1
|
Mendoza-Mendoza A, Esquivel-Naranjo EU, Soth S, Whelan H, Alizadeh H, Echaide-Aquino JF, Kandula D, Hampton JG. Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1420068. [PMID: 38957597 PMCID: PMC11217547 DOI: 10.3389/fpls.2024.1420068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.
Collapse
Affiliation(s)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Helen Whelan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
2
|
Luo XC, Yu L, Xu SY, Ying SH, Feng MG. Photoreactivation Activities of Rad5, Rad16A and Rad16B Help Beauveria bassiana to Recover from Solar Ultraviolet Damage. J Fungi (Basel) 2024; 10:420. [PMID: 38921406 PMCID: PMC11205155 DOI: 10.3390/jof10060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the Rad7 homolog, Rad5 ortholog and two Rad16 paralogs (Rad16A/B) instituted an ability to help the insect-pathogenic fungus to recover from solar UVB damage through photoreactivation. The fungal lifecycle-related phenotypes were not altered in the absence of rad5, rad16A or rad16B, while severe defects in growth and conidiation were caused by the double deletion of rad16A and rad16B. Compared with the wild-type and complemented strains, the mutants showed differentially reduced activities regarding the resilience of UVB-impaired conidia at 25 °C through a 12-h incubation in a regime of visible light plus dark (L/D 3:9 h or 5:7 h for photoreactivation) or of full darkness (dark reactivation) mimicking a natural nighttime. The estimates of the median lethal UVB dose LD50 from the dark and L/D treatments revealed greater activities of Rad5 and Rad16B than of Rad16A and additive activities of Rad16A and Rad16B in either NER-dependent dark reactivation or photorepair-dependent photoreactivation. However, their dark reactivation activities were limited to recovering low UVB dose-impaired conidia but were unable to recover conidia impaired by sublethal and lethal UVB doses as did their photoreactivation activities at L/D 3:9 or 5:7, unless the night/dark time was doubled or further prolonged. Therefore, the anti-UV effects of Rad5, Rad16A and Rad16B in B. bassiana depend primarily on photoreactivation and are mechanistically distinct from those for their yeast homologs.
Collapse
Affiliation(s)
| | | | | | | | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (X.-C.L.); (L.Y.); (S.-Y.X.); (S.-H.Y.)
| |
Collapse
|
3
|
Feng MG. Recovery of insect-pathogenic fungi from solar UV damage: Molecular mechanisms and prospects. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:59-82. [PMID: 39389708 DOI: 10.1016/bs.aambs.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Molecular mechanisms underlying insect-pathogenic fungal tolerance to solar ultraviolet (UV) damage have been increasingly understood. This chapter reviews the methodology established to quantify fungal response to solar UV radiation, which consists of UVB and UVA, and characterize a pattern of the solar UV dose (damage) accumulated from sunrise to sunset on sunny summer days. An emphasis is placed on anti-UV mechanisms of fungal insect pathogens in comparison to those well documented in model yeast. Principles are discussed for properly timing the application of a fungal pesticide to improve pest control during summer months. Fungal UV tolerance depends on either nucleotide excision repair (NER) or photorepair of UV-induced DNA lesions to recover UV-impaired cells in the darkness or the light. NER is a slow process independent of light and depends on a large family of anti-UV radiation (RAD) proteins studied intensively in model yeast but rarely in non-yeast fungi. Photorepair is a rapid process that had long been considered to depend on only one or two photolyases in filamentous fungi. However, recent studies have greatly expanded a genetic/molecular basis for photorepair-dependent photoreactivation that serves as a primary anti-UV mechanism in insect-pathogenic fungi, in which photolyase regulators required for photorepair and multiple RAD homologs have higher or much higher photoreactivation activities than do photolyases. The NER activities of those homologs in dark reactivation cannot recover the severe UV damage recovered by their activities in photoreactivation. Future studies are expected to further expand the genetic/molecular basis of photoreactivation and enrich principles for the recovery of insect-pathogenic fungi from solar UV damage.
Collapse
Affiliation(s)
- Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
4
|
Luo XC, Yu L, Xu SY, Ying SH, Feng MG. Rad6, a ubiquitin conjugator required for insect-pathogenic lifestyle, UV damage repair, and genomic expression of Beauveria bassiana. Microbiol Res 2024; 281:127622. [PMID: 38246123 DOI: 10.1016/j.micres.2024.127622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/09/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The E2 ubiquitin conjugator Rad6 is required for DNA damage bypass in budding yeast but remain functionally unknown in filamentous fungi. Here, we report pleiotropic effect of Rad6 ortholog in Beauveria bassiana, a wide-spectrum fungal insecticide. Global ubiquitination signal was greatly attenuated in the absence of rad6. The blocked ubiquitination led to severe growth defect, blocked asexual development, and abolished infectivity/insect pathogenicity, which correlated with compromised conidial quality (including viability, hydrophobicity, adherence to insect cuticle, and thermotolerance) and blocked secretion of cuticle-degrading enzymes including Pr1 family proteases. Importantly, Rad6 played much greater role in photoreactivation of UVB-impaired conidia by a 3- or 5-h light plus 9- or 7-h dark incubation than in dark reactivation of those impaired conidia by a 12-h dark incubation. The high activity of Rad6 in photoreactivation in vivo was derived from its link to a protein complex cored by the photolyase regulators WC1 and WC2 via the strong interactions of Rad6 with the E3 partner Rad18 and Rad18 with WC2 revealed in yeast two-hybrid assays. Transcriptomic analysis resulted in identification of 2700 differentially regulated genes involved in various function categories and metabolism pathways, indicating a regulatory role of Rad6-mediated ubiquitination in gene expression networks and genomic stability. Conclusively, Rad6 is required for asexual and insect-pathogenic lifecycles, solar UV damage repair, and genomic expression of B. bassiana. The primary dependence of its strong anti-UV role on photoreactivation in vivo unveils a scenario distinct from the core role of its yeast ortholog in DNA damage bypass.
