1
|
Díaz-Navarrete P, Dantagnan P, Henriquez D, Soto R, Correa-Galeote D, Sáez-Arteaga A. Selenized non-Saccharomyces yeasts and their potential use in fish feed. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1879-1894. [PMID: 38630161 DOI: 10.1007/s10695-024-01340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/26/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) is a vital trace element, essential for growth and other biological functions in fish. Its significance lies in its role as a fundamental component of selenoproteins, which are crucial for optimal functioning of the organism. The inclusion of Se in the diets of farmed animals, including fish, has proved invaluable in mitigating the challenges arising from elemental deficiencies experienced in captivity conditions due to limitations in the content of fishmeal. Supplementing diets with Se enhances physiological responses, particularly mitigates the effects of the continuous presence of environmental stress factors. Organic Se has been shown to have higher absorption rates and a greater impact on bioavailability and overall health than inorganic forms. A characteristic feature of yeasts is their rapid proliferation and growth, marked by efficient mineral assimilation. Most of the selenized yeasts currently available in the market, and used predominantly in animal production and aquaculture, are based on Saccharomyces cerevisiae, which contains selenomethionine (Se-Met). The object of this review is to highlight the importance of selenized yeasts. In addition, it presents metabolic and productive aspects of other yeast genera that are important potential sources of organic selenium. Some yeast strains discussed produce metabolites of interest such as lipids, pigments, and amino acids, which could have applications in aquaculture and further enrich their usefulness.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile.
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.
| | - Patricio Dantagnan
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Daniela Henriquez
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | - Robinson Soto
- Departamento de Procesos industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, Granada, España
| | - Alberto Sáez-Arteaga
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.
- Centro de Investigación, Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco, Chile.
| |
Collapse
|
2
|
Díaz-Navarrete P, Sáez-Arteaga A, Marileo L, Alors D, Correa-Galeote D, Dantagnan P. Enhancing Selenium Accumulation in Rhodotorula mucilaginosa Strain 6S Using a Proteomic Approach for Aquafeed Development. Biomolecules 2024; 14:629. [PMID: 38927033 PMCID: PMC11201420 DOI: 10.3390/biom14060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Alberto Sáez-Arteaga
- Centro de Investigación Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - David Alors
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18012 Granada, Spain;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
3
|
Sunder S, Gupta A, Kataria R, Ruhal R. Potential of Rhodosporidium toruloides for Fatty Acids Production Using Lignocellulose Biomass. Appl Biochem Biotechnol 2024; 196:2881-2900. [PMID: 37615852 DOI: 10.1007/s12010-023-04681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Microbial lipids are ideal for developing liquid biofuels because of their sustainability and no dependence on food crops. Especially the bioprocess for microbial lipids may be made economical by using sustainable approaches, e.g., lignocellulose-based carbon sources. This demand led to a search for ideal microorganisms with the ability to utilize efficiently biomass into value-added products. Rhodosporidium toruloides species belongs to the family of oleaginous (OG) yeast, which aggregates up to 70% of its biomass to produce fatty acids which can be converted to a variety of biofuels. R. toruloides is extremely adaptable to different types of feedstocks. Among all feedstock, a lot of effort is going on to develop a bioprocess of fatty acid production from lignocellulose biomass. The lignocellulose biomass is pretreated using harsh conditions of acid, alkali, and other which leads to the generation of a variety of sugars and toxic compounds. Thus, so obtained lignocellulose hydrolysate may have conditions of different pH, variable carbon and nitrogen ratios, and other non-optimum conditions. Accordingly, a detailed investigation is required for molecular level metabolism of R. toruloides in response to the hydrolysate for producing desired biochemicals like fatty acids. The present review focuses on numerous elements and obstacles, including metabolism, biofuel production, cultivation parameters, and genetic alteration of mutants in extracting fatty acids from lignocellulosic materials utilizing Rhodosporidium spp. This review provides useful information on the research working to develop processes for lignocellulose biomass using oleaginous yeast.
