramakrishnan M Nair
- World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, Hyderabad 502324, India
| | - Colin A Douglas
- Queensland Government, Department of Agriculture and Fisheries, QLD 4370 Warwick, Australia
| | - Levente Kiss
- University of Southern Queensland, Centre for Crop Health, QLD 4350 Toowoomba, Australia
| |
Collapse
|
10
|
Mart Nez-Cruz JS, Romero D, Hierrezuelo JS, Thon M, de Vicente A, P Rez-Garc A A. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. THE PLANT CELL 2021; 33:1319-1340. [PMID: 33793825 DOI: 10.1093/plcell/koab011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 05/23/2023]
Abstract
In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.
Collapse
Affiliation(s)
- Jes S Mart Nez-Cruz
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Diego Romero
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Jes S Hierrezuelo
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Michael Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca 37185, Spain
| | - Antonio de Vicente
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Alejandro P Rez-Garc A
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| |
Collapse
|
11
|
Minagawa M, Shirato M, Toya M, Sato M. Dual Impact of a Benzimidazole Resistant β-Tubulin on Microtubule Behavior in Fission Yeast. Cells 2021; 10:1042. [PMID: 33925026 PMCID: PMC8145593 DOI: 10.3390/cells10051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton microtubule consists of polymerized αβ-tubulin dimers and plays essential roles in many cellular events. Reagents that inhibit microtubule behaviors have been developed as antifungal, antiparasitic, and anticancer drugs. Benzimidazole compounds, including thiabendazole (TBZ), carbendazim (MBC), and nocodazole, are prevailing microtubule poisons that target β-tubulin and inhibit microtubule polymerization. The molecular basis, however, as to how the drug acts on β-tubulin remains controversial. Here, we characterize the S. pombe β-tubulin mutant nda3-TB101, which was previously isolated as a mutant resistance to benzimidazole. The mutation site tyrosine at position 50 is located in the interface of two lateral β-tubulin proteins and at the gate of a putative binging pocket for benzimidazole. Our observation revealed two properties of the mutant tubulin. First, the dynamics of cellular microtubules comprising the mutant β-tubulin were stabilized in the absence of benzimidazole. Second, the mutant protein reduced the affinity to benzimidazole in vitro. We therefore conclude that the mutant β-tubulin Nda3-TB101 exerts a dual effect on microtubule behaviors: the mutant β-tubulin stabilizes microtubules and is insensitive to benzimidazole drugs. This notion fine-tunes the current elusive molecular model regarding binding of benzimidazole to β-tubulin.
Collapse
Affiliation(s)
- Mamika Minagawa
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
| | - Minamo Shirato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
- Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
12
|
Dodhia KN, Cox BA, Oliver RP, Lopez-Ruiz FJ. Rapid in situ quantification of the strobilurin resistance mutation G143A in the wheat pathogen Blumeria graminis f. sp. tritici. Sci Rep 2021; 11:4526. [PMID: 33633193 PMCID: PMC7907364 DOI: 10.1038/s41598-021-83981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
As the incidence of fungicide resistance in plant pathogens continues to increase, control of diseases and the management of resistance would be greatly aided by rapid diagnostic methods. Quantitative allele-specific PCR (ASqPCR) is an ideal technique for the in-field analysis of fungicide resistance as it can quantify the frequency of mutations in fungicide targets. We have applied this technique to the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew. In Australia, strobilurin-resistant Bgt was first discovered in 2016. Molecular analysis revealed a nucleotide transversion in the cytochrome b (cytb) gene in the cytochrome bc1 enzyme complex, resulting in a substitution of alanine for glycine at position 143 (G143A). We have developed an in-field ASqPCR assay that can quantify both the resistant (A143) and sensitive (G143) cytb alleles down to 1.67% in host and Bgt DNA mixtures, within 90 min of sample collection. The in situ analysis of samples collected during a survey in Tasmania revealed A143 frequencies ranging between 9-100%. Validation of the analysis with a newly developed laboratory based digital PCR assay found no significant differences between the two methods. We have successfully developed an in-field quantification method, for a strobilurin-resistant allele, by pairing the ASqPCR assay on a lightweight qPCR instrument with a quick DNA extraction method. The deployment of these type of methodologies in the field can contribute to the effective in-season management of fungicide resistance.