Collapse
Affiliation(s)
- Xin-Cheng Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Peng H, Zhang YL, Ying SH, Feng MG. Rad2, Rad14 and Rad26 recover Metarhizium robertsii from solar UV damage through photoreactivation in vivo. Microbiol Res 2024; 280:127589. [PMID: 38154444 DOI: 10.1016/j.micres.2023.127589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Rad2, Rad14 and Rad26 recover ultraviolet (UV) damage by nucleotide excision repair (NER) in budding yeast but their functions in filamentous fungi have not been elucidated. Here, we report mechanistically different anti-UV effects of nucleus-specific Rad2, Rad14 and Rad26 orthologs in Metarhizium robertsii, an insect-pathogenic fungus. The null mutants of rad2, rad14 and rad26 showed a decrease of ∼90% in conidial resistance to UVB irradiation. When conidia were impaired at a UVB dose of 0.15 J/cm2, they were photoreactivated (germinated) by only 6-13% through a 5-h light plus 19-h dark incubation, whereas 100%, 80% and 70% of the wild-type conidia were photoreactivated at 0.15, 0.3 and 0.4 J/cm2, respectively. The dose-dependent photoreactivation rates were far greater than the corresponding 24-h dark reactivation rates and were largely enhanced by the overexpression (OE) of rad2, rad14 or rad26 in the wild-type strain. The OE strains exhibited markedly greater activities in photoreactivation of conidia inactivated at 0.5-0.7 J/cm2 than did the wild-type strain. Confirmed interactions of Rad2, Rad14 and Rad26 with photolyase regulators and/or Rad1 or Rad10 suggest that each of these proteins could have evolved into a component of the photolyase regulator-cored protein complex to mediate photoreactivation. The interactions inhibited in the null mutants resulted in transcriptional abolishment or repression of those factors involved in the complex. In conclusion, the anti-UV effects of Rad2, Rad14 and Rad26 depend primarily on DNA photorepair-dependent photoreactivation in M. robertsii and mechanistically differ from those of yeast orthologs depending on NER.
Collapse
Affiliation(s)
- Han Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yi-Lu Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Yu L, Xu SY, Luo XC, Ying SH, Feng MG. High photoreactivation activities of Rad2 and Rad14 in recovering insecticidal Beauveria bassiana from solar UV damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112849. [PMID: 38277960 DOI: 10.1016/j.jphotobiol.2024.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Anti-ultraviolet (UV) roles of Rad2 and Rad14 depend on nucleotide excision repair (NER) of UV-induced DNA lesions in budding yeast but remain unexplored yet in filamentous fungi. Here, nucleus-specific Rad2 and Rad14 orthologs are shown to recover Beauveria bassiana, a main source of wide-spectrum mycoinsecticides, from solar UV damage through photorepair-depending photoreactivation. As a photorepair index, photoreactivation (germination) rates of lethal UVB dose-irradiated conidia via a 3- or 5-h light plus 9- or 7-h dark incubation at 25 °C were drastically reduced in the Δrad2 and Δrad14 mutants versus a wild-type strain. As an NER index, nighttime-mimicking 12-h dark reactivation rates of low UVB dose-impaired conidia decreased sharply compared to the corresponding photoreactivation rates in the presence or absence of either ortholog, indicating that its extant NER activity was limited to recovering light UVB damage in the field. The high photoreactivation activity of either Rad2 or Rad14 was derived from its tight link to a large protein complex formed by photolyase regulators and other anti-UV proteins through multiple protein-protein interactions revealed by yeast two-hybrid assays. Therefore, Rad2 and Rad14 recover B. bassiana from solar UV damage through photoreactiovation in vivo that depends primarily on photorepair, although they contribute little to the fungal lifecycle-related phenotypes. These findings unveil a novel scenario distinguished from the NER-depending anti-UV roles of Rad2 and Rad14 in the model yeast and broaden a biological basis crucial for rational application of fungal insecticides to improve pest control efficacy via feasible recovery of solar UV damage.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Cheng Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhang YL, Peng H, Zhang K, Ying SH, Feng MG. Divergent roles of Rad4 and Rad23 homologs in Metarhizium robertsii's resistance to solar ultraviolet damage. Appl Environ Microbiol 2023; 89:e0099423. [PMID: 37655890 PMCID: PMC10537586 DOI: 10.1128/aem.00994-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
The anti-ultraviolet (UV) role of a Rad4-Rad23-Rad33 complex in budding yeast relies on nucleotide excision repair (NER), which is mechanistically distinct from photorepair of DNA lesions generated under solar UV irradiation but remains poorly known in filamentous fungi. Here, two nucleus-specific Rad4 paralogs (Rad4A and Rad4B) and nucleocytoplasmic shuttling Rad23 ortholog are functionally characterized by multiple analyses of their null mutants in Metarhizium robertsii, an entomopathogenic fungus lacking Rad33. Rad4A was proven to interact with Rad23 and contribute significantly more to conidial UVB resistance (90%) than Rad23 (65%). Despite no other biological function, Rad4A exhibited a very high activity in photoreactivation of UVB-impaired/inactivated conidia by 5-h light exposure due to its interaction with Rad10, an anti-UV protein clarified previously to have acquired a similar photoreactivation activity through its interaction with a photolyase in M. robertsii. The NER activity of Rad4A or Rad23 was revealed by lower reactivation rates of moderately impaired conidia after 24-h dark incubation but hardly observable at the end of 12-h dark incubation, suggesting an infeasibility of its NER activity in the field where nighttime is too short. Aside from a remarkable contribution to conidial UVB resistance, Rad23 had pleiotropic effect in radial growth, aerial conidiation, antioxidant response, and cell wall integrity but no photoreactivation activity. However, Rad4B proved redundant in function. The high photoreactivation activity of Rad4A unveils its essentiality for M. robertsii's fitness to solar UV irradiation and is distinct from the yeast homolog's anti-UV role depending on NER. IMPORTANCE Resilience of solar ultraviolet (UV)-impaired cells is crucial for the application of fungal insecticides based on formulated conidia. Anti-UV roles of Rad4, Rad23, and Rad33 rely upon nucleotide excision repair (NER) of DNA lesions in budding yeast. Among two Rad4 paralogs and Rad23 ortholog characterized in Metarhizium robertsii lacking Rad33, Rad4A contributes to conidial UVB resistance more than Rad23, which interacts with Rad4A rather than functionally redundant Rad4B. Rad4A acquires a high activity in photoreactivation of conidia severely impaired or inactivated by UVB irradiation through its interaction with Rad10, another anti-UV protein previously proven to interact with a photorepair-required photolyase. The NER activity of either Rad4A or Rad23 is seemingly extant but unfeasible under field conditions. Rad23 has pleiotropic effect in the asexual cycle in vitro but no photoreactivation activity. Therefore, the strong anti-UV role of Rad4A depends on photoreactivation, unveiling a scenario distinct from the yeast homolog's NER-reliant anti-UV role.