Collapse
Affiliation(s)
- Sushant Sunder
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Anshul Gupta
- Department of Biotechnology, Delhi Technological University, New Delhi, India
- Department of Physics, Technische Universität München, Munich, Germany
| | - Rashmi Kataria
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| | - Rohit Ruhal
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Timotheo CA, Fabricio MF, Ayub MAZ, Valente P. Evaluation of cell disruption methods in the oleaginous yeasts Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A for microbial oil extraction. AN ACAD BRAS CIENC 2023; 95:e20191256. [PMID: 38055604 DOI: 10.1590/0001-3765202320191256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/08/2023] Open
Abstract
The interest for oleaginous yeasts has grown significantly in the last three decades, mainly due to their potential use as a renewable source of microbial oil or single cell oils (SCOs). However, the methodologies for cell disruption to obtain the microbial oil are considered critical and determinant for a large-scale production. Therefore, this work aimed to evaluate different methods for cell wall disruption for the lipid extraction of Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A. The two strains were separately cultivated in 5 L batch fermenters for 120 hours, at 26 ºC and 400 rpm. Three different lipid extraction processes using Turrax homogenizer, Ultrasonicator and Braun homogenizer combined with bead milling were applied in wet, oven-dried, and freeze-dried biomass of both strains. The treatment with the highest percentage of disrupted cells and highest oil yield was the ultrasonication of oven-dried biomass (37-40% lipid content for both strains). The fact that our results point to one best extraction strategy for two different yeast strains, belonging to different species, is a great news towards the development of a unified technique that could be applied at industrial plants.
Collapse
Affiliation(s)
- Carina A Timotheo
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Micologia, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Mariana F Fabricio
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia, Laboratório de Biotecnologia e Engenharia Bioquímica, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Marco Antônio Z Ayub
- Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia, Laboratório de Biotecnologia e Engenharia Bioquímica, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Patricia Valente
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Micologia, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Vilela N, Tomazetto G, Gonçalves TA, Sodré V, Persinoti GF, Moraes EC, de Oliveira AHC, da Silva SN, Fill TP, Damasio A, Squina FM. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:5. [PMID: 36624471 PMCID: PMC9830802 DOI: 10.1186/s13068-022-02251-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.
Collapse
Affiliation(s)
- Nathália Vilela
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil ,grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Geizecler Tomazetto
- grid.7048.b0000 0001 1956 2722Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Thiago Augusto Gonçalves
- grid.4989.c0000 0001 2348 0746Photobiocatalysis Unit—CPBL, and Biomass Transformation Lab—BTL, École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Brussels, Belgium
| | - Victoria Sodré
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, UK
| | - Gabriela Felix Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Eduardo Cruz Moraes
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- grid.11899.380000 0004 1937 0722Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Stephanie Nemesio da Silva
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Taícia Pacheco Fill
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Damasio
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabio Marcio Squina
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
7
|
Sapsirisuk S, Polburee P, Lorliam W, Limtong S. Discovery of Oleaginous Yeast from Mountain Forest Soil in Thailand. J Fungi (Basel) 2022; 8:1100. [PMID: 36294665 PMCID: PMC9605381 DOI: 10.3390/jof8101100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/04/2023] Open
Abstract
As an interesting alternative microbial platform for the sustainable synthesis of oleochemical building blocks and biofuels, oleaginous yeasts are increasing in both quantity and diversity. In this study, oleaginous yeast species from northern Thailand were discovered to add to the topology. A total of 127 yeast strains were isolated from 22 forest soil samples collected from mountainous areas. They were identified by an analysis of the D1/D2 domain of the large subunit rRNA (LSU rRNA) gene sequences to be 13 species. The most frequently isolated species were Lipomyces tetrasporus and Lipomyces starkeyi. Based on the cellular lipid content determination, 78 strains of ten yeast species, and two potential new yeast that which accumulated over 20% of dry biomass, were found to be oleaginous yeast strains. Among the oleaginous species detected, Papiliotrema terrestris and Papiliotrema flavescens have never been reported as oleaginous yeast before. In addition, none of the species in the genera Piskurozyma and Hannaella were found to be oleaginous yeast. L. tetrasporus SWU-NGP 2-5 accumulated the highest lipid content of 74.26% dry biomass, whereas Lipomyces mesembrius SWU-NGP 14-6 revealed the highest lipid quantity at 5.20 ± 0.03 g L-1. The fatty acid profiles of the selected oleaginous yeasts varied depending on the strain and suitability for biodiesel production.