Collapse
Affiliation(s)
- Kejal N Dodhia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Belinda A Cox
- Faculty of Science and Engineering, Curtin University, Perth, WA, 6102, Australia
| | | | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
| |
Collapse
|
13
|
Fungicide Resistance in Powdery Mildew Fungi. Microorganisms 2020; 8:microorganisms8091431. [PMID: 32957583 PMCID: PMC7564317 DOI: 10.3390/microorganisms8091431] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew fungi (Erysiphales) are among the most common and important plant fungal pathogens. These fungi are obligate biotrophic parasites that attack nearly 10,000 species of angiosperms, including major crops, such as cereals and grapes. Although cultural and biological practices may reduce the risk of infection by powdery mildew, they do not provide sufficient protection. Therefore, in practice, chemical control, including the use of fungicides from multiple chemical groups, is the most effective tool for managing powdery mildew. Unfortunately, the risk of resistance development is high because typical spray programs include multiple applications per season. In addition, some of the most economically destructive species of powdery mildew fungi are considered to be high-risk pathogens and are able to develop resistance to several chemical classes within a few years. This situation has decreased the efficacy of the major fungicide classes, such as sterol demethylation inhibitors, quinone outside inhibitors and succinate dehydrogenase inhibitors, that are employed against powdery mildews. In this review, we present cases of reduction in sensitivity, development of resistance and failure of control by fungicides that have been or are being used to manage powdery mildew. In addition, the molecular mechanisms underlying resistance to fungicides are also outlined. Finally, a number of recommendations are provided to decrease the probability of resistance development when fungicides are employed.
Collapse
|
14
|
Ellingham O, David J, Culham A. Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia 2019; 111:798-812. [DOI: 10.1080/00275514.2019.1643644] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oliver Ellingham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - John David
- Royal Horticultural Society Garden Wisley, Woking, Surrey, GU23 6QB, UK
| | - Alastair Culham
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| |
Collapse
|
15
|
Vielba-Fernández A, de Vicente A, Pérez-García A, Fernández-Ortuño D. Monitoring Methyl Benzimidazole Carbamate-Resistant Isolates of the Cucurbit Powdery Mildew Pathogen, Podosphaera xanthii, Using Loop-Mediated Isothermal Amplification. PLANT DISEASE 2019; 103:1515-1524. [PMID: 31059385 DOI: 10.1094/pdis-12-18-2256-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most economically important diseases affecting cucurbit crops in Spain. Currently, chemical control offers the most efficient management of the disease; however, P. xanthii isolates resistant to multiple classes of site-specific fungicides have been reported in the Spanish cucurbit powdery mildew population. In previous studies, resistance to the fungicides known as methyl benzimidazole carbamates (MBCs) was found to be caused by the amino acid substitution E198A on β-tubulin. To detect MBC-resistant isolates in a faster, more efficient, and more specific way than the traditional methods used to date, a loop-mediated isothermal amplification (LAMP) system was developed. In this study, three sets of LAMP primers were designed. One set was designed for the detection of the wild-type allele and two sets were designed for the E198A amino acid change. Positive results were only obtained with both mutant sets; however, LAMP reaction conditions were only optimized with primer set 2, which was selected for optimal detection of the E198A amino acid change in P. xanthii-resistant isolates, along with the optimal temperature and duration parameters of 65°C for 75 min, respectively. The hydroxynaphthol blue (HNB) metal indicator was used for quick visualization of results through the color change from violet to sky blue when the amplification was positive. HNB was added before the amplification to avoid opening the lids, thus decreasing the probability of contamination. To confirm that the amplified product corresponded to the β-tubulin gene, the LAMP product was digested with the enzyme LweI and sequenced. Our results show that the LAMP technique is a specific and reproducible method that could be used for monitoring MBC resistance of P. xanthii directly in the field.