Collapse
Affiliation(s)
- Yi-Lu Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Tang Y, Tang Y, Ren D, Wang C, Qu Y, Huang L, Xue Y, Jiang Y, Wang Y, Xu L, Zhu P. White Collar 1 Modulates Oxidative Sensitivity and Virulence by Regulating the HOG1 Pathway in Fusarium asiaticum. Microbiol Spectr 2023; 11:e0520622. [PMID: 37195224 PMCID: PMC10269464 DOI: 10.1128/spectrum.05206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.
Collapse
Affiliation(s)
- Ying Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Qu
- School of Life Sciences, East China Normal University, Shanghai, China
- No. 2 High School of East China Normal University, Shanghai, China
| | - Li Huang
- School of Life Sciences, East China Normal University, Shanghai, China
- Suzhou Industrial Park Xingyang School, Suzhou, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Xu SY, Yu L, Luo XC, Ying SH, Feng MG. Co-Regulatory Roles of WC1 and WC2 in Asexual Development and Photoreactivation of Beauveria bassiana. J Fungi (Basel) 2023; 9:jof9030290. [PMID: 36983459 PMCID: PMC10056576 DOI: 10.3390/jof9030290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
The white collar proteins WC1 and WC2 interact with each other to form a white collar complex acting as a well-known transcription regulator required for the operation of the circadian clock in Neurospora, but their roles in insect-pathogenic fungal lifecycles remain poorly understood. Here, we report that WC1 and WC2 orthologs co-regulate the conidiation capacity and conidial resistance to solar ultraviolet-B (UVB) irradiation in Beauveria bassiana, after their high activities in the photorepair of UVB-induced DNA damages were elucidated previously in the insect mycopathogen, which features non-rhythmic conidiation and high conidiation capacity. The conidial yield, UVB resistance, and photoreactivation rate of UVB-impaired conidia were greatly reduced in the null mutants of wc1 and wc2 compared to their control strains. However, many other lifecycle-related phenotypes, except the antioxidant response, were rarely affected in the two mutants. Transcriptomic analysis revealed largely overlapping roles for WC1 and WC2 in regulating the fungal gene networks. Most of the differentially expressed genes identified from the null mutants of wc1 (1380) and wc2 (1001) were co-downregulated (536) or co-upregulated (256) at similar levels, including several co-downregulated genes required for aerial conidiation and DNA photorepair. These findings expand a molecular basis underlying the fungal adaptation to solar UV irradiation and offer a novel insight into the genome-wide co-regulatory roles of WC1 and WC2 in B. bassiana's asexual development and in vivo photoreactivation against solar UV damage.
Collapse
Affiliation(s)
- Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Cheng Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Schalamun M, Beier S, Hinterdobler W, Wanko N, Schinnerl J, Brecker L, Engl DE, Schmoll M. MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei. Sci Rep 2023; 13:1912. [PMID: 36732590 PMCID: PMC9894936 DOI: 10.1038/s41598-023-28938-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Nicole Wanko
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Dorothea Elisa Engl
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
11
|
Yu L, Xu SY, Luo XC, Ying SH, Feng MG. Comparative Roles of Rad4A and Rad4B in Photoprotection of Beauveria bassiana from Solar Ultraviolet Damage. J Fungi (Basel) 2023; 9:jof9020154. [PMID: 36836269 PMCID: PMC9961694 DOI: 10.3390/jof9020154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The Rad4-Rad23-Rad33 complex plays an essential anti-ultraviolet (UV) role depending on nucleotide excision repair (NER) in budding yeast but has been rarely studied in filamentous fungi, which possess two Rad4 paralogs (Rad4A/B) and orthologous Rad23 and rely on the photorepair of UV-induced DNA lesions, a distinct mechanism behind the photoreactivation of UV-impaired cells. Previously, nucleocytoplasmic shuttling Rad23 proved to be highly efficient in the photoreactivation of conidia inactivated by UVB, a major component of solar UV, due to its interaction with Phr2 in Beauveria bassiana, a wide-spectrum insect mycopathogen lacking Rad33. Here, either Rad4A or Rad4B was proven to localize exclusively in the nucleus and interact with Rad23, which was previously shown to interact with the white collar protein WC2 as a regulator of two photorepair-required photolyases (Phr1 and Phr2) in B. bassiana. The Δrad4A mutant lost ~80% of conidial UVB resistance and ~50% of activity in the photoreactivation of UVB-inactivated conidia by 5 h light exposure. Intriguingly, the reactivation rates of UVB-impaired conidia were observable only in the presence of rad4A after dark incubation exceeding 24 h, implicating extant, but infeasible, NER activity for Rad4A in the field where night (dark) time is too short. Aside from its strong anti-UVB role, Rad4A played no other role in B. bassiana's lifecycle while Rad4B proved to be functionally redundant. Our findings uncover that the anti-UVB role of Rad4A depends on the photoreactivation activity ascribed to its interaction with Rad23 linked to WC2 and Phr2 and expands a molecular basis underlying filamentous fungal adaptation to solar UV irradiation on the Earth's surface.