Collapse
Affiliation(s)
- Sirawich Sapsirisuk
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pirapan Polburee
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center, Kasetsart University, Bangkok 10900, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
8
|
Papiliotrema laurentii: general features and biotechnological applications. Appl Microbiol Biotechnol 2022; 106:6963-6976. [PMID: 36197457 DOI: 10.1007/s00253-022-12208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Papiliotrema laurentii, previously classified as Cryptococcus laurentii, is an oleaginous yeast that has been isolated from soil, plants, and agricultural and industrial residues. This variety of habitats reflects the diversity of carbon sources that it can metabolize, including monosaccharides, oligosaccharides, glycerol, organic acids, and oils. Compared to other oleaginous yeasts, such as Yarrowia lipolytica and Rhodotorula toruloides, there is little information regarding its genetic and physiological characteristics. From a biotechnological point of view, P. laurentii can produce surfactants, enzymes, and high concentrations of lipids, which can be used as feedstock for fatty acid-derived products. Moreover, it can be applied for the biocontrol of phytopathogenic fungi, contributing to quality maintenance in post- and pre-harvest fruits. It can also improve mycorrhizal colonization, nitrogen nutrition, and plant growth. P. laurentii is also capable of degrading polyester and diesel derivatives and acting in the bioremediation of heavy metals. In this review, we present the current knowledge about the basic and applied aspects of P. laurentii, underscoring its biotechnological potential and future perspectives. KEY POINTS: • The physiological characteristics of P. laurentii confer a wide range of biotechnological applications. • The regulation of the acetyl-CoA carboxylase in P. laurentii is different from most other oleaginous yeasts. • The GEM is a valuable tool to guide the construction of engineered P. laurentii strains with improved features for bio-based products.
Collapse
|
9
|
Li M, Alotaibi MKH, Li L, Abomohra AEF. Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. BIOMASS AND BIOENERGY 2022; 159:106410. [DOI: 10.1016/j.biombioe.2022.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
|
11
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
12
|
Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv 2021; 53:107722. [PMID: 33631187 DOI: 10.1016/j.biotechadv.2021.107722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
With the increasing demand to develop a renewable and sustainable biolipid feedstock, several species of non-conventional oleaginous yeasts are being explored. Apart from the platform oleaginous yeast Yarrowia lipolytica, the understanding of metabolic pathway and, therefore, exploiting the engineering prospects of most of the oleaginous species are still in infancy. However, in the past few years, enormous efforts have been invested in Rhodotorula, Rhodosporidium, Lipomyces, Trichosporon, and Candida genera of yeasts among others, with the rapid advancement of engineering strategies, significant improvement in genetic tools and techniques, generation of extensive bioinformatics and omics data. In this review, we have collated these recent progresses to make a detailed and insightful summary of the major developments in metabolic engineering of the prominent oleaginous yeast species. Such a comprehensive overview would be a useful resource for future strain improvement and metabolic engineering studies for enhanced production of lipid and lipid-derived chemicals in oleaginous yeasts.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohor Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
13
|
Gosalawit C, Imsoonthornruksa S, Gilroyed BH, Mcnea L, Boontawan A, Ketudat-Cairns M. The potential of the oleaginous yeast Rhodotorula paludigena CM33 to produce biolipids. J Biotechnol 2021; 329:56-64. [PMID: 33549673 DOI: 10.1016/j.jbiotec.2021.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Sixty-seven yeast strains were isolated from castor beans then their endogenous lipids were stained by Nile Red (NR) fluorescence dye, and flow cytometry was used to obtain a strain with a high relative mean fluorescence intensity (MFI) value. The highest MFI value was obtained for strain CM33, which produced a maximum lipid content of 20.8 % dry cell weight (DCW). Based on the sequence of the ITS-5.8S-ITS rDNA and D1/D2 26S rDNA regions, CM33 showed 99 % identity with Rhodotorula paludigena. The potential of CM33 to assimilate various carbon sources was examined by growth on minimal media using glucose, glycerol, sucrose or xylose. CM33 was grown in glucose-based medium for 96 h and exhibited a maximum lipid content of 23.9 % DCW. Furthermore, when cells were cultured on molasses waste, their biomass, lipid content and lipid concentration reached 16.5 g/L, 37.1 % DCW and 6.1 g/L, respectively. These results demonstrated the potential of R. paludigena CM33 to contribute to a value-added carbon chain by converting renewable waste materials for biolipid production.
Collapse
Affiliation(s)
- Chotika Gosalawit
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Sumeth Imsoonthornruksa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Brandon H Gilroyed
- School of Environmental Sciences, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, Ontario, N0P 2C0, Canada.
| | - Lucas Mcnea
- School of Environmental Sciences, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, Ontario, N0P 2C0, Canada.