Collapse
Affiliation(s)
- Alejandra Vielba-Fernández
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea, "La Mayora" Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea, "La Mayora" Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea, "La Mayora" Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain
| | - Dolores Fernández-Ortuño
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea, "La Mayora" Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
16
|
Martínez-Cruz J, Romero D, de la Torre FN, Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A. The Functional Characterization of Podosphaera xanthii Candidate Effector Genes Reveals Novel Target Functions for Fungal Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:914-931. [PMID: 29513627 DOI: 10.1094/mpmi-12-17-0318-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Diego Romero
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Fernando N de la Torre
- 2 Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and
| | - Dolores Fernández-Ortuño
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Juan A Torés
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Antonio de Vicente
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
17
|
Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci Rep 2018; 8:7161. [PMID: 29740047 PMCID: PMC5940828 DOI: 10.1038/s41598-018-25336-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
Methyl benzimidazole carbamate (MBC) fungicides are fungicidal compounds that exert their biological activities by preventing cell division through the inhibition of tubulin polymerization, which is the major component of microtubules. Several mutations in the β-tubulin gene contribute to MBC resistance, the most common and significant of which occur at residues 198 and 200. Despite nearly 50 years of agricultural use, the binding site of MBCs and the precise mechanism by which those mutations affect fungicide efficacy have not been determined. The aim of this work was to clarify the mode of action and the mechanism of resistance to MBC fungicides in Podosphaera xanthii, the primary causal agent of cucurbit powdery mildew, using a combination of biochemical, biophysical and computational approaches. The results allow us to propose an MBC binding site in β-tubulin that lies close to the GTP binding site and does not include residue 198 involved in MBC resistance.
Collapse
|
18
|
Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. THE NEW PHYTOLOGIST 2017; 213:1961-1973. [PMID: 27864969 DOI: 10.1111/nph.14297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| |
Collapse
|
19
|
Hawkins NJ, Fraaije BA. Predicting Resistance by Mutagenesis: Lessons from 45 Years of MBC Resistance. Front Microbiol 2016; 7:1814. [PMID: 27895632 PMCID: PMC5108816 DOI: 10.3389/fmicb.2016.01814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
When a new fungicide class is introduced, it is useful to anticipate the resistance risk in advance, attempting to predict both risk level and potential mechanisms. One tool for the prediction of resistance risk is laboratory selection for resistance, with the mutational supply increased through UV or chemical mutagenesis. This enables resistance to emerge more rapidly than in the field, but may produce mutations that would not emerge under field conditions. The methyl benzimidazole carbamates (MBCs) were the first systemic single-site agricultural fungicides, and the first fungicides affected by rapid evolution of target-site resistance. MBC resistance has now been reported in over 90 plant pathogens in the field, and laboratory mutants have been studied in nearly 30 species. The most common field mutations, including β-tubulin E198A/K/G, F200Y and L240F, have all been identified in laboratory mutants. However, of 28 mutations identified in laboratory mutants, only nine have been reported in the field. Therefore, the predictive value of mutagenesis studies would be increased by understanding which mutations are likely to emerge in the field. Our review of the literature indicates that mutations with high resistance factors, and those found in multiple species, are more likely to be reported in the field. However, there are many exceptions, possibly due to fitness penalties. Whether a mutation occurred in the same species appears less relevant, perhaps because β-tubulin is highly conserved so functional constraints are similar across all species. Predictability of mutations in other target sites will depend on the level and conservation of constraints.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Biological Chemistry and Crop Protection, Rothamsted ResearchHarpenden, UK
| | | |
Collapse
|
20
|