Collapse
|
12
|
Zhang YL, Peng H, Ying SH, Feng MG. Efficient Photoreactivation of Solar UV-Injured Metarhizium robertsii by Rad1 and Rad10 Linked to DNA Photorepair-Required Proteins. Photochem Photobiol 2022. [PMID: 36441642 DOI: 10.1111/php.13752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Nucleotide excision repair (NER) of ultraviolet (UV)-induced DNA lesions known as cyclobutane pyrimidine dimer (CPD) and (6-4)-pyrimidine-pyrimidone (6-4PP) photoproducts depends on the activities of multiple anti-UV radiation (RAD) proteins in budding yeast. However, NER remains poorly known in filamentous fungi, whose DNA lesions are photorepaired by one or two photolyases, namely CPD-specific Phr1 and/or 6-4PP-specific Phr2. Previously, the white collar proteins WC1 and WC2 were proven to regulate expressions of phr2 and phr1 and photorepair 6-4PP and CDP DNA lesions, respectively, in Metarhizium robertsii, a filamentous entomopathogenic-phytoendophytic fungus. We report here high activities of orthologous Rad1 and Rad10 in 5-h photoreactivation of UVB-injured or UVB-inactivated conidia but a severely compromised capability of their reactivating those conidia via 24-h dark incubation in M. robertsii. The null mutants of rad1 and rad10 were much more compromised in conidial UVB resistance and photoreactivation capability than the previous null mutants of phr1, phr2, wc1 and wc2. Multiple protein-protein (Rad1-Rad10, Rad1-WC2, Rad10-Phr1, WC1-Phr1/2 and WC2-Phr1/2) interactions detected suggest direct/indirect links of Rad1 and Rad10 to Phr1/2 and WC1/2 and an importance of the links for their photoreactivation activities. Conclusively, Rad1 and Rad10 photoreactivate UVB-impaired M. robertsii through their interactions with the DNA photorepair-required proteins.
Collapse
Affiliation(s)
- Yi-Lu Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Yu L, Xu SY, Luo XC, Ying SH, Feng MG. Rad1 and Rad10 Tied to Photolyase Regulators Protect Insecticidal Fungal Cells from Solar UV Damage by Photoreactivation. J Fungi (Basel) 2022; 8:1124. [PMID: 36354891 PMCID: PMC9692854 DOI: 10.3390/jof8111124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/02/2023] Open
Abstract
Beauveria bassiana serves as a main source of global fungal insecticides, which are based on the active ingredient of formulated conidia vulnerable to solar ultraviolet (UV) irradiation and restrained for all-weather application in green agriculture. The anti-UV proteins Rad1 and Rad10 are required for the nucleotide excision repair (NER) of UV-injured DNA in model yeast, but their anti-UV roles remain rarely exploredin filamentous fungi. Here, Rad1 and Rad10 orthologues that accumulated more in the nuclei than the cytoplasm of B. bassiana proved capable of reactivating UVB-impaired or UVB-inactivated conidia efficiently by 5h light exposure but incapable of doing so by 24 h dark incubation (NER) if the accumulated UVB irradiation was lethal. Each orthologue was found interacting with the other and two white collar proteins (WC1 and WC2), which proved to be regulators of two photolyases (Phr1 and Phr2) and individually more efficient in the photorepair of UVB-induced DNA lesions than either photolyase alone. The fungal photoreactivation activity was more or far more compromised when the protein-protein interactions were abolished in the absence of Rad1 or Rad10 than when either Phr1 or Phr2 lost function. The detected protein-protein interactions suggest direct links of either Rad1 or Rad10 to two photolyase regulators. In B. bassiana, therefore, Rad1 and Rad10 tied to the photolyase regulators have high activities in the photoprotection of formulated conidia from solar UV damage but insufficient NER activities in the field, where night (dark) time is too short, and no other roles in the fungal lifecycle in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Ming-Guang Feng
- Institute of Microbiology, Collegeof Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Henríquez-Urrutia M, Spanner R, Olivares-Yánez C, Seguel-Avello A, Pérez-Lara R, Guillén-Alonso H, Winkler R, Herrera-Estrella AH, Canessa P, Larrondo LF. Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea. eLife 2022; 11:71358. [PMID: 35950750 PMCID: PMC9427114 DOI: 10.7554/elife.71358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian clocks are important for an individual’s fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal–fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. Thus, we confirmed the existence of circadian rhythms in T. atroviride, which are temperature-compensated and modulated by environmental cues such as light and temperature. Nevertheless, the presence of such molecular rhythms appears to be highly dependent on the nutritional composition of the media. Complementation of a clock null (Δfrq) Neurospora crassa strain with the T. atroviride-negative clock component (tafrq) restored core clock function, with the same period observed in the latter fungus, confirming the role of tafrq as a bona fide core clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride’s mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride’s overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core clock-negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components largely modulate development and secondary metabolism in this fungus, including the rhythmic production of distinct volatile organic compounds (VOCs). Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.