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-district, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
14
|
Single Cell Oil Production by Oleaginous Yeasts Grown in Synthetic and Waste-Derived Volatile Fatty Acids. Microorganisms 2020; 8:microorganisms8111809. [PMID: 33213005 PMCID: PMC7698568 DOI: 10.3390/microorganisms8111809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Four yeast isolates from the species—Apiotrichum brassicae, Candida tropicalis, Metschnikowia pulcherrima, and Pichia kudriavzevii—previously selected by their oleaginous character and growth flexibility in different carbon sources, were tested for their capacity to convert volatile fatty acids into lipids, in the form of single cell oils. Growth, lipid yields, volatile fatty acids consumption, and long-chain fatty acid profiles were evaluated in media supplemented with seven different volatile fatty acids (acetic, butyric, propionic, isobutyric, valeric, isovaleric, and caproic), and also in a dark fermentation effluent filtrate. Yeasts A. brassicae and P. kudriavzevii attained lipid productivities of more than 40% (w/w), mainly composed of oleic (>40%), palmitic (20%), and stearic (20%) acids, both in synthetic media and in the waste-derived effluent filtrate. These isolates may be potential candidates for single cell oil production in larger scale applications by using alternative carbon sources, combining economic and environmental benefits.
Collapse
|
15
|
Vieira NM, Dos Santos RCV, Germano VKDC, Ventorim RZ, de Almeida ELM, da Silveira FA, Ribeiro Júnior JI, da Silveira WB. Isolation of a new Papiliotrema laurentii strain that displays capacity to achieve high lipid content from xylose. 3 Biotech 2020; 10:382. [PMID: 32802724 DOI: 10.1007/s13205-020-02373-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil (Caparaó and Serra dos Órgãos) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as Papiliotrema laurentii (UFV-1 and UFV-2). Of the two, P. laurentii UFV-1 was selected as the best lipid producer. Under unoptimized conditions, lipid production by P. laurentii UFV-1 was higher in glucose than in xylose. To improve its lipid production from xylose, we applied response surface methodology (RSM) with a face-centered central composite design (CCF). We evaluated the effects of agitation rate, initial cell biomass (OD600), carbon/nitrogen ratio (C/N ratio) and pH on lipid production. P. laurentii UFV-1 recorded the highest lipid content, 63.5% (w/w) of the cell dry mass, under the following conditions: C/N ratio = 100:1, pH value = 7.0, initial OD600 = 0.8 and agitation = 300 rpm. Under these optimized conditions, biomass, lipid titer and volumetric lipid productivity were 9.31 g/L, 5.90 g/L and 0.082 g/L.h, respectively. Additionally, we determined the fatty acid composition of P. laurentii UFV-1 as follows: C14:0 (0.5%), C16:0 (28.4-29.4%), C16:1 (0.2%), C18:0 (9.5-11%), C18:1 (58.6-60.5%), and C20:0 (0.7-0.8%). Based on this composition, the predicted properties of biodiesel showed that P. laurentii UFV-1 oil is suitable for use as feedstock in biodiesel production.
Collapse
Affiliation(s)
- Nívea Moreira Vieira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Raquel Cristina Vieira Dos Santos
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Vanessa Kely de Castro Germano
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Rafaela Zandonade Ventorim
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Eduardo Luís Menezes de Almeida
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Fernando Augusto da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | | | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| |
Collapse
|
16
|
Polyunsaturated fatty acids-enriched lipid from reduced sugar alcohol mannitol by marine yeast Rhodosporidiobolus fluvialis Y2. Biochem Biophys Res Commun 2020; 526:1138-1142. [PMID: 32317185 DOI: 10.1016/j.bbrc.2020.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 11/21/2022]
Abstract
Brown macroalgae is a promising marine biomass for the production of bioethanol and biodiesel fuels. Here we investigate the biochemical processes used by marine oleaginous yeast for assimilating the major carbohydrate found in brown macroalgae. Briefly, yeast Rhodosporidiobolus fluvialis strain Y2 was isolated from seawater and grown in minimal medium containing reduced sugar alcohol mannitol as the sole carbon source with a salinity comparable to seawater. Conditions limiting nitrogen were used to facilitate lipid synthesis. R. fluvialis Y2 yielded 55.1% (w/w) and 39.1% (w/w) of lipids, per dry cell weight, from mannitol in the absence and presence of salinity, respectively. Furthermore, mannitol, as a sugar source, led to an increase in the composition of polyunsaturated fatty acids, linoleic acid (C18:2) and linolenic acid (C18:3), compared to glucose. This suggests that oxidation of mannitol leads to the activation of NADH-dependent fatty acid desaturases in R. fluvialis Y2. Such fatty acid composition may contribute to the cold-flow properties of biodiesel fuels. Our results identified a salt-tolerant oleaginous yeast species with unique metabolic traits, demonstrating a key role as a decomposer in the global carbon cycle through marine ecosystems. This is the first study on mannitol-induced synthesis of lipids enriched with polyunsaturated fatty acids by marine yeast.