Vela-Corcía D, Bautista R, de Vicente A, Spanu PD, Pérez-García A. De novo Analysis of the Epiphytic Transcriptome of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii and Identification of Candidate Secreted Effector Proteins. PLoS One 2016; 11:e0163379. [PMID: 27711117 PMCID: PMC5053433 DOI: 10.1371/journal.pone.0163379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
The cucurbit powdery mildew fungus Podosphaera xanthii is a major limiting factor for cucurbit production worldwide. Despite the fungus’s agronomic and economic importance, very little is known about fundamental aspects of P. xanthii biology, such as obligate biotrophy or pathogenesis. To design more durable control strategies, genomic information about P. xanthii is needed. Powdery mildews are fungal pathogens with large genomes compared with those of other fungi, which contain vast amounts of repetitive DNA sequences, much of which is composed of retrotransposons. To reduce genome complexity, in this work we aimed to obtain and analyse the epiphytic transcriptome of P. xanthii as a starting point for genomic research. Total RNA was isolated from epiphytic fungal material, and the corresponding cDNA library was sequenced using a 454 GS FLX platform. Over 676,562 reads were obtained and assembled into 37,241 contigs. Annotation data identified 8,798 putative genes with different orthologues. As described for other powdery mildew fungi, a similar set of missing core ascomycete genes was found, which may explain obligate biotrophy. To gain insight into the plant-pathogen relationships, special attention was focused on the analysis of the secretome. After this analysis, 137 putative secreted proteins were identified, including 53 candidate secreted effector proteins (CSEPs). Consistent with a putative role in pathogenesis, the expression profile observed for some of these CSEPs showed expression maxima at the beginning of the infection process at 24 h after inoculation, when the primary appressoria are mostly formed. Our data mark the onset of genomics research into this very important pathogen of cucurbits and shed some light on the intimate relationship between this pathogen and its host plant.
Collapse
Affiliation(s)
- David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM−UMA−CSIC), Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Edificio de Bioinnovación, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM−UMA−CSIC), Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Pietro D. Spanu
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM−UMA−CSIC), Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
- * E-mail:
| |
Collapse
|
21
|
Fujimura M, Banno S, Kamei M, Ishigami Y, Tsukada Y. Detection and monitoring of fungicide resistance in plant pathogens using pyrosequencing. ACTA ACUST UNITED AC 2016. [DOI: 10.1584/jpestics.w15-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shinpei Banno
- Japan Plant Protection Association, Yamanashi Experiment Station
| | - Masayuki Kamei
- The University of Georgia, Department of Microbiology, Athens
| | | | | |
Collapse
|
22
|
Bellón-Gómez D, Vela-Corcía D, Pérez-García A, Torés JA. Sensitivity of Podosphaera xanthii populations to anti-powdery-mildew fungicides in Spain. PEST MANAGEMENT SCIENCE 2015; 71:1407-13. [PMID: 25418926 DOI: 10.1002/ps.3943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cucurbit powdery mildew caused by Podosphaera xanthii limits crop production in Spain, where disease control is largely dependent on fungicides. In previous studies, high levels of resistance to QoI and DMI fungicides were documented in south-central Spain. The aim of this study was to investigate the sensitivity of P. xanthii populations to other fungicides and to provide tools for improved disease management. RESULTS Using a leaf-disc assay, sensitivity to thiophanate-methyl, bupirimate and quinoxyfen of 50 isolates of P. xanthii was analysed to determine discriminatory concentrations between sensitive and resistant isolates. With the exception of thiophanate-methyl, no clearly different groups of isolates could be identified, and as a result, discriminatory concentrations were established on the basis of the maximum fungicide field application rate. Subsequently, a survey of P. xanthii resistance to these fungicides was carried out by testing a collection of 237 isolates obtained during the 2002-2011 cucurbit growing seasons. This analysis revealed very high levels of resistance to thiophanate-methyl (95%). By contrast, no resistance to bupirimate and quinoxyfen was found. CONCLUSION Results suggest that thiophanate-methyl has become completely ineffective for controlling cucurbit powdery mildew in Spain. By contrast, bupirimate and quinoxyfen remain as very effective tools for cucurbit powdery mildew management. © 2014 Society of Chemical Industry.