Collapse
Affiliation(s)
- Marlene Henríquez-Urrutia
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Spanner
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Consuelo Olivares-Yánez
- Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - Aldo Seguel-Avello
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Pérez-Lara
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector Guillén-Alonso
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
| | | | - Paulo Canessa
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | - Luis F Larrondo
- Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Tong SM, Feng MG. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. PEST MANAGEMENT SCIENCE 2022; 78:30-42. [PMID: 34397162 DOI: 10.1002/ps.6600] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Lu H, Liu S, Zhang S, Chen Q. Light Irradiation Coupled with Exogenous Metal Ions to Enhance Exopolysaccharide Synthesis from Agaricus sinodeliciosus ZJU-TP-08 in Liquid Fermentation. J Fungi (Basel) 2021; 7:jof7110992. [PMID: 34829279 PMCID: PMC8618256 DOI: 10.3390/jof7110992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
To promote Agaricus sinodeliciosus var. Chaidam ZJU-TP-08 growth and metabolites accumulation, a novel integrated strategy was developed by adopting high levels of metal ions coupled with light treatment. The results revealed that yellow and blue light could significantly promote biomass and exopolysaccharides production, respectively. Furthermore, the yellow–blue light shift strategy could stimulate exopolysaccharides formation. Ca2+ ions coupled with blue light mostly promoted exopolysaccharides production related to oxidative stress, which was 42.00% and 58.26% higher than that of Ca2+ ions coupled with the non-light and dark cultivation without Ca2+ ions in 5-L bioreactor. RNA-seq was performed to uncover the underlined molecular mechanism regulated by light-induced gene expressions in exopolysaccharides biosynthesis and oxidative stress. The findings of this work provide valuable insights into adopting metal ions coupled with the light-assisted method for the macrofungus submerged fermentation for exopolysaccharides production.
Collapse
|
17
|
Pola-Sánchez E, Villalobos-Escobedo JM, Carreras-Villaseñor N, Martínez-Hernández P, Beltrán-Hernández EB, Esquivel-Naranjo EU, Herrera-Estrella A. A Global Analysis of Photoreceptor-Mediated Transcriptional Changes Reveals the Intricate Relationship Between Central Metabolism and DNA Repair in the Filamentous Fungus Trichoderma atroviride. Front Microbiol 2021; 12:724676. [PMID: 34566928 PMCID: PMC8456097 DOI: 10.3389/fmicb.2021.724676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.
Collapse
Affiliation(s)
- Enrique Pola-Sánchez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Emma Beatriz Beltrán-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Edgardo Ulises Esquivel-Naranjo
- Laboratorio de Microbiología Molecular, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
18
|
Gindt YM, Connolly G, Vonder Haar AL, Kikhwa M, Schelvis JPM. Investigation of the pH-dependence of the oxidation of FAD in VcCRY-1, a member of the cryptochrome-DASH family. Photochem Photobiol Sci 2021; 20:831-841. [PMID: 34091863 DOI: 10.1007/s43630-021-00063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae cryptochrome-1 (VcCRY-1) is a member of the cryptochrome DASH family. The flavoprotein appears to use blue light both for repair of cyclobutane pyrimidine dimers (CPDs) on DNA and signal transduction. Earlier, we found that it was almost impossible to oxidize the FADH· state upon binding to a CPD, and, in the absence of substrate, the rate of FADH· oxidation was much larger at high pH (Gindt et al. in Biochemistry 54:2802-2805, 2015). Here, we present the pH-dependence of the oxidation of FADH· by ferricyanide, which revealed a switch between slow and fast oxidation with a pKa ≈ 7.0. Stopped-flow mixing was used to measure the oxidation of FADH- to FADH· at pH 6.7 and 7.5. Substrate binding was required to slow down this oxidation such that it could be measured with stopped flow, but there was only a small effect of pH. In addition, resonance Raman measurements of FADH· in VcCRY-1 at pH 6.5 and 7.5 were performed to probe for structural changes near the FAD cofactor related to the observed changes in rate of FADH· oxidation. Only substrate binding seemed to induce a change near the FAD cofactor that may relate to the change in oxidation kinetics. The pH-effect on the FADH· oxidation rate, which is rate-limited by the proton acceptor, does not seem to be due to a protein structural change near the FAD cofactor. Instead, a conserved glutamate in CRY-DASH may control the deprotonation of FADH· and give rise to the pH-effect.
Collapse
Affiliation(s)
- Yvonne M Gindt
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Gabrielle Connolly
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Amy L Vonder Haar
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Miryam Kikhwa
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Johannes P M Schelvis
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
19
|
Brych A, Haas FB, Parzefall K, Panzer S, Schermuly J, Altmüller J, Engelsdorf T, Terpitz U, Rensing SA, Kiontke S, Batschauer A. Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genet Biol 2021; 152:103570. [PMID: 34004340 DOI: 10.1016/j.fgb.2021.103570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.
Collapse
Affiliation(s)
- Annika Brych
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Fabian B Haas
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Katharina Parzefall
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Jeanette Schermuly
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Timo Engelsdorf
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian-University, Würzburg, Germany
| | - Stefan A Rensing
- University of Marburg, Department of Biology, Plant Cell Biology, Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Germany
| | - Stephan Kiontke
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany
| | - Alfred Batschauer
- University of Marburg, Department of Biology, Plant Physiology and Photobiology, Marburg, Germany.
| |
Collapse
|
20
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
21
|
Sánchez-Arreguin JA, Ruiz-Herrera J, Mares-Rodriguez FDJ, León-Ramírez CG, Sánchez-Segura L, Zapata-Morín PA, Coronado-Gallegos J, Aréchiga-Carvajal ET. Acid pH Strategy Adaptation through NRG1 in Ustilago maydis. J Fungi (Basel) 2021; 7:91. [PMID: 33525315 PMCID: PMC7912220 DOI: 10.3390/jof7020091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.