Collapse
|
17
|
Kanpiengjai A, Khanongnuch C, Lumyong S, Haltrich D, Nguyen TH, Kittibunchakul S. Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2. Microb Cell Fact 2020; 19:95. [PMID: 32334591 PMCID: PMC7183711 DOI: 10.1186/s12934-020-01353-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/18/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Gallic acid has received a significant amount of interest for its biological properties. Thus, there have been recent attempts to apply this substance in various industries and in particular the feed industry. As opposed to yeasts, fungi and bacteria and their tannases have been well documented for their potential bioconversion and specifically for the biotransformation of tannic acid to gallic acid. In this research, Sporidiobolus ruineniae A45.2 is introduced as a newly pigment-producing and tannase-producing yeast that has gained great interest for its use as an additive in animal feed. However, there is a lack of information on the efficacy of gallic acid production from tannic acid and the relevant tannase properties. The objective of this research study is to optimize the medium composition and conditions for the co-production of gallic acid from tannic acid and tannase with a focus on developing an integrated production strategy for its application as a feed additive. RESULTS Tannase produced by S. ruineniae A45.2 has been classified as a cell-associated tannase (CAT). Co-production of gallic acid obtained from tannic acid and CAT by S. ruineniae A45.2 was optimized using response surface methodology and then validated with the synthesis of 11.2 g/L gallic acid from 12.3 g/L tannic acid and the production of 31.1 mU/mL CAT after 48 h of cultivation in a 1-L stirred tank fermenter. Tannase was isolated from the cell wall, purified and characterized in comparison with its native form (CAT). The purified enzyme (PT) revealed the same range of pH and temperature optima (pH 7) as CAT but was distinctively less stable. Specifically, CAT was stable at up to 70 °C for 60 min, and active under its optimal conditions (40 °C) at up to 8 runs. CONCLUSION Co-production of gallic acid and CAT is considered an integrated and green production strategy. S. ruineniae biomass could be promoted as an alternative source of carotenoids and tannase. Thus, the biomass, in combination with gallic acid that was formed in the fermentation medium, could be directly used as a feed additive. On the other hand, gallic acid could be isolated and purified for food and pharmaceutical applications. This paper is the first of its kind to report that the CAT obtained from yeast can be resistant to high temperatures of up to 70 °C.
Collapse
Affiliation(s)
- Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Faculty of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Faculty of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Suwapat Kittibunchakul
- Food Biotechnology Laboratory, Faculty of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, 1190, Vienna, Austria
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Rd., Nakhon Pathom, 73170, Thailand
| |
Collapse
|
18
|
Fabricio MF, Valente P, Záchia Ayub MA. Oleaginous yeast Meyerozyma guilliermondii shows fermentative metabolism of sugars in the biosynthesis of ethanol and converts raw glycerol and cheese whey permeate into polyunsaturated fatty acids. Biotechnol Prog 2019; 35:e2895. [PMID: 31425639 DOI: 10.1002/btpr.2895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 11/05/2022]
Abstract
We studied the biotechnological potential of the recently isolated yeast Meyerozyma guilliermondii BI281A to produce polyunsaturated fatty acids and ethanol, comparing products yields using glucose, raw glycerol from biodiesel synthesis, or whey permeate as substrates. The yeast metabolism was evaluated for different C/N ratios (100:1 and 50:1). Results found that M. guilliermondii BI281A was able to assimilate all tested substrates, and the most efficient conversion obtained was observed using raw glycerol as carbon source (C/N ratio 50:1), concerning biomass formation (5.67 g·L-1 ) and lipid production (1.04 g·L-1 ), representing 18% of dry cell weight. Bioreactors experiments under pH and aeration-controlled conditions were conducted. Obtained fatty acids were composed of ~67% of unsaturated fatty acids, distributed as palmitoleic acid (C16:1 , 9.4%), oleic acid (C18:1 , 47.2%), linoleic acid (C18:2 n-6 , 9.6%), and linolenic acid (C18:3 n-3 , 1.3%). Showing fermentative metabolism, which is unusual for oleaginous yeasts, M. guilliermondii produced 13.7 g·L-1 of ethanol (yields of 0.27) when growing on glucose medium. These results suggest the promising use of this uncommonly studied yeast to produce unsaturated fatty acids and ethanol using cheap agro-industrial residues as substrates in bioprocess.