Collapse
Affiliation(s)
- Davinia Bellón-Gómez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', Algarrobo-Costa, Málaga, Spain
| | - David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Juan A Torés
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
23
|
Genetic diversity analysis of the cucurbit powdery mildew fungus Podosphaera xanthii suggests a clonal population structure. Fungal Biol 2015; 119:791-801. [DOI: 10.1016/j.funbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
|
24
|
Vela-Corcía D, Romero D, Torés JA, De Vicente A, Pérez-García A. Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiol 2015. [PMID: 25651833 DOI: 10.1186/s12866-014-0338-338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Powdery mildew diseases are a major phytosanitary issue causing important yield and economic losses in agronomic, horticultural and ornamental crops. Powdery mildew fungi are obligate biotrophic parasites unable to grow on culture media, a fact that has significantly limited their genetic manipulation. In this work, we report a protocol based on the electroporation of fungal conidia, for the transient transformation of Podosphaera fusca (synonym Podosphaera xanthii), the main causal agent of cucurbit powdery mildew. RESULTS To introduce DNA into P. xanthii conidia, we applied two square-wave pulses of 1.7 kV for 1 ms with an interval of 5 s. We tested these conditions with several plasmids bearing as selective markers hygromycin B resistance (hph), carbendazim resistance (TUB2) or GFP (gfp) under control of endogenous regulatory elements from Aspergillus nidulans, Neurospora crassa or P. xanthii to drive their expression. An in planta selection procedure using the MBC fungicide carbendazim permitted the propagation of transformants onto zucchini cotyledons and avoided the phytotoxicity associated with hygromycin B. CONCLUSION This is the first report on the transformation of P. xanthii and the transformation of powdery mildew fungi using electroporation. Although the transformants are transient, this represents a feasible method for the genetic manipulation of this important group of plant pathogens.
Collapse
Affiliation(s)
- David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Juan Antonio Torés
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| | - Antonio De Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| |
Collapse
|
25
|
Vela-Corcía D, Romero D, Torés JA, De Vicente A, Pérez-García A. Transient transformation of Podosphaera xanthii by electroporation of conidia. BMC Microbiol 2015; 15:20. [PMID: 25651833 PMCID: PMC4328038 DOI: 10.1186/s12866-014-0338-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Background Powdery mildew diseases are a major phytosanitary issue causing important yield and economic losses in agronomic, horticultural and ornamental crops. Powdery mildew fungi are obligate biotrophic parasites unable to grow on culture media, a fact that has significantly limited their genetic manipulation. In this work, we report a protocol based on the electroporation of fungal conidia, for the transient transformation of Podosphaera fusca (synonym Podosphaera xanthii), the main causal agent of cucurbit powdery mildew. Results To introduce DNA into P. xanthii conidia, we applied two square-wave pulses of 1.7 kV for 1 ms with an interval of 5 s. We tested these conditions with several plasmids bearing as selective markers hygromycin B resistance (hph), carbendazim resistance (TUB2) or GFP (gfp) under control of endogenous regulatory elements from Aspergillus nidulans, Neurospora crassa or P. xanthii to drive their expression. An in planta selection procedure using the MBC fungicide carbendazim permitted the propagation of transformants onto zucchini cotyledons and avoided the phytotoxicity associated with hygromycin B. Conclusion This is the first report on the transformation of P. xanthii and the transformation of powdery mildew fungi using electroporation. Although the transformants are transient, this represents a feasible method for the genetic manipulation of this important group of plant pathogens.
Collapse
Affiliation(s)
- David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Juan Antonio Torés
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| | - Antonio De Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| |
Collapse
|