Collapse
Affiliation(s)
- José Alejandro Sánchez-Arreguin
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - F de Jesus Mares-Rodriguez
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Patricio Adrián Zapata-Morín
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Jordan Coronado-Gallegos
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
22
|
Peng H, Guo CT, Tong SM, Ying SH, Feng MG. Two white collar proteins protect fungal cells from solar UV damage by their interactions with two photolyases in Metarhizium robertsii. Environ Microbiol 2021; 23:4925-4938. [PMID: 33438355 DOI: 10.1111/1462-2920.15398] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
The photolyases PHR1 and PHR2 enable photorepair of fungal DNA lesions in the forms of UV-induced cyclobutane pyrimidine dimer (CPD) and (6-4)-pyrimidine-pyrimidone (6-4PP) photoproducts, but their regulation remains mechanistically elusive. Here, we report that the white collar proteins WC1 and WC2 mutually interacting to form a light-responsive transcription factor regulate photolyase expression required for fungal UV resistance in the insect-pathogenic fungus Metharhizum robertsii. Conidial UVB resistance decreased by 54% in Δwc1 and 67% in Δwc2. Five-hour exposure of UVB-inactivated conidia to visible light resulted in photoreactivation rates of 30% and 9% for the Δwc1 and Δwc2 mutants, contrasting to 79%-82% for wild-type and complemented strains. Importantly, abolished transcription of phr1 in Δwc-2 and of phr2 in Δwc1 resulted in incapable photorepair of CDP and 6-4PP DNA lesions in UVB-impaired Δwc2 and Δwc1 cells respectively. Yeast two-hybrid assays revealed interactions of either WC protein with both PHR1 and PHR2. Therefore, the essential roles for WC1 and WC2 in both photorepair of UVB-induced DNA lesions and photoreactivation of UVB-inactivated conidia rely upon their interactions with, and hence transcriptional activation of, PHR1 and PHR2. These findings uncover a novel WC-cored pathway that mediates filamentous fungal response and adaptation to solar UV irradiation.
Collapse
Affiliation(s)
- Han Peng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chong-Tao Guo
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
23
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Molin M, Logg K, Bodvard K, Peeters K, Forsmark A, Roger F, Jörhov A, Mishra N, Billod JM, Amir S, Andersson M, Eriksson LA, Warringer J, Käll M, Blomberg A. Protein kinase A controls yeast growth in visible light. BMC Biol 2020; 18:168. [PMID: 33198745 PMCID: PMC7667738 DOI: 10.1186/s12915-020-00867-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Background A wide variety of photosynthetic and non-photosynthetic species sense and respond to light, having developed protective mechanisms to adapt to damaging effects on DNA and proteins. While the biology of UV light-induced damage has been well studied, cellular responses to stress from visible light (400–700 nm) remain poorly understood despite being a regular part of the life cycle of many organisms. Here, we developed a high-throughput method for measuring growth under visible light stress and used it to screen for light sensitivity in the yeast gene deletion collection. Results We found genes involved in HOG pathway signaling, RNA polymerase II transcription, translation, diphthamide modifications of the translational elongation factor eEF2, and the oxidative stress response to be required for light resistance. Reduced nuclear localization of the transcription factor Msn2 and lower glycogen accumulation indicated higher protein kinase A (cAMP-dependent protein kinase, PKA) activity in many light-sensitive gene deletion strains. We therefore used an ectopic fluorescent PKA reporter and mutants with constitutively altered PKA activity to show that repression of PKA is essential for resistance to visible light. Conclusion We conclude that yeast photobiology is multifaceted and that protein kinase A plays a key role in the ability of cells to grow upon visible light exposure. We propose that visible light impacts on the biology and evolution of many non-photosynthetic organisms and have practical implications for how organisms are studied in the laboratory, with or without illumination.
Collapse
Affiliation(s)
- Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Katarina Logg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Kristofer Bodvard
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Ken Peeters
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Annabelle Forsmark
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Friederike Roger
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Jörhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Neha Mishra
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Horizon Discovery, Cambridge, CB25 9TL, UK
| | - Jean-Marc Billod
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Bio-Me A/S, Oslo Science Park, Gaustadalléen, 210349, Oslo, Norway
| | - Sabiha Amir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
The Trichoderma atroviride Strains P1 and IMI 206040 Differ in Their Light-Response and VOC Production. Molecules 2020; 25:molecules25010208. [PMID: 31947876 PMCID: PMC6983147 DOI: 10.3390/molecules25010208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 01/25/2023] Open
Abstract
Trichoderma atroviride is a strong necrotrophic mycoparasite antagonizing and feeding on a broad range of fungal phytopathogens. It further beneficially acts on plants by enhancing growth in root and shoot and inducing systemic resistance. Volatile organic compounds (VOCs) are playing a major role in all those processes. Light is an important modulator of secondary metabolite biosynthesis, but its influence has often been neglected in research on fungal volatiles. To date, T. atroviride IMI 206040 and T. atroviride P1 are among the most frequently studied T. atroviride strains and hence are used as model organisms to study mycoparasitism and photoconidiation. However, there are no studies available, which systematically and comparatively analyzed putative differences between these strains regarding their light-dependent behavior and VOC biosynthesis. We therefore explored the influence of light on conidiation and the mycoparasitic interaction as well as the light-dependent production of VOCs in both strains. Our data show that in contrast to T. atroviride IMI 206040 conidiation in strain P1 is independent of light. Furthermore, significant strain- and light-dependent differences in the production of several VOCs between the two strains became evident, indicating that T. atroviride P1 could be a better candidate for plant protection than IMI 206040.