Collapse
Affiliation(s)
- Mariana Fensterseifer Fabricio
- Biotechnology Laboratory (BiotecLab) of Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Valente
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology Laboratory (BiotecLab) of Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Hoondee P, Wattanagonniyom T, Weeraphan T, Tanasupawat S, Savarajara A. Occurrence of oleaginous yeast from mangrove forest in Thailand. World J Microbiol Biotechnol 2019; 35:108. [DOI: 10.1007/s11274-019-2680-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
|
20
|
Thomas S, Sanya DRA, Fouchard F, Nguyen HV, Kunze G, Neuvéglise C, Crutz-Le Coq AM. Blastobotrys adeninivorans and B. raffinosifermentans, two sibling yeast species which accumulate lipids at elevated temperatures and from diverse sugars. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:154. [PMID: 31249618 PMCID: PMC6587252 DOI: 10.1186/s13068-019-1492-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the context of sustainable development, yeast are one class of microorganisms foreseen for the production of oil from diverse renewable feedstocks, in particular those that do not compete with the food supply. However, their use in bulk production, such as for the production of biodiesel, is still not cost effective, partly due to the possible poor use of desired substrates or poor robustness in the practical bioconversion process. We investigated the natural capacity of Blastobotrys adeninivorans, a yeast already used in biotechnology, to store lipids under different conditions. RESULTS The genotyping of seven strains showed the species to actually be composed of two different groups, one that (including the well-known strain LS3) could be reassigned to Blastobotrys raffinosifermentans. We showed that, under nitrogen limitation, strains of both species can synthesize lipids to over 20% of their dry-cell weight during shake-flask cultivation in glucose or xylose medium for 96 h. In addition, organic acids were excreted into the medium. LS3, our best lipid-producing strain, could also accumulate lipids from exogenous oleic acid, up to 38.1 ± 1.6% of its dry-cell weight, and synthesize lipids from various sugar substrates, up to 36.6 ± 0.5% when growing in cellobiose. Both species, represented by LS3 and CBS 8244T, could grow with little filamentation in the lipogenic medium from 28 to 45 °C and reached lipid titers ranging from 1.76 ± 0.28 to 3.08 ± 0.49 g/L in flasks. Under these conditions, the maximum bioconversion yield (Y FA/S = 0.093 ± 0.017) was obtained with LS3 at 37 °C. The presence of genes for predicted subunits of an ATP citrate lyase in the genome of LS3 reinforces its oleaginous character. CONCLUSIONS Blastobotrys adeninivorans and B. raffinosifermentans, which are known to be xerotolerant and genetically-tractable, are promising biotechnological yeasts of the Saccharomycotina that could be further developed through genetic engineering for the production of microbial oil. To our knowledge, this is the first report of efficient lipid storage in yeast when cultivated at a temperature above 40 °C. This paves the way to help reducing costs through consolidated bioprocessing.
Collapse
Affiliation(s)
- Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Daniel R. A. Sanya
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Fouchard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Gatersleben, Germany
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
21
|
Pessôa MG, Vespermann KA, Paulino BN, Barcelos MC, Pastore GM, Molina G. Newly isolated microorganisms with potential application in biotechnology. Biotechnol Adv 2019; 37:319-339. [DOI: 10.1016/j.biotechadv.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
|
22
|
Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Xue SJ, Chi Z, Zhang Y, Li YF, Liu GL, Jiang H, Hu Z, Chi ZM. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol 2018; 38:1049-1060. [DOI: 10.1080/07388551.2018.1428167] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Si-Jia Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan-Feng Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Chen J, Yan S, Zhang X, Tyagi RD, Surampalli RY, Valéro JR. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:164-175. [PMID: 29097125 DOI: 10.1016/j.wasman.2017.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
In this study, crude, purified, and pure glycerol were used to cultivate Trichosporon oleaginosus for lipid production which was then used as feedstock of biodiesel production. The purified glycerol was obtained from crude glycerol by removing soap with addition of H3PO4 which converted soap to free fatty acids and then separated from the solution. The results showed that purified glycerol provided similar performance as pure glycerol in lipid accumulation; however, crude glycerol as carbon source had negatively impacted the lipid production of T. oleaginosus. Purified glycerol was later used to determine the optimal glycerol concentration for lipid production. The highest lipid yield 0.19g/g glycerol was obtained at 50g/L purified glycerol in which the biomass concentration and lipid content were 10.75g/L and 47% w/w, respectively. An energy gain of 4150.51MJ could be obtained with 1tonne of the crude glycerol employed for biodiesel production through the process proposed in this study. The biodiesel production cost estimated was 6.32US$/gal. Fatty acid profiles revealed that C16:0 and C18:1 were the major compounds of the biodiesel from the lipid produced by T. oleaginosus cultivated with crude and purified glycerol. The study found that purified glycerol was promising carbon source for biodiesel production.
Collapse
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China; INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Song Yan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | | | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - J R Valéro
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
25
|
Polburee P, Ohashi T, Tsai YY, Sumyai T, Lertwattanasakul N, Limtong S, Fujiyama K. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253. Microbiology (Reading) 2018; 164:1-10. [DOI: 10.1099/mic.0.000584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Pirapan Polburee
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Present address: Rattanakosin College for Sustainable Energy and Environment (RCSEE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom, Thailand
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Yung-Yu Tsai
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Thitinun Sumyai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Savitree Limtong
- The Royal Society of Thailand, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Qin L, Liu L, Zeng AP, Wei D. From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts. BIORESOURCE TECHNOLOGY 2017; 245:1507-1519. [PMID: 28642053 DOI: 10.1016/j.biortech.2017.05.163] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/23/2023]
Abstract
As new feedstock for biofuels, microbial oils have received worldwide attentions due to their environmentally-friendly characters. Microbial oil production based on low-cost raw materials is significantly attractive to the current biodiesel refinery industry. In terms of SCOs production, oleaginous yeast has numerous advantages over bacteria, molds and microalgae based on their high growth rate and lipid yield. Numerous efforts have been made on the competitive lipid production combining the use of cheap raw materials as substrates by yeasts. In this paper, we provided an overview of lipid metabolism in yeast cells. New advances using oleaginous yeast as a cell factory for high-value lipid production from various low-cost substrates are also reviewed, and the enhanced strategies based on synergistic effects of oleaginous yeast and microalgae in co-culture are discussed in details.
Collapse
Affiliation(s)
- Lei Qin
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China; Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lu Liu
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany
| | - Dong Wei
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China.
| |
Collapse
|
27
|
Wang Q, Cui Y, Sen B, Ma W, Zheng RL, Liu X, Wang G. Characterization and robust nature of newly isolated oleaginous marine yeast Rhodosporidium spp. from coastal water of Northern China. AMB Express 2017; 7:30. [PMID: 28144888 PMCID: PMC5302000 DOI: 10.1186/s13568-017-0329-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 01/09/2023] Open
Abstract
A total of ten marine yeast strains isolated from Bohai Sea, Northern China were identified to be members of three genera Rhodosporidium, Rhodotorula, and Cryptococcus. Two representative strains Rhodosporidium TJUWZ4 and Cryptococcus TJUWZA11 with high lipid content based on Nile red staining method were further characterized. A wide range of culture conditions (C and N sources, pH, temperature, salinity and C/N ratio) were tested to characterize the biomass and lipid production (yield and productivity) of these strains. Results indicated that Rhodosporidium TJUWZ4 was capable of achieving lipid yield up to 44% and 0.09 g/l-h productivity on glucose and peptone medium at pH 4, 20 °C, 30% salinity, and C/N 80. Three fatty acids, namely oleic acid (18:1), palmitic acid (C16:0) and linoleic acid (18:2) were the major intracellular fatty acids, which accounted for 90% of total lipids. With promising features for intracellular lipid accumulation, Rhodosporidium TJUWZ4 is a robust strain with great potentials for application in biodiesel production from renewable feedstocks.