Collapse
|
26
|
Oldemeyer S, Haddad AZ, Fleming GR. Interconnection of the Antenna Pigment 8-HDF and Flavin Facilitates Red-Light Reception in a Bifunctional Animal-like Cryptochrome. Biochemistry 2019; 59:594-604. [PMID: 31846308 DOI: 10.1021/acs.biochem.9b00875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptochromes are ubiquitous flavin-binding light sensors closely related to DNA-repairing photolyases. The animal-like cryptochrome CraCRY from the green alga Chlamydomonas reinhardtii challenges the paradigm of cryptochromes as pure blue-light receptors by acting as a (6-4) photolyase, using 8-hydroxy-5-deazaflavin (8-HDF) as a light-harvesting antenna with a 17.4 Å distance to flavin and showing spectral sensitivity up to 680 nm. The expanded action spectrum is attributed to the presence of the flavin neutral radical (FADH•) in the dark, despite a rapid FADH• decay observed in vitro in samples exclusively carrying flavin. Herein, the red-light response of CraCRY carrying flavin and 8-HDF was studied, revealing a 3-fold prolongation of the FADH• lifetime in the presence of 8-HDF. Millisecond time-resolved ultraviolet-visible spectroscopy showed the red-light-induced formation and decay of an absorbance band at 458 nm concomitant with flavin reduction. Time-resolved Fourier transform infrared (FTIR) spectroscopy and density functional theory attributed these changes to the deprotonation of 8-HDF, challenging the paradigm of 8-HDF being permanently deprotonated in photolyases. FTIR spectra showed changes in the hydrogen bonding network of asparagine 395, a residue suggested to indirectly control flavin protonation, indicating the involvement of N395 in the stabilization of FADH•. Fluorescence spectroscopy revealed a decrease in the energy transfer efficiency of 8-HDF upon flavin reduction, possibly linked to 8-HDF deprotonation. The discovery of the interdependence of flavin and 8-HDF beyond energy transfer processes highlights the essential role of the antenna, introducing a new concept enabling CraCRY and possibly other bifunctional cryptochromes to fulfill their dual function.
Collapse
Affiliation(s)
- Sabine Oldemeyer
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Andrew Z Haddad
- Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Graham R Fleming
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Kavli Energy Nanoscience Institute , Berkeley , California 94720 , United States
| |
Collapse
|
27
|
Franz S, Ignatz E, Wenzel S, Zielosko H, Putu E, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acids Res 2019; 46:8010-8022. [PMID: 30032195 PMCID: PMC6125616 DOI: 10.1093/nar/gky621] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Photolyases and cryptochromes form an almost ubiquitous family of blue light photoreceptors involved in the repair and maintenance of DNA integrity or regulatory control. We found that one cryptochrome from the green alga Chlamydomonas reinhardtii (CraCRY) is capable of both, control of transcript levels and the sexual cycle of the alga in a positive (germination) and negative manner (mating ability), as well as catalyzing the repair of UV-DNA lesions. Its 1.6 Å crystal structure shows besides the FAD chromophore an aromatic tetrad that is indispensable in animal-like type I cryptochromes for light-driven change of their signaling-active redox state and formation of a stable radical pair. Given CraCRY’s catalytic activity as (6-4) photolyase in vivo and in vitro, we present the first co-crystal structure of a cryptochrome with duplex DNA comprising a (6-4) pyrimidine–pyrimidone lesion. This 2.9 Å structure reveals a distinct conformation for the catalytic histidine His1, H357, that challenges previous models of a single-photon driven (6-4) photolyase mechanism.
Collapse
Affiliation(s)
- Sophie Franz
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Elisabeth Ignatz
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Sandra Wenzel
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Hannah Zielosko
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | | | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Taipei 115, Taiwan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
- LOEWE Center of Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
- To whom correspondence should be addressed. Tel: +49 6421/28 22032; Fax: +49 6421/28 22012;
| |
Collapse
|
28
|
Morán-Diez ME, Carrero-Carrón I, Rubio MB, Jiménez-Díaz RM, Monte E, Hermosa R. Transcriptomic Analysis of Trichoderma atroviride Overgrowing Plant-Wilting Verticillium dahliae Reveals the Role of a New M14 Metallocarboxypeptidase CPA1 in Biocontrol. Front Microbiol 2019; 10:1120. [PMID: 31191472 PMCID: PMC6545926 DOI: 10.3389/fmicb.2019.01120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022] Open
Abstract
Verticillium dahliae, a vascular-colonizing fungus, causes economically important wilt diseases in many crops, including olive trees. Trichoderma spp. have demonstrated an effective contribution as biocontrol agents against this pathogen through a variety of mechanisms that may involve direct mycoparasitism and antibiosis. However, molecular aspects underlaying Trichoderma–V. dahliae interactions are not well known yet due to the few studies in which this pathogen has been used as a target for Trichoderma. In the present study, Trichoderma atroviride T11 overgrew colonies of V. dahliae on agar plates and inhibited growth of highly virulent defoliating (D) V. dahliae V-138I through diffusible molecules and volatile organic compounds produced before contact. A Trichoderma microarray approach of T11 growing alone (CON), and before contact (NV) or overgrowing (OV) colonies of V-138I, helped to identify 143 genes that differed significantly in their expression level by more than twofold between OV and CON or NV. Functional annotation of these genes indicated a marked up-regulation of hydrolytic, catalytic and transporter activities, and secondary metabolic processes when T11 overgrew V-138I. This transcriptomic analysis identified peptidases as enzymatic activity overrepresented in the OV condition, and the cpa1 gene encoding a putative carboxypeptidase (ID number 301733) was selected to validate this study. The role of cpa1 in strain T11 on antagonism of V-138I was analyzed by a cpa1-overexpression approach. The increased levels of cpa1 expression and protease activity in the cpa1-overexpressed transformants compared to those in wild-type or transformation control strains were followed by significantly higher antifungal activity against V-138I in in vitro assays. The use of Trichoderma spp. for the integrated management of plant diseases caused by V. dahliae requires a better understanding of the molecular mechanisms underlying this interaction that might provide an increase on its efficiency.