Collapse
|
28
|
Ramírez-Castrillón M, Jaramillo-Garcia VP, Rosa PD, Landell MF, Vu D, Fabricio MF, Ayub MAZ, Robert V, Henriques JAP, Valente P. The Oleaginous Yeast Meyerozyma guilliermondii BI281A as a New Potential Biodiesel Feedstock: Selection and Lipid Production Optimization. Front Microbiol 2017; 8:1776. [PMID: 29018411 PMCID: PMC5614974 DOI: 10.3389/fmicb.2017.01776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
A high throughput screening (HTS) methodology for evaluation of cellular lipid content based on Nile red fluorescence reads using black background 96-wells test plates and a plate reader equipment allowed the rapid intracellular lipid estimation of strains from a Brazilian phylloplane yeast collection. A new oleaginous yeast, Meyerozyma guilliermondii BI281A, was selected, for which the gravimetric determination of total lipids relative to dry weight was 52.38% for glucose or 34.97% for pure glycerol. The lipid production was optimized obtaining 108 mg/L of neutral lipids using pure glycerol as carbon source, and the strain proved capable of accumulating oil using raw glycerol from a biodiesel refinery. The lipid profile showed monounsaturated fatty acids (MUFA) varying between 56 or 74% in pure or raw glycerol, respectively. M. guilliermondii BI281A bears potential as a new biodiesel feedstock.
Collapse
Affiliation(s)
- Mauricio Ramírez-Castrillón
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Research Group in Mycology (GIM), Research Center in Environmental Basic Sciences (CICBA), Faculty of Basic Sciences, Universidad Santiago de CaliCali, Colombia
| | - Victoria P Jaramillo-Garcia
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Priscila D Rosa
- Graduate Program in Medical Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | | | - Duong Vu
- Bioinformatics Research Group, Westerdijk Fungal Biodiversity InstituteUtrecht, Netherlands
| | - Mariana F Fabricio
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Marco A Z Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Vincent Robert
- Bioinformatics Research Group, Westerdijk Fungal Biodiversity InstituteUtrecht, Netherlands
| | - João A P Henriques
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Patricia Valente
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
29
|
Liu LP, Zong MH, Hu Y, Li N, Lou WY, Wu H. Efficient microbial oil production on crude glycerol by Lipomyces starkeyi AS 2.1560 and its kinetics. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Carota E, Crognale S, D'Annibale A, Gallo AM, Stazi SR, Petruccioli M. A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:554-560. [PMID: 28169024 DOI: 10.1016/j.scitotenv.2017.01.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1gL-1, respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9gL-1, respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged.
Collapse
Affiliation(s)
- Eleonora Carota
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Alessandro D'Annibale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy.
| | - Anna Maria Gallo
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Silvia Rita Stazi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| |
Collapse
|
31
|
Papanikolaou S, Kampisopoulou E, Blanchard F, Rondags E, Gardeli C, Koutinas AA, Chevalot I, Aggelis G. Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica
and Rhodosporidium toruloides. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600507] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seraphim Papanikolaou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - Eleni Kampisopoulou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Fabrice Blanchard
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - Emmanuel Rondags
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - Chryssavgi Gardeli
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Apostolis A. Koutinas
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - Isabelle Chevalot
- Laboratoire Réactions Génie des Procédés (LRGP-CNRS UMR 7274); Université de Lorraine; Vandoeuvre-lès-Nancy France
| | - George Aggelis
- Unit of Microbiology; Department of Biology; Division of Genetics, Cell, and Development Biology; University of Patras; Patras Greece
| |
Collapse
|
32
|
Poontawee R, Yongmanitchai W, Limtong S. Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Sara M, Brar SK, Blais JF. Lipid production by Yarrowia lipolytica grown on biodiesel-derived crude glycerol: optimization of growth parameters and their effects on the fermentation efficiency. RSC Adv 2016. [DOI: 10.1039/c6ra16382c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Yarrowia lipolytica, a well-known oleaginous strain for single cell oil (SCO) production was grown in nitrogen-limited flask cultures.
Collapse
Affiliation(s)
- Magdouli Sara
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)
- Université du Québec
- Québec
- Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)
- Université du Québec
- Québec
- Canada
| | - Jean François Blais
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement)
- Université du Québec
- Québec
- Canada
| |
Collapse
|