Collapse
Affiliation(s)
- María E Morán-Diez
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Irene Carrero-Carrón
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain.,College of Agriculture and Forestry (ETSIAM), University of Córdoba, Córdoba, Spain
| | - M Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rafael M Jiménez-Díaz
- College of Agriculture and Forestry (ETSIAM), University of Córdoba, Córdoba, Spain.,Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Córdoba, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
29
|
Two Photolyases Repair Distinct DNA Lesions and Reactivate UVB-Inactivated Conidia of an Insect Mycopathogen under Visible Light. Appl Environ Microbiol 2019; 85:AEM.02459-18. [PMID: 30552186 DOI: 10.1128/aem.02459-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
Fungal conidia serve as active ingredients of fungal insecticides but are sensitive to solar UV irradiation, which impairs double-stranded DNA (dsDNA) by inducing the production of cytotoxic cyclobutane pyrimidine dimers (CPDs) and (6-4)-pyrimidine-pyrimidine photoproducts (6-4PPs). This study aims to elucidate how CPD photolyase (Phr1) and 6-4PP photolyase (Phr2) repair DNA damage and photoreactivate UVB-inactivated cells in Beauveria bassiana, a main source of fungal insecticides. Both Phr1 and Phr2 are proven to exclusively localize in the fungal nuclei. Despite little influence on growth, conidiation, and virulence, singular deletions of phr1 and phr2 resulted in respective reductions of 38% and 19% in conidial tolerance to UVB irradiation, a sunlight component most harmful to formulated conidia. CPDs and 6-4PPs accumulated significantly more in the cells of Δphr1 and Δphr2 mutants than in those of a wild-type strain under lethal UVB irradiation and were largely or completely repaired by Phr1 in the Δphr2 mutant and Phr2 in the Δphr1 mutant after optimal 5-h exposure to visible light. Consequently, UVB-inactivated conidia of the Δphr1 and Δphr2 mutants were much less efficiently photoreactivated than were the wild-type counterparts. In contrast, overexpression of either phr1 or phr2 in the wild-type strain resulted in marked increases in both conidial UVB resistance and photoreactivation efficiency. These findings indicate essential roles of Phr1 and Phr2 in photoprotection of B. bassiana from UVB damage and unveil exploitable values of both photolyase genes for improved UVB resistance and application strategy of fungal insecticides.IMPORTANCE Protecting fungal cells from damage from solar UVB irradiation is critical for development and application of fungal insecticides but is mechanistically not understood in Beauveria bassiana, a classic insect pathogen. We unveil that two intranuclear photolyases, Phr1 and Phr2, play essential roles in repairing UVB-induced dsDNA lesions through respective decomposition of cytotoxic cyclobutane pyrimidine dimers and (6-4)-pyrimidine-pyrimidine photoproducts, hence reactivating UVB-inactivated cells effectively under visible light. Our findings shed light on the high potential of both photolyase genes for use in improving UVB resistance and application strategy of fungal insecticides.
Collapse
|
30
|
|
31
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
32
|
Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:4-14. [PMID: 28619534 DOI: 10.1016/j.jplph.2017.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state.
Collapse
Affiliation(s)
- Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Yong Zou
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
33
|
|
34
|
Cohrs KC, Schumacher J. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea. Appl Environ Microbiol 2017; 83:e00812-17. [PMID: 28667107 PMCID: PMC5561282 DOI: 10.1128/aem.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022] Open
Abstract
The plant-pathogenic leotiomycete Botrytis cinerea is known for the strict regulation of its asexual differentiation programs by environmental light conditions. Sclerotia are formed in constant darkness; black/near-UV (NUV) light induces conidiation; and blue light represses both differentiation programs. Sensing of black/NUV light is attributed to proteins of the cryptochrome/photolyase family (CPF). To elucidate the molecular basis of the photoinduction of conidiation, we functionally characterized the two CPF proteins encoded in the genome of B. cinerea as putative positive-acting components. B. cinerea CRY1 (BcCRY1), a cyclobutane pyrimidine dimer (CPD) photolyase, acts as the major enzyme of light-driven DNA repair (photoreactivation) and has no obvious role in signaling. In contrast, BcCRY2, belonging to the cry-DASH proteins, is dispensable for photorepair but performs regulatory functions by repressing conidiation in white and especially black/NUV light. The transcription of bccry1 and bccry2 is induced by light in a White Collar complex (WCC)-dependent manner, but neither light nor the WCC is essential for the repression of conidiation through BcCRY2 when bccry2 is constitutively expressed. Further, BcCRY2 affects the transcript levels of both WCC-induced and WCC-repressed genes, suggesting a signaling function downstream of the WCC. Since both CPF proteins are dispensable for photoinduction by black/NUV light, the origin of this effect remains elusive and may be connected to a yet unknown UV-light-responsive system.IMPORTANCEBotrytis cinerea is an economically important plant pathogen that causes gray mold diseases in a wide variety of plant species, including high-value crops and ornamental flowers. The spread of disease in the field relies on the formation of conidia, a process that is regulated by different light qualities. While this feature has been known for a long time, we are just starting to understand the underlying molecular mechanisms. Conidiation in B. cinerea is induced by black/near-UV light, whose sensing is attributed to the action of cryptochrome/photolyase family (CPF) proteins. Here we report on the distinct functions of two CPF proteins in the photoresponse of B. cinerea While BcCRY1 acts as the major photolyase in photoprotection, BcCRY2 acts as a cryptochrome with a signaling function in regulating photomorphogenesis (repression of conidiation).
Collapse
Affiliation(s)
- Kim C Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| |
Collapse
|
35
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
36
|
Esquivel-Naranjo EU, García-Esquivel M, Medina-Castellanos E, Correa-Pérez VA, Parra-Arriaga JL, Landeros-Jaime F, Cervantes-Chávez JA, Herrera-Estrella A. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals. Mol Microbiol 2016; 100:860-76. [PMID: 26878111 DOI: 10.1111/mmi.13355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 11/27/2022]
Abstract
Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression.
Collapse
Affiliation(s)
- Edgardo Ulises Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, Irapuato, México.,Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Mónica García-Esquivel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, Irapuato, México
| | | | - Víctor Alejandro Correa-Pérez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Jorge Luis Parra-Arriaga
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, México
| | | |
Collapse
|
37
